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The propagation of transverse spatial correlations of photon pairs through arbitrary first-order linear optical
systems is studied experimentally and theoretically using the fractional Fourier transform. Highly correlated
photon pairs in an Einstein-Podolsky-Rosen-like state are produced by spontaneous parametric down-
conversion and subject to optical fractional Fourier transform systems. It is shown that the joint detection
probability can display either correlation, anticorrelation, or no correlation, depending on the sum of the orders
� and � of the transforms of the down-converted photons. We present analytical results for the propagation of
the perfectly correlated EPR state and numerical results for the propagation of the two-photon state produced
from parametric down-conversion. We find good agreement between the theory and experiment.
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I. INTRODUCTION

The discussion about nonlocal correlations between prop-
erties of two separated particles began in part with the fa-
mous Einstein-Podolsky-Rosen �EPR� paper �1�, in which
Einstein et al. showed that the position and momentum of
two correlated particles could be used to construct a paradox
between quantum theory and intuitive concepts such as lo-
cality and the reality of physical properties. Continuous-
variable �CV�-entangled states similar to the EPR state ap-
pear in a number of physical systems, including field-
quadrature correlations of two modes of the electromagnetic
field �2–5�, spatial variables of pairs of photons �6,7�, and
others �8–11�. This has allowed the experimental realization
of the original gedanken experiment proposed by EPR
�2,6,7�. CV entanglement of the EPR type has been shown to
be useful for a number of quantum information tasks �12�.
One of the benefits to the study and the use of CVs is the
access to a Hilbert space of larger dimension, which is ad-
vantageous for quantum cryptography �13,14� and funda-
mental tests of quantum mechanics �15�.

EPR-like spatial correlations can be identified by the vio-
lation of the inequality �16,17�

�2��1��2��2�q1�q2� �
1

4
, �1�

where �2��1 ��2� represents the uncertainty in variable �1 of
system 1 conditioned upon measurement of system 2 at �2.
�2��1 ��2� is the variance of the conditional probability

P��1 ��2� for a fixed value of �2. Similarly, �2�q1 �q2� is the
variance of the conditional probability P�q1 �q2�, where q1
and q2 are the Fourier conjugate variables of �1 and �2. If
inequality �1� is violated, one could infer either �1 or q1 from
conditional measurements �2 or q2, with less uncertainty than
the Heisenberg uncertainty principle would allow. In recent
experiments �6,7�, measurements of this type were per-
formed in the coincidence-counting regime using photons
from spontaneous parametric down-conversion �SPDC�. The
transverse position and momentum were determined by mea-
suring the intensity distributions in the near and far field,
respectively. As inequality �1� deals with EPR’s nonlocality,
it is generally more restrictive than those involving variances
of center of mass and relative variables, which identify non-
separability of continuous-variable systems �18,19�.

The spatial correlations of photon pairs produced by
SPDC present a rich playground to investigate CV correla-
tions with relatively simple linear optical systems �20–26�. In
SPDC sources, photon pairs generally display an intensity
correlation in the near field �source�, due to the localized
emission of the photon pair: the photons are “born” from the
same pump photon so that both photons are detected at
nearly the same position in the source plane. As the en-
tangled two-photon state propagates, this spatial correlation
evolves to an anticorrelation in the far field. Consequently, if
photon 1 is detected at position � in the far field, photon 2
will be found near −�. The far-field anticorrelations are due
to the phase matching �momentum conservation� in the non-
linear SPDC interaction. The spatial correlation in the near
field and anticorrelation in the far field have been previously
observed in Ref. �27�. The switch from a near-field correla-
tion to a far-field anticorrelation raises the question as to
what type of correlation is present at intermediate distances
in between the near and far-field regions. Recently, Chan
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et al. �28� showed that the correlations can “migrate” entirely
to the phase of the two-photon wave function, and conse-
quently the conditional intensity distribution may display no
correlation at all. In Ref. �29�, it was shown that it is always
possible to detect transverse entanglement performing only
intensity correlation measurements, when an arbitrary propa-
gation is applied to each of the entangled photons.

The propagation of the transverse spatial structure of an
optical field can be accurately described by the fractional
Fourier transform �FRFT� �30�. This is true for any first-
order linear optical system. That includes free-space propa-
gation alone �31–33� and also optical systems consisting of
lenses and free space �30,34� provided that one chooses the
appropriate scaling of the transverse coordinates. The FRFT
is parametrized by an angle � so that �=0 corresponds to an
identity operation and �=� /2 is the usual Fourier transform.
With proper scaling of the coordinates, the FRFT is additive,
so that consecutive FRFT’s F� and F� can be written as
F�+�. This allows one to associate an overall FRFT with an
arbitrary first-order linear optical system.

In the present work, we study the transverse EPR corre-
lations of propagating SPDC photon pairs using the FRFT.
We show theoretically and experimentally that the presence
of EPR intensity correlation, anticorrelation, or no correla-
tion depends on the sum of the orders � and � of the applied
FRFT transforms in each of the down-converted photons. In
this way, it is possible to engineer the spatial intensity cor-
relations through the application of optical FRFTs to the en-
tangled down-converted photons. The FRFT describes a ca-
nonical rotation in phase space and applies to any pair of
conjugate variables such as time frequency �30� or field
quadratures �12�. Thus, the conclusions drawn here are also
relevant to other physical systems.

