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dc Josephson effect with Fermi gases in the Bose-Einstein regime
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We show that the dc Josephson effect with ultracold fermionic gases in the Bose-Einstein-condensate (BEC)
regime of composite molecules can be described by a nonlinear Schrodinger equation (NLSE). By comparing
our results with Bogoliubov—de Gennes calculations [Phys. Rev. Lett. 99, 040401 (2007)] we find that our
superfluid NLSE, which generalizes the Gross-Pitaevskii equation taking into account the correct equation of
state, is reliable in the BEC regime of the BCS-BEC crossover up to the limit of very large (positive) scattering
length. We also predict that the Josephson current displays relevant beyond-mean-field effects.
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I. INTRODUCTION

In the last few years several experimental groups have
observed, close to a Fano-Feshbach resonance [1], the cross-
over from the Bardeen-Cooper-Schrieffer (BCS) state of
Cooper pairs to the Bose-Einstein condensate (BEC) of mo-
lecular dimers in ultracold two-hyperfine-components Fermi
vapors of *°K atoms [2-4] and °Li atoms [5-8]. Few years
ago the ac Josephson effect [9,10] in atomic BECs was pre-
dicted [11] and observed [12]. ac Josephson oscillations in
superfluid atomic Fermi gases have been considered theoreti-
cally by several authors [13-17]. Recently, Spuntarelli er
al.[18] have studied the dc Josephson effect [9,10] across the
BCS-BEC crossover in neutral fermions by using the ex-
tended BCS equations: they have computed the current-
phase relation throughout the BCS-BEC crossover at zero
temperature for a two-spin component Fermi gas in the pres-
ence of a barrier by solving the coupled Bogoliubov—de
Gennes (BdG) equations [18].

In this paper we show that a simple nonlinear Schrodinger
equation (NLSE) [16,19-21] is able to reproduce the Joseph-
son results of Spuntarelli et al[18], in the BEC side of the
BCS-BEC crossover, i.e., from the deep BEC regime up to
very large (positive) values of the scattering length. This
NLSE is equivalent to the equations of superfluid hydrody-
namics [22] with the inclusion of a gradient term [16,19-21].
We demonstrate, in particular, that the gradient term is es-
sential to obtain the correct current-phase Josephson relation.

As discussed in Ref. [18], the dc Josephson currents
found by the Gross-Pitaevskii (GP) and the BdG formalisms
are the same in the deep BEC regime, while for relatively
large values of the scattering length the BAG equations lead
to important deviations from the GP predictions. Here we
will show that our NLSE formalism, equivalent to GP in the
deep BEC regime, gives results which are in remarkably
good agreement with the BAG method also for large, posi-
tive, values of the scattering length.

We also find that the breakdown of superfluidity, which
corresponds to the maximum Josephson current across the
barrier, strongly depends on the bulk equation of state em-
bodied in the superfluid NLSE. In particular, on the basis of
the Monte Carlo equation of state (MC EOS) [20] that in-
cludes beyond-mean-field effects, we predict that the critical
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currents are smaller than those calculated so far [18] using
mean-field theories.

II. NLSE FOR SUPERFLUID FERMIONS

Inspired by the density-functional theory of helium 4 [23]
and by the low-energy effective-field theory of the Fermi gas
in the BCS-BEC crossover [24,25], we have recently intro-
duced [16,20,21] a complex order parameter,

W(r,0) = /@ewm), (1)

to describe bosonlike Cooper pairs of a two-component fer-
mionic superfluid made of atoms of mass m in the BCS-BEC
crossover [22], where n(r,) is the local fermion density and
6(r,t) the local phase. Here n(r,t)=n(r,)+n(r,7), with
ny(r,t)=n(r,1). The normalization of W(r,?) is such that

f |W(r,1)|*d’r = g (2)