In Sec. II, we review the connection between the Hilbert
space associated with the spatial variables of a single- and
two-photon field and the Hilbert spaces of point particles
with 2 degrees of freedom. This allows us to apply the usual
quantum formalism for point particles in the description of
the spatial properties of single- and two-photon states. In
Sec. II A, we discuss the propagation of photons through
first-order linear optical systems and the use of the FRFT in
this description. Section III presents the type of two-photon
state typical of the SPDC process and discusses the propaga-
tion of transverse correlations under FRFT operations. In
Sec. IV we present an experiment and results which are well
described by the theoretical results presented in Sec. III. Fi-
nally, we provide some concluding remarks in Sec. V.

II. SINGLE- AND TWO-PHOTON STATES

Here we focus on the spatial structure of a single- or
two-photon field. Thus, for simplicity, we will assume that
the fields are paraxial, monochromatic, and have well-
defined polarization. The Hilbert space H1 describing the
transverse spatial degrees of freedom of a single-photon state
��� is spanned by the basis ����� â†����0�	, where �0� is the
vacuum state. An arbitrary pure state is then

��� =
 d�w������ , �2�

where ����̄x , �̄y� is the transverse position and w��� is the
transverse wave function or detection amplitude. The basis

states ����	 correspond in second quantization to un-
normalized states of one photon at position �. It is possible
to establish an isomorphism between H1 and the Hilbert
space spanned by position eigenstates of a two-dimensional
position operator �̂���̂̄x , �̂̄y� if one specifies the action of
this operator on the basis states as: �̂���=����.

Alternatively, H1 is spanned by the basis ��q�� â†�q��0�	,
where

â†�q� =
 d�ei�·qâ†��� �3�

and q��q̄x , q̄y� are the transverse components of the wave
vector k. In this basis, the wave function v�q� is the angular
spectrum of the photon field and is obtained by a Fourier
transform of the detection amplitude w���. Again, it is pos-
sible to establish an isomorphism between H1 and the space
spanned by momentum eigenstates of a two-dimensional mo-
mentum operator q̂��q̂̄x , q̂̄y� if the action of this operator on
the basis states is q̂�q�=q�q�. Because the two bases ����	
and ��q�	 are related via a Fourier transform similar to the
one in Eq. �3�, the position and momentum operators satisfy

the canonical commutation relations ��̂̄k , q̂̄l�= i�k,lÎ, where
k , l= �x ,y	. Thus, at the level of quantum kinematics, there is
an isomorphism between the Hilbert space corresponding to
transverse spatial degrees of freedom of single-photon states
and the Hilbert space of quantum states of a point particle
with 2 degrees of freedom. The equivalence between the
classical paraxial wave optics and the nonrelativistic quan-
tum mechanics of two-dimensional point particles is well
known �35� and also allows one to establish the isomorphism
at the level of quantum dynamics. In fact, for paraxial propa-
gation of the photons along an optical axis z, the wave equa-
tion that governs the evolution of the wave function w���
��� �w� is a time-dependent Schrödinger equation where the
length variable z plays the role of time, and the wavelength 	
of the photons plays the role of Planck’s constant �36�. The
analogy between paraxial wave propagation and nonrelativ-
istic quantum mechanics of a point particle has been well
explored �30,35,37–40�.

The Hilbert space describing the transverse spatial de-
grees of freedom of two-photon states is simply the tensor
product H1 � H2 between the Hilbert spaces of one-photon
states. Thus, H1 � H2 is isomorphic to the Hilbert space as-
sociated with two distinguishable point particles, each one
with 2 degrees of freedom. We assume that the photons are
distinguishable since, in principle, they could be distin-
guished by their longitudinal direction of propagation or
their polarization. Therefore, an arbitrary two-photon pure
state can be written as

�
� =
 
 d�1d�2
��1,�2���1�1��2�2, �4�

where 
��1 ,�2�= ��1 ,�2 �
� is the normalized wave func-
tion and ��1�1 and ��2�2 are position eigenstates for photons 1
and 2, respectively. Here it is assumed that the paraxial ap-
proximation has been applied along two distinct z axes, one
for each single-photon field.
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A. Propagation as a fractional Fourier transform

The most common optical systems are first-order linear
systems �also called quadratic-phase systems�, which are
composed essentially of sections of free space and thin
lenses centered on the propagation �z� axis �30�. Paraxial
propagation in these systems is particularly simple. The
paraxial wave equation corresponds to a Schrödinger equa-
tion associated with a quadratic Hamiltonian, so that the evo-
lution of the phase-space operators is simply given by

��̂ , q̂�T= Û†��̂ , q̂�TÛ=M��̂ , q̂�T �where Û is the evolution
operator associated with the quadratic Hamiltonian, and T
means transposition�. The symplectic matrix M is the ray
matrix that stems from geometrical optics applied to the sys-
tem. For example, in the case of only free propagation, the
evolution is associated with the Hamiltonian of a free par-
ticle and the matrix M represents a linear canonical transfor-
mation that corresponds to a shear in the direction of the
transverse momentum �30�.