N being the total number of fermionic atoms. Notice that
although W(r, ) should not be interpreted as the condensate
wave function [26], 6(r,7) represents the condensate phase
[27,28]. The local superfluid velocity v(r,7)=v,(r,?)
=v,(r,?) is thus related to the phase 6(r,r) by the equation
[22],

f
v=—1YV46. (3)
2m

The nonlinear Schrédinger equation that satisfies Eq. (3) and
reproduces the equations of superfluid hydrodynamics [22]
in the classical limit (A —0) is given by

2
iﬁ(%‘l’(r,t) = {— :L—V2 +2U(r) + ZM[n(r,t),aF]}‘lf(r,t),

(4)

where U(r) is the external potential and u(n,ap) is the bulk
chemical potential, i.e., the zero-temperature equation of
state (EOS) of the uniform system, which depends on the
fermion-fermion scattering length a. In fact, by using Eqgs.
(1) and (3), the NLSE can be written as
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d
—n+V-(nv)=0, (5)
ot
J 1,
m5V+V Emv +U(r) + u(n,ap) + Top | =0, (6)
where
72 V2\n
Top=- _# (7)
8m n

is a quantum pressure term containing explicitly Planck’s
constant 7. This term can be viewed as a gradient correction
in the density-functional theory [23] or the next-to-leading
correction in a low-energy effective-field theory [25]. It is
important to stress that in the deep BEC regime (a;— 0%)
from Eq. (4) one recovers the familiar Gross-Pitaevskii equa-
tion for the Bose-condensed molecules made of paired fer-
mions, where

47Th2add(aF) n

2m

mln.ap) = (8)

with ayy(ap) the dimer-dimer scattering length, which de-
pends on the fermion-fermion scattering length ag.

Over the full BCS-BEC crossover the bulk chemical po-
tential can be written as [22]

h? y
wn,ar) = . (3ﬂ2n)2/3(f(y) -Zf (y)>, 9)
m 5

where f(y) is a dimensionless universal function of the in-
verse interaction parameter,

1
- 10
y ko (10)

with kr=(37?n)"? the Fermi wave number and e
=%2k2/(2m) the Fermi energy. One can parametrize f(y) as
follows:

/31+|)’|>’ (11)

=a; — ap arctan| «
1) 1 2 ( 3y,32+ y|
where the values of the parameters «;,a,,a3,8;,8,, re-
ported in Ref. [20], are fitting parameters based on asymp-
totics and fixed-node Monte Carlo data [29]. We call Monte
Carlo equation of state the equation u=u(n,ar) obtained
from Egs. (9) and (11). Notice that Eq. (4) with Eq. (11) has
been recently used to describe density profiles, collective os-
cillations, and free expansion in the full BCS-BEC regime,
finding a very good agreement with the experimental data
[15,16,19,20].

Within the mean-field extended BCS theory [28,30], the
bulk chemical potential u and the gap energy A of the uni-
form Fermi gas are found by solving the following extended
Bogoliubov—de Gennes equations [30,26],
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1 202m)'2AV? (= 1 1
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aF Wﬁ 0 y ( 2_&) +1
Y TA
(12)
=
N (2m)2AY? [ , y A
R R I A
( 2—E) +1
YT A
(13)

From these two coupled equations one obtains the chemi-
cal potential u as a function of n and a in the full BCS-BEC
crossover (see for instance Ref. [26]). Note that, contrary to
the MC EOS, this mean-field theory does not predict the
correct BEC limit: the molecules have scattering length
agq=2ar instead of the value a,,=0.6a, predicted by four-
body and MC calculations [22]. We call mean-field equation
of state (MF EOS) the equation u=pu(n,ar) obtained from
Eqgs. (12) and (13). Clearly this MF EOS is less reliable than
the MC EOS, as shown in a recent study [7].