A great simplification and systematization in the descrip-
tion of evolution through first-order optical systems is gained
by using dimensionless variables �=� /s and q=sq, where
the real number s has the dimension of a length, and is gen-
erally a function of the properties of the physical system. In
this case, free-space propagation can be described in the
paraxial approximation with the help of the FRFT
�30,32,33�. This is due to the fact that the paraxial Fresnel
diffraction integral, which relates the light signal between
two transverse planes in free space, can be expressed using a
FRFT if we use dimensionless coordinates. The more general
case occurs when we choose different parameters s at the
input and the output planes. However, in order to identify the
transverse position and momentum coordinates at these
planes as belonging to the same phase space, one must use
the same parameter s. Figure 1�a� illustrates the identification

of the FRFT with propagation through free space. The dif-
fraction of light from a spherical cap emitter with radius of
curvature Re=−R�0 to a spherical cap receiver with radius
of curvature Rr=R�0 at a distance z from the emitter can be
expressed as �32,33�

�r��� = e−i�/2F���e���� , �5�

where �e���=exp�−ik�s��2 /2Re�e��� and �r���=exp�
−ik�s��2 /2Rr�r����k��k�=2� /	�. e��� and r��� are the
wave functions at the planes of observations tangent to the
emitter’s and receiver’s spherical caps at its vertex point.
Here we call the angle 0���� the order of the FRFT. This
order ����R ,z� and the adimensionalization parameter s
�s�R ,z� can be calculated from the relations s=�z /k�1
−g2�−1/4 and g�1−z /R=cos �. Alternatively, given the pa-
rameter s and the distance z, we can estimate the FRFT’s
order ����s ,z� and the radius of curvature R�R�s ,z�. It is
important to note that the quadratic phase factors that map
the wave functions at the spherical caps to the wave func-
tions at their tangent planes are not important if we are con-
cerned only with intensity measurements at these planes.

The description of the propagation of photons through
first-order optical systems with the help of the FRFT is com-
pleted if we use Eq. �5� in the section of free propagation,
and for the action of thin lens we multiply the wave function
at the plane of the lens by the phase factor
exp�−ik�s��2 /2f�, where f is the focal length of the lens. It is
important to maintain the same dimensionless parameter s
along the entire optical system in order to use the additivity
property F�+�=F� �F� of the FRFT. This is the mechanism
behind the implementation of a FRFT between two planar
surfaces with the optical systems reported in �34�, where
r���=F��e����. In the experiment reported in Sec. IV, we
perform FRFT’s using the “type I” symmetric lens system
configuration, which is illustrated in Fig. 1�b�. This FRFT
system was originally reported in �34� and is also discussed
in detail in �30�. This FRFT system consists of a lens of focal
length f placed symmetrically between the input and output
planes at a distance z� from each. One can apply either Fou-
rier optics or geometric optics to verify that this system cor-
responds to a FRFT. Specifically, it is necessary to define the
fractional focal length f�= f sin � and impose that the focal
length f and the distance of propagation z� before and after
the lens are related to the order � of the FRFT via the rela-
tion z�=2f sin2�� /2�. The dimensionless position and mo-
mentum coordinates for this kind of system are �=�k / f��
and q=�f� /kq, where � and q are the dimensional variables.
In operator formalism, the evolution with a FRFT is associ-
ated with the fractional Fourier operator defined as �30�

F̂� � ei�/2 exp− i�
�̂2 + q̂2

2
� , �6�

where �̂ and q̂ are the dimensionless position and momen-
tum operators. This operator is equivalent to the evolution
operator of the quantum harmonic oscillator, with the Hamil-
tonian defined as H= ��̂2+ q̂2� /2. Under the FRFT operator
of order �, the single-photon state �0� evolves to ���

D

Re Rr

a)

zα

f

zα

b)

FIG. 1. �a� In free diffraction, the field on the curved surface
with radius Rr can be described as the FRFT of the field on surface
of radius Re with properly scaled coordinates. �b� The FRFT can be
implemented with a simple lens symmetrical system �34�.
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= F̂��0�. The FRFT of the wave function ����= �� ��� is
then given by �32�

���� =
 d�����F̂�����0���� , �7�

where the kernel is

���F̂����� � A� expi
cot �

2
��2�

�expi
cot �

2
�2�exp− i

� · ��

sin �
� , �8�

for 0� �����. Here A�=−i exp�i� /2� / �2��sin ���. Taking

the limit �→0 �or �→2��, one can show that ���F̂�����
=���−��� and similarly ���F̂�����=���+��� for �→ ��
�30�. When �=� /2, the FRFT reduces to the common
Fourier transform. When � does not lie in the interval
0� �����, Eq. �8� accurately represents the FRFT kernel
provided one replaces � with its value modulo 2�. The
transverse position and wave-vector operators evolved under
the action of FRFT are

�̂�

q̂�
� = F̂�

†�̂

q̂
�F̂� =  cos � sin �

− sin � cos �
��̂

q̂
� , �9�

which illustrates the fact that F̂� corresponds to the rotation
of angle � in phase space �30,34�.

III. ENTANGLED TWO-PHOTON STATE

Let us consider now a pure two-photon state whose wave
function in dimensionless coordinates is of the form


��1,�2� = f��1 + �2�g��1 − �2� . �10�

This state is generally correlated provided that f��� and g���
are not identical Gaussian functions. Here it is assumed that
f and g are normalized with respect to �1 and �2. The state
�10� can be readily produced in a number of physical pro-
cesses �11,41�. It is representative of the two-photon state at
the face of the SPDC crystal, for example, provided that the
pump and down-converted fields are polarized and nearly
monochromatic �42�. In this case f is given by the spatial
profile of the pump field and g is the Fourier transform of the
phase matching function G�q�=�2L /K�2sinc�L�q�2 /4K�
�43�, where K is the wave number of the pump beam. In
many experimental situations, G�q� and g��� can be approxi-
mated by the Gaussian functions. In this case, assuming that
the pump laser has a Gaussian profile, the position space
wave function takes the form


��1,�2� =
1

��−�+
exp�−

��1 + �2�2

4�+
2 �exp�−

��1 − �2�2

4�−
2 � .

�11�

Equation �11� describes the field at the crystal face. In trans-
verse wave-vector space, the wave function is


�q1,q2� =
�+�−

�
exp�−

�+
2

4
�q1 + q2�2�exp�−

�−
2

4
�q1 − q2�2� ,

�12�

which is obtained by taking the Fourier transform of the
wave function �11�. Now let us suppose that �−��+, so that
the photons exhibit a position correlation and a momentum
anticorrelation. This is indeed what is generally produced in
SPDC, in which it is not unusual to have �−��+ /100.

A. Propagation of transverse correlations

As discussed above, the propagation of the down-
converted fields can generally be described by a FRFT op-
eration. Let us assume that photon 1 propagates according to
an �-order FRFT along axis z1 and photon 2 according to a
�-order FRFT along axis z2. The state �
� after propagation
is given by

�
�,�� = F̂�
�1�

� F̂�
�2��
� . �13�

The two-photon wave function then becomes 
�,���1 ,�2�
= ��1 ,�2 �
�,��, where


�,���1,�2� =
 
 d�1�d�2���1�F̂���1��

� ��2�F̂���2��
��1�,�2�� , �14�

and the kernels are defined in Eq. �8�. To get a sense of the
action of the FRFT’s, let us consider the limiting case of an
EPR state, for which f����constant and g��������, giving

��1 ,�2�=���1−�2�. This situation is approximated by the
state produced by SPDC when the pump beam can be treated
as a plane wave. The EPR state is

�
EPR� =
 
 d�1d�2���1 − �2���1�1��2�2, �15�

which presents a perfect correlation, since detection of pho-
ton 2 at position � projects photon 1 onto a position eigen-
state ���. After FRFTs, the wave function 
�,�

EPR is


�,�
EPR��1,�2� = A�A� expi

cot ��1
2 + cot ��2

2

2
�
 d�

�expi
cot ��2

2
�expi

cot ��2

2
�

�exp�− i� ·  �1

sin �
+

�2

sin �
�� . �16�

Performing the integral, we have


�,�
EPR��1,�2� = A�+� exp�i

cot�� + ��
2

��1
2 + �2

2��
�exp�− i

�1 · �2

sin�� + ��� , �17�

which is the kernel of an FRFT of order �+� corresponding
to the propagation from an input plane �e.g., �1� to an output
plane �e.g., �2�. The state �
�,�

EPR� is then
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�
�,�
EPR� = A�+�
 
 d�1d�2 exp�i

cot�� + ��
2

��1
2 + �2

2��
�exp�− i

�1 · �2

sin�� + �����1�1��2�2. �18�

Using the definition of the FRFT kernel �8�, we note that
whenever �+�=0�mod 2��, the original state �15� is recov-
ered. That is, the EPR state �15� is an eigenstate of operators

of the type F̂�F̂2�−�, F̂�F̂4�−�, etc. When �+�
=��mod 2��, the correlated EPR state �15� evolves to an
anticorrelated EPR state

��EPR� =
 
 d�1d�2���1 + �2���1�1��2�2. �19�

In this case, the detection of photon 2 at � projects photon 1
onto the state �−��. Given any propagation characterized by
an FRFT F� on photon 1, one can find a transformation F�

on photon 2 such that a correlation or anticorrelation is re-
covered. When �+�=� /2�mod 2��, this state becomes

��� =
 d����1�q����2, �20�

where �q������d��exp�iq��� ·������� is the momentum
eigenstate conjugate to ���. State �20� presents no intensity
correlation. An equivalent result is found for �+�
=3� /2�mod 2��. We note that the conditions for correlation,
anticorrelation, and no correlation depend on the sum of the
FRFT angles of the down-converted fields and not the indi-
vidual angles � and �.