As previously stressed, the NLSE [Eq. (4)] describes quite
accurately static properties and low-energy collective modes
of oscillation in the full BCS-BEC crossover [15,16,19,20],
but does not take into account the effect of pair breaking. In
fact, Eq. (4) is reliable if the collective-mode wavelength \ is
such that A> &, where ¢ is the healing length of the super-
fluid. Recently, Combescot et al. [31] have suggested that

h
f=—o, (14)
MU,
where v, is the critical velocity of the Landau criterion for
dissipation [27,31]. According to Combescot et al. [31], in
the BEC regime of bosonic dimers, and in particular for
y>y.=0.08, the critical velocity v, coincides with the sound

velocity, i.e.,
ndad
Ve =Cy = \/——M. (15)
mon

Instead, for y<y.=0.08, i.e., also at unitarity (y=0) and in
the BCS regime (y<<0), the critical velocity v, is related to
the breaking of Cooper pairs through the formula,

[,,2 2
[N+ AP -
Va=\ T (16)

where |A| is the energy gap of Cooper pairs [31].

In Sec. IIT we shall show that the NLSE [Eq. (4)] can be
used to describe quantitatively the Josephson effect, but only
on the BEC side of the BCS-BEC crossover, i.e., for
y>y,.=0.08. For y<y,.=0.08 instead, pair breaking plays an
essential role in the breakdown of the superfluid Josephson
current [8,31].

III. DIRECT CURRENT JOSEPHSON EFFECT

We apply the NLSE [Eq. (4)] to study the direct-current
Josephson effect [9,10]. We consider a square-well barrier,
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L
V, for |z| < —
Ur)=1 ° g 2 (17)

0 elsewhere,

which separates the superfluid into two regions, and assume
a stationary solution,

W(r,1) = D(r)e MMM, (18)
with constant and uniform number supercurrent,

J=n(r)v(r) = 2¢>(r)2% V 4(r). (19)

From the previous equation it follows (V6)>=m?J?/(h*d*)
and also

_4m

=2ud(r). (20)

7> ’
{ LR %q)?r)“ +20U(r) + Zu[n(r),ap]}‘b(r)

With the purpose of comparing our results with those ob-
tained by Spuntarelli ef al. [18], we use the MF EOS of
u[n(r),ap] and solve the above equation by imposing a con-
stant and uniform density 7 far from the barrier region,

<D(r)—>\/§ for |r| — . 1)

We integrate Eq. (20) on a one-dimensional (1D) mesh in
real space, in an interval [0,z,,.], using an imaginary time
method, as described in [32], and determine ®(r) by fixing
the parameters of the barrier (which is located at z=z,,,,/2),
the uniform density 7 and the scattering length ar. To com-
pute the current-phase relation we proceed as follows. The
phase difference across the barrier can be obtained from Eq.

(19),
2mJ
Ao=——
h l

f L (22)
T A

We choose a value for Af and compute J, from the above
equation, at each iteration in imaginary time using the actual
density profile ®(z)2. The updated value of J is then inserted
into Eq. (20) for the next iteration in imaginary time. We stop
the calculations when convergence is achieved, i.e., the den-
sity profile does not change anymore between two consecu-
tive iterations.

In the upper panel of Fig. 1 we plot the scaled density
profile n(z)/n of the fluid calculated for three different values
of the energy barrier height. The figure shows that by in-
creasing the energy barrier height V), the dip in the profile
n(z) is enhanced. In the lower panel of the same figure we
display the corresponding local phase difference A6(z) ob-
tained from Eq. (22). These results are obtained by using the
NLSE with the MF EOS.

The calculated relationship between the current J and the
phase difference A6 is shown in Fig. 2 for two values of the
interaction parameter y. Here our NLSE results (solid lines)
are compared with the ones of Spuntarelli er al. [18], ob-
tained by solving the full set of Bogoliubov—de Gennes equa-
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FIG. 1. Upper panel: scaled density profile n/# in the z direction
(orthogonal to the barrier). The barrier width is L=4/kz. We con-
sider three values of the energy barrier: V,/ €;=0.025 (solid line);
Vo/ €=0.1 (dotted line); vy/ €x=0.4 (dashed line). Lower panel:
phase difference A @ across the barrier for the same values of V{y/ €.

tions for the quasiparticle amplitudes in the presence of the
barrier [Eq. (17)]. For both values of y shown, the agreement
with the BdG theory is remarkably good. For comparison,
we also show in Fig. 2 the results obtained by solving the GP
equation, to which our NLSE is expected to reduce in the
deep BEC regime (y> 1). Interestingly enough, we find that
y=3 is already in the regime well described by the GP for-
malism. At y=1, however, large deviations of the GP curve
with respect to the BdG (and NLSE as well) ones are found.

In Fig. 3 we plot the maximum J§** of the current J as a
function of the inverse interaction parameter y=1/(kpap),
and compare our data (curves) with the results of Spuntarelli
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- 0.08
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(m/Tkg)
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TJTTT‘TTT‘TTT‘TTT‘TTT

0.02

O | l | l | — l ) I l |
0 0.2 0.4 0.6 0.8 1
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FIG. 2. dc Josephson current J vs phase difference A6 for two
values of the inverse interaction parameter y=1/(kpap). Barrier
parameters: L=4/kp, Vy/€p=0.1 (curves corresponding to y=1),
L=5.3/kp, Vy/€z=0.05 (curves corresponding to y=3). Squares:
Bogoliubov—de Gennes calculations of Ref. [18,34]. Solid lines:
NLSE with MF EOS. Dotted lines: GP results.
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FIG. 3. Maximum Josephson current Jy'** vs inverse interaction
parameter y=1/(kpay) in the BEC region (y>0). Solid curve: J§™*
based on pair breaking in the BCS regime [18,31]. Other curves:
superfluid NLSE. Symbols: Bogoliubov—de Gennes calculations of
Ref. [18]. Four values for the energy barrier height V,y/ €7 are con-
sidered: 0.025, 0.10, 0.2, 0.4 (from top to bottom in the figure). The
width of the barrier is L=4/kp.

et al. (symbols) [18]. Please note that the data of Ref. [18]
have a relative error of 5%—-10% which increases with the
height of the energy barrier [33]. Figure 3 shows that the
NLSE reproduces the dc Josephson results of Ref. [18] in the
BEC regime remarkably well, from the deep BEC regime
(y>1) up to very large positive values of the scattering
length (y<<1). In the BCS regime (y<0) the NLSE predic-
tions are instead expected to be completely unreliable. This
is hardly surprising since the superfluid NLSE completely
neglects the effect of pair breaking.

Figure 2 shows that deviations from the GP results of the
calculated current-phase relation are found for the case
y=1. To further investigate to which degree the NLSE re-
duces to the GP case, in Fig. 4 we compare the predictions of
the NLSE and those of the GP equation for the maximum of
the Josephson current as a function of y. It appears that for
relatively large values of the interaction parameter the NLSE

0.4

0.3

(m/ ﬁkl-") Jmax

FIG. 4. Maximum Josephson current J5** vs inverse interaction
parameter y=1/(kpay) obtained with the NLSE. Comparison be-
tween BdG (dots) and the GP approximation (dotted lines) is made.
Vio/ €x=0.1 and L=4/kp.
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FIG. 5. Current J vs phase difference A@: without the gradient
term (dotted line) the Josephson-equation is violated and the result
are very far from the NLSE ones (dashed line).

results dramatically deviate from the GP results (while being
in good agreement with the BAG calculations). In fact, on the
basis of the Eq. (15) and the pair-breaking argument of
Combescot et al. [31], our NLSE should be accurate from
y<<1 (deep BEC limit) up to y=y.=0.08, thus also for values
of y very close to the unitarity limit (y=0). Note that the GP
results are unreliable at unitarity because the coupling con-
stant in the equation of state diverges there.