This simple picture drawn for the ideal EPR state is fol-
lowed approximately by the two-photon state in Eq. �11�. For
simplicity, let us use the fact that the two-photon wave func-
tion is factorable in x and y variables: 
��1 ,�2�
=���x1

,�x2
����y1

,�y2
�. Then we can consider one spatial di-

mension � for each down-converted field. Figures 2 and 3
show that the initial state �11� propagated under different
FRFT’s using �+=4.076 and �−=0.067. Figure 2 shows two
examples of strong correlations between photons 1 and 2
when the FRFT orders satisfy the condition �+�
=0�mod 2�� and two examples of strong anticorrelations
when the condition is �+�=��mod 2��. For the condition
�+�=3� /2, Fig. 3 shows a significant decrease in intensity
correlations, although in general they do not completely dis-
appear as is the case shown in Eq. �20� for the ideal EPR
state. In fact, analytical calculation shows that, in order to
have no intensity correlation, i.e., ���1 ,�2 �
�,���2
= f1��1�f2��2�, the exact relation between � and � is

tan � tan � = �−
2�+

2 . �21�

Equation �21� is satisfied by FRFT orders such that �+�
=� /2�mod 2�� or �+�=3� /2�mod 2�� only when �−
=1 /�+. Nevertheless, the intensity correlations present in the
state Eq. �11� propagate in a fashion similar to the idealized
case of the EPR state.

In the laboratory, one has access to the joint detection
probability, which in the case of a two-photon state corre-
sponds to the fourth-order correlation function �44�

P�,���1,�2� = �
�,��a†��1�a†��2�a��1�a��2��
�,��

= �
�,���1,�2��2, �22�

and is proportional to the number of coincidence counts
C�,���1 ,�2�. The conditional probability can be obtained by
the relation

P�,���2��1� =
P�,���1,�2�

P���1�
, �23�

where P���1� is proportional to the number of single counts
C���1�. Thus, the conditional probability P�,���2 ��1� is also
proportional to the number of two-photon coincidence counts
C�,���1 ,�2�.

FIG. 2. �Color online� Density plot of the joint detection prob-
ability calculated for the initial Gaussian state in Eq. �11� evolved
with the following FRFT orders: �a� �=3� /4 and �=5� /4; �b�
�=� and �=�; �c� �=� /4 and �=3� /4; and �d� �=� /2 and
�=� /2. �Plots �a� and �b�� A strong correlation is present when
�+�=0�mod 2�� and �plots �c� and �d�� a strong anticorrelation
when �+�=��mod 2��.

FIG. 3. �Color online� Density plot of the joint detection prob-
ability calculated for the initial Gaussian state in Eq. �11� evolved
with the following FRFT orders: �a� �=� /4 and �=5� /4; �b�
�=� /2 and �=�; and �c� �=3� /4 and �=3� /4. In this case, with
�+�=3� /2�mod 2��, we have a strong decrease in the
correlations.
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IV. EXPERIMENT

We investigated the propagation of EPR-like correlations
experimentally by implementing several FRFT’s on pairs of
entangled photons and registering the coincidence counts
while scanning one of the detectors. The experimental setup
is shown in Fig. 4. Degenerate twin photons with 	
=810 nm are generated by pumping a 5-mm-long lithium
iodate crystal �LiIO3� with a 10-mW cw diode laser centered
at 	p=405 nm. The transverse waist of the beam at the laser
output was measured to be 0.31�0.01 mm. To increase the
spatial correlations, the beam width is expanded three times
using two confocal lenses. The down-converted photons are
detected by avalanche photodiode �APD� photodetectors
equipped with 10-nm bandwidth interference filters centered
at 810 nm. Movable horizontal slits �3 mm�100 �m� are
placed directly in front of each detector in order to scan the
vertical position. The FRFT’s are performed on both down-
converted fields using the “type I” symmetric lens system
configuration reported in �34� and shown in Fig. 1�b�. The
dimensionless position and momentum coordinates for this
kind of system are �=�k / f�� and q=�f� /kq, where f�
=25 /�2 cm �see below� is the scaled focal length and � and
q are the dimensional variables.

Initially, correlation measurements for the near-field ��
=�=�� and far-field ��=�=� /2� correlations were obtained
by fixing one detector at �=0 and scanning the other �6,27�.
These correlations correspond to the usual position and
wave-vector variables in the source plane. The near-field cor-
relations were obtained by imaging the exit surface of the
crystal on the plane of the detectors with 4f lens systems. For
the far-field measurements, the usual optical Fourier trans-
form system was used. A sample of the coincidence counts is
shown in Fig. 5, as a function of the dimensionless variable
�2. The conditional variances are listed in Table I. Using
these results, we can evaluate the EPR inequality �1�,

��,�
2 ��1��2���,�

2 �q1�q2� = 0.20 � 0.01 �
1

4
, �24�

��,�
2 ��2��1���,�

2 �q2�q1� = 0.14 � 0.01 �
1

4
, �25�

which shows that the state displays nonlocal correlations.
Also shown in Fig. 5 are the results using different lens

configurations, which give the weakly correlated intensity
distributions. For example, the �−� /2 distribution is more
than ten times larger than the �−� and � /2−� /2 distribu-
tions.