Thus, the NLSE might represent a viable alternative, in
the whole range of positive scattering lengths (and especially
where the GP equation is not reliable, as shown in Fig. 4), to
the much more computationally expensive BdG approach.
This is especially true in the case of three-dimensional (3D)
geometries, where the BAG method could be prohibitively
costly.

As expected in our calculations we recover the Josephson
equation,

J=J,sin(AH), (23)

in the regime of high barrier (weak link).

We observe that, contrary to our NLSE, the classical hy-
drodynamics equations of Fermi superfluids [22], i.e., Egs.
(5) and (6) with Tgp=0, cannot be used to study the Joseph-
son effect. This is shown in Fig. 5 where we plot the current-
phase diagram and compare the NLSE results (dashed lines)
with the ones obtained using the classical hydrodynamic
equations (dotted line). It clearly appears that the Josephson
relation [Eq. (23)] is violated (the dotted curve does not goes
to zero at 7r) if we omit the gradient term. Moreover, the
predicted current values are very different from the NLSE
results.

The results discussed up to now are based on the use of
the MF EOS since we were interested in assessing the reli-
ability of the NLSE by comparing its results with those ob-
tained by solving the Bogoliubov—de Gennes Egs. [18],
equivalent to a MF treatment. Of course, to give useful pre-
dictions to be compared with experiments one must use the
MC EOS. In fact, relevant beyond-mean-field effects in the
BEC side of the BCS-BEC crossover have been predicted
and observed for the density profiles and also for collective
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FIG. 6. Maximum Josephson current Jy'** vs inverse interaction
parameter y=1/(kpar) obtained with the NLSE. Comparison be-
tween MC EOS (solid lines) and MF EOS (dotted lines). Two val-
ues of the energy barrier height are considered: V/€z=0.025 (up-
per curves) and Vy/€z=0.2 (lower curves).

oscillations [7,20,22]. In a recent experiment of Miller et al.
[8] critical velocities have been observed in an ultracold su-
perfluid Fermi gas throughout the BCS-BEC crossover.
These critical velocities, determined from the abrupt onset of
dissipation when the velocity of a moving one-dimensional
lattice is varied [8], are the analog of the maximum Joseph-
son current J;**. In Fig. 6 we plot Ji'™* as a function of the
inverse interaction parameter y=1/(kzar) and compare the
results obtained from the superfluid NLSE by using the MC
EOS (solid lines) or the MF EOS (dotted lines). The figure
shows that, for a given barrier, the maximum current pre-
dicted by the MC EOS is appreciably smaller than the MF
one for all values of y. Moreover, as also observed in the
experiment of Miller ef al. [8], there is a pronounced peak of
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Jo™* at unitarity (y=0), which is absent in the MF curves. It
is important to observe that, at the crossover, beyond-mean-
field effects exist not only in the bulk equation of state. In
fact, we have recently shown that at unitarity (y=0) the su-
perfluid NLSE of Eq. (4) must be modified with the inclusion
of an additional nonlinear term [35]. Nevertheless, this
beyond-mean-field term goes to zero for a large number of
atoms.

IV. CONCLUSIONS

We have introduced a NLSE equivalent to the hydrody-
namic equations of Fermi superfluids plus a gradient correc-
tion. Both hydrodynamics equations and superfluid NLSE
are known to reliably reproduce static properties and low-
energy collective dynamics. The advantage of using the
NLSE is that one can take into account also surface and
shape effects, and these can be relevant for a small number
of particles. In addition, the gradient term is essential to ob-
tain the correct Josephson equation, as demonstrated in the
present work. We have shown that in the study of the dc
Josephson effect our NLSE works quite well at the right side
(BEC regime) of the BCS-BEC crossover also for very large
values of the scattering length, where the familiar Gross-
Pitaevskii equation is instead unreliable. In particular, our
results suggest that the superfluid NLSE is accurate from y
<1 (deep BEC limit) up to y=y,.=0.08, i.e., very close to the
unitarity limit (y=0).
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