TABLE I. Conditional variances for all measurement results for
different FRFT orders � and �. Variances were obtained from
Gaussian curve fits.

� ,� ��,�
2 ��2 ��1� ��,�

2 ��1 ��2�

�= � / 2 ,�= � / 2 0.14�0.02 0.17�0.02

�=� ,�=� 0.98�0.06 1.39�0.06

�= � / 2 ,�=� 12.3�1.5

�=� ,�= � / 2 13.3�2.1

�= 3� / 4 ,�= 5� / 4 0.29�0.01 0.28�0.02

�= � / 4 ,�= 3� / 4 0.21�0.01 0.31�0.02

�= � / 4 ,�= 5� / 4 9.2�0.7 13.8�1.2

�= 3� / 4 ,�= 3� / 4 12.1�1.1 17.7�1.1

L
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FIG. 4. �Color online� Experimental setup. The distances of the
FRFT lens systems are d1=42.63 cm and d2=7.33 cm. All lenses
have focal length f =25 cm. Movable slits �not shown� are placed
in front of each detector.
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FIG. 5. �Color online� Coincidence counts C�,���1 ,�2� as a
function of dimensionless �2 for �a� �=� ,�=� �red circles� and
�=� /2,�=� �blue squares� and �b� �=� /2,�=� /2 �red circles�
and �=� ,�=� /2 �blue squares�. In all cases, detector 1 is fixed at
�1=0.
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To evaluate the strength of these correlations under differ-
ent FRFTs, a series of measurements was performed with
various FRFT lens systems. All the lenses used in the experi-
mental setup have the same focal length f =25 cm. We chose
FRFT’s with orders �= � 3�

4 , 5�
4 	 and �= � �

4 , 3�
4 	, where � and

� correspond to photons 1 and 2, respectively. These FRFT
orders sum to either �, 3� /2, or 2�. This choice of angles is
especially convenient, as it maintains f�=25 /�2 cm; the
same for all of the FRFT systems used. This is advantageous
for several reasons: �i� to respect the condition of additivity
of two consecutive FRFT’s systems and �ii� to use the same
scaling factor for signal and idler fields which is necessary in
order to describe the FRFT mathematically as a rotation in
phase space. The scaling parameter for our system is �k / f�
=6.62 mm−1.

The various lenses used to implement these FRFTs are
shown in Fig. 4. Three additive FRFT lens systems were
used to perform the 5� /4 order FRFT. Lens L1 is used to
perform a 3� /4 order FRFT of the field from the exit face of
the crystal to position 2d1. Lenses L2 and L3 each performs a
� /4 order FRFT; the first from z=2d1 to z=2d1+2d2 and the
second from z=2d1+2d2 to z=2d1+4d2. The field at the
plane z=2d1+4d2 is the FRFT of order 5� /4 of the field at
the exit face of the crystal. Lens L5 is used to perform a 3�

4
FRFT and L4 was used to perform a � /4 order FRFT. By
choosing different detector positions and combinations of
lenses, we could implement several different FRFT’s on each
down-converted field.

A sample of the experimental results is shown in Fig. 6,
which displays coincidence counts C�,���1 ,�2� as a function
of the dimensionless coordinate �2. In all of the plots, the slit
of detector 1 is fixed at the origin ��1=0�. These figures
correspond to vertical cross sections along the line �1=0 of
the theoretical density plots in Figs. 2 and 3. One can see that
for the cases �+�=� ,2�, a narrow coincidence distribution
is observed, indicating either an intensity correlation or anti-
correlation. When �+�=3� /2, the coincidence profile is
much larger, indicating a much weaker correlation. Using
Eq. �23�, the conditional variances ��,�

2 ��2 ��1� were deter-
mined through Gaussian curve fits of the coincidence distri-
butions. Similar measurements and analysis were conducted
by scanning �1 and fixing detector 2 at �2=0. The dimen-
sionless variances for all results obtained are presented in
Table I. We note that the variance for the weakly correlated
distributions is about 10–50 times larger than the correlated
and anticorrelated distributions.

The coincidence distribution C�/4,3�/4��1 ,�2� in fact
corresponds to the transverse wave-vector distribution
C3�/4,5�/4�q1 ,q2�, since the �=� /4��=3� /4� FRFT differs
from the �=3� /4��=5� /4� FRFT by a Fourier transform.
Thus, with the experimental results shown in Fig. 6, we can
calculate the EPR inequality �1�,

�3�/4,5�/4
2 ��1��2��3�/4,5�/4

2 �q1�q2� = 0.039 1 �
1

4
, �26�

indicating EPR’s nonlocality. Similarly, the conditional vari-
ances ��,�

2 ��1 ��2� give

�3�/4,5�/4
2 ��2��1��3�/4,5�/4

2 �q2�q1� = 0.035 2 �
1

4
. �27�

It is clear that the EPR intensity correlation is lost when �
+�=3� /2, since

�3�/4,3�/4
2 ��1��2��3�/4,3�/4

2 �q1�q2� = 244 � 26 �
1

4
, �28�

��,�
2 ��2��1���,�

2 �q2�q1� = 111 � 13 �
1

4
. �29�

The results summarized in Table I show the strength but
do not indicate the type of correlation. To investigate the type
of spatial correlation in intermediate FRFT planes, we first
used lens configurations with FRFT orders �= 5�

4 and �
= 3�

4 , satisfying �+�=2�. Experimental results are shown in
Fig. 7�a�. Initially, the slit in front of detector 1 was placed at
the origin ��1=0� and the slit in front of detector 2 was
scanned vertically. The measured coincidence counts are
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FIG. 6. �Color online� Coincidence counts C�,���1 ,�2� as a
function of dimensionless �2 for �a� �=� /4,�=3� /4 �red circles�
and �=3� /4,�=3� /4 �blue squares� and �b� �=3� /4,�=5� /4
�red circles� and �=� /4,�=5� /4 �blue squares�. In all cases, de-
tector 1 is fixed at �1=0.
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plotted in black triangles in Fig. 7�a� and the maximum of
the Gaussian fit is at �1=0�0.03. We then displaced one of
the slits by 300�5 �m, which corresponds to a dimension-
less displacement of �1=1.99�0.03. Coincidence counts
were again measured while the slit of detector 2 was
scanned. Coincidence counts are in blue squares in Fig. 7�a�
and the maximum of the Gaussian fit is at �2=1.93�0.03.
Slit 1 was then moved −300�5 �m ��1=−1.99�0.03�, and

slit 2 was scanned. The maximum of the coincidence counts
occurred at �2=−1.94�0.03. We thus observe a strong cor-
relation between the transverse coordinates for this configu-
ration satisfying �+�=2�. The same procedure was per-
formed for the lens configuration ��= 3�

4 ,�= �
4 	, which

satisfies the anticorrelation condition �+�=�. The results
are shown in Fig. 7�b�. We observe similar displacement of
the coincidence peaks; however in this case the maxima of
the Gaussian fits are anticorrelated with the position of the
slit of the other detector.

V. CONCLUSION

We have used the fractional Fourier transform to study the
propagation of the transverse intensity correlations of the
two-photon state produced from parametric down-
conversion. The transforms were implemented with simple
lens systems. Our theoretical and experimental results show
that the propagation of the transverse correlations of highly
correlated two-photon states depends upon the sum of the
transform orders of the down-converted fields. For �+�
=0�mod 2��, the original intensity correlation at the source
is recovered, while for �+�=��mod 2��, an intensity anti-
correlation is observed. For �+�=� /2�mod 2�� or �+�
=3� /2�mod 2��, almost no correlation is present. Analytical
results were obtained for the propagation of the ideal EPR
state and numerical calculations along with our experimental
results show that the down-converted photons display a simi-
lar behavior. The EPR correlation present in the two-photon
state was confirmed for several different orders of the frac-
tional Fourier transforms through the violation of an inequal-
ity. These results apply to spatially correlated photons ob-
tained from any source, as well as correlations present in
other physical systems, and should be useful for engineering
spatial correlations, as well as fundamental studies of quan-
tum nonlocality and entanglement.

ACKNOWLEDGMENTS

We would like to thank A. Salles for fruitful discussions.
Financial support was provided by Brazilian agencies CNPq,
PRONEX, CAPES, FAPERJ, FUJB, and the Millennium In-
stitute for Quantum Information.

�1� A. Einstein, D. Podolsky, and N. Rosen, Phys. Rev. 47, 777
�1935�.

�2� Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, Phys.
Rev. Lett. 68, 3663 �1992�.

�3� C. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova,
and G. Leuchs, Phys. Rev. Lett. 86, 4267 �2001�.

�4� A. S. Villar, L. S. Cruz, K. N. Cassemiro, M. Martinelli, and P.
Nussenzveig, Phys. Rev. Lett. 95, 243603 �2005�.

�5� Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, Opt.
Express 15, 4321 �2007�.

�6� J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd,

Phys. Rev. Lett. 92, 210403 �2004�.
�7� M. D’Angelo, Y.-H. Kim, S. P. Kulik, and Y. Shih, Phys. Rev.

Lett. 92, 233601 �2004�.
�8� B. Julsgaard, A. Kozhekin, and E. S. Polzik, Nature �London�

413, 400 �2001�.
�9� W. P. Bowen, N. Treps, R. Schnabel, and P. K. Lam, Phys.

Rev. Lett. 89, 253601 �2002�.
�10� W. P. Bowen, R. Schnabel, Hans-A. Bachor, and P. K. Lam,

Phys. Rev. Lett. 88, 093601 �2002�.
�11� M. V. Fedorov, M. A. Efremov, A. E. Kazakov, K. W. Chan, C.

K. Law, and J. H. Eberly, Phys. Rev. A 72, 032110 �2005�.

-8 -6 -4 -2 0 2 4 6 8
0

1000

2000

3000

4000

5000

6000

C
o
in
c
id
e
n
c
e
c
o
u
n
ts

b)

-6 -4 -2 0 2 4 6
0

500

1000

1500

2000

2500

3000
C
o
in
c
id
e
n
c
e
c
o
u
n
ts

a)

ρ2 (dimensionless)

ρ2 (dimensionless)

FIG. 7. �Color online� Coincidence counts C�,���1 ,�2� as a
function of dimensionless �2 for �a� �=3� /4 and �=5� /4 and �b�
�=� /4 and �=3� /4. In both figures, the black triangles corre-
spond to �1=0, the red circles to �1=−1.99�0.03, and the blue
squares to �1=1.99�0.03. �a� thus shows a correlation, while �b�
shows an anticorrelation of the detection positions.

TASCA et al. PHYSICAL REVIEW A 79, 033801 �2009�

033801-8



�12� S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513
�2005�.

�13� H. Bechmann-Pasquinucci and W. Tittel, Phys. Rev. A 61,
062308 �2000�.

�14� M. Bourennane, A. Karlsson, and G. Bjork, Phys. Rev. A 64,
012306 �2001�.

�15� D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu,
Phys. Rev. Lett. 88, 040404 �2002�.

�16� M. D. Reid and P. D. Drummond, Phys. Rev. Lett. 60, 2731
�1988�.

�17� M. D. Reid, P. D. Drummond, E. G. Cavalcanti, W. P. Bowen,
P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs,
e-print arXiv:0806.0270, Rev. Mod. Phys. �to be published�.

�18� L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 84, 2722 �2000�.

�19� S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Phys.
Rev. Lett. 88, 120401 �2002�.

�20� D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H.
Shih, Phys. Rev. Lett. 74, 3600 �1995�.

�21� P. H. S. Ribeiro, S. Padua, J. C. Machado da Silva, and G. A.
Barbosa, Phys. Rev. A 49, 4176 �1994�.

�22� T. B. Pittman, D. V. Strekalov, D. N. Klyshko, M. H. Rubin, A.
V. Sergienko, and Y. H. Shih, Phys. Rev. A 53, 2804 �1996�.

�23� C. H. Monken, P. H. Souto Ribeiro, and S. Padua, Phys. Rev. A
57, 3123 �1998�.

�24� A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C.
Teich, Phys. Rev. Lett. 87, 123602 �2001�.

�25� J. P. Torres, Y. Deyanova, L. Torner, and G. Molina-Terriza,
Phys. Rev. A 67, 052313 �2003�.

�26� T. Yarnall, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich,
Phys. Rev. Lett. 99, 170408 �2007�.

�27� M. P. Almeida, S. P. Walborn, and P. H. Souto Ribeiro, Phys.

Rev. A 72, 022313 �2005�.
�28� K. W. Chan, J. P. Torres, and J. H. Eberly, Phys. Rev. A 75,

050101�R� �2007�.
�29� D. S. Tasca, S. P. Walborn, P. H. Souto Ribeiro, and F.

Toscano, Phys. Rev. A 78, 010304�R� �2008�.
�30� H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional

Fourier Transform: With Applications in Optics and Signal
Processing �Wiley, New York, 2001�.

�31� T. Alieva, V. Lopez, V. Agullo-Lopez, and L. B. Almeida, J.
Mod. Opt. 41, 1037 �1994�.

�32� P. Pellat-Finet, Opt. Lett. 19, 1388 �1994�.
�33� P. Pellat-Finet and G. Bonnet, Opt. Commun. 111, 141 �1994�.
�34� A. W. Lohmann, J. Opt. Soc. Am. A 10, 2181 �1993�.
�35� D. Marcuse, Light Transmission Optics �Van Nostrand Rein-

hold, New York, 1982�.
�36� Note that in the paraxial approximation, the transverse compo-

nents of the wave vector k� are ql�k�l �l=x ,y and k��k��
=2� /	� where �l�2� are the angles between k� and the z axis.

Thus, considering 	 /2� analogous to �, we can write ��̂k , �̂l�
= i�	 /2���k,l or ��̂k , q̂l�= i�k,l.

�37� D. Stoler, J. Opt. Soc. Am. 71, 334 �1981�.
�38� D. Gloge and D. Marcuse, J. Opt. Soc. Am. 59, 1629 �1969�.
�39� H. Bacry and M. Cadilhac, Phys. Rev. A 23, 2533 �1981�.
�40� D. Dragoman, Prog. Opt. 42, 424 �2002�.
�41� C. I. Osorio, S. Barreiro, M. W. Mitchell, and J. P. Torres,

Phys. Rev. A 78, 052301 �2008�.
�42� C. I. Osorio, A. Valencia, and J. P. Torres, New J. Phys. 10,

113012 �2008�.
�43� S. P. Walborn, A. N. de Oliveira, S. Pádua, and C. H. Monken,

Phys. Rev. Lett. 90, 143601 �2003�.
�44� L. Mandel and E. Wolf, Optical Coherence and Quantum Op-

tics �Cambridge University Press, New York, 1995�.

PROPAGATION OF TRANSVERSE INTENSITY … PHYSICAL REVIEW A 79, 033801 �2009�

033801-9


