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Wave patterns generated by a supersonic moving body in a binary Bose-Einstein condensate
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Generation of wave structures by a two-dimensional (2D) object (laser beam) moving in a 2D two-
component Bose-Einstein condensate with a velocity greater than the two sound velocities of the mixture is
studied by means of analytical methods and systematic simulations of the coupled Gross-Pitaevskii equations.
The wave pattern features three regions separated by two Mach cones. Two branches of linear patterns similar
to the so-called “ship waves” are located outside the corresponding Mach cones, and oblique dark solitons are
found inside the wider cone. An analytical theory is developed for the linear patterns. A particular dark-soliton
solution is also obtained, its stability is investigated, and two unstable modes of transverse perturbations are
identified. It is shown that for a sufficiently large flow velocity, this instability has a convective character in the
reference frame attached to the moving body, which makes the dark soliton effectively stable. The analytical

findings are corroborated by numerical simulations.
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I. INTRODUCTION

Breakdown of superfluidity at large velocities of the flow
is a fundamentally important problem which has been widely
studied in physics of quantum liquids, such as “He and Bose-
Einstein condensates (BECs) of dilute atomic gases (see,
e.g., Ref. [1] and references therein). It is known that the
breakdown is caused by opening of channels for emission of
elementary excitations in the fluid. This happens, in particu-
lar, with the increase of the velocity of a body (“obstacle”)
moving through the superfluid; in BEC experiments, a far-
blue-detuned laser beam, which produces a local repulsive
force acting on atoms, usually plays the role of the obstacle
[2,3]. In the BEC, solitary waves and vortices are readily
generated if the size of the obstacle is of the order of, or
greater than, the characteristic healing length of the conden-
sate. The formation of these structures manifests itself as an
effective dissipation, which implies the loss of superfluidity
at some critical value of the obstacle’s velocity [4,5]. On the
other hand, if the size of the obstacle is much smaller than
the healing length, the main loss channel, which opens at
supersonic velocities of the obstacle, corresponds to the
Cherenkov emission of Bogoliubov’s excitations [6,7]. If a
large obstacle moves at a supersonic velocity, then the am-
plitude of the generated waves becomes large too. In the
latter case, two dispersive shocks, which start their propaga-
tion from the front and the rear parts of the moving body, are
formed. Far from the body, the front shock gradually trans-
forms into a linear “ship wave” located outside the Mach
cone [8—11], whereas the rear shock is converted into a “fan”
of oblique dark solitons located inside the Mach cone
[12-14]. Although, as is well known [15-17] (see also re-
view [18]), such dark solitons are unstable with respect to
transverse perturbations, it was shown in Ref. [19] that for a
flow velocity greater than some critical value, this instability
becomes a convective one, rather than being absolute in the
reference frame moving along with the obstacle. This fact
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actually means that the dark solitons are effectively stable in
the region around the obstacle. Some of these structures have
been already observed in experiments [8,20], and similar
nonstationary dispersive shocks were studied both theoreti-
cally and experimentally in BEC [2,21-24] (see also review
[25]) and nonlinear optics [26-31].

The picture described above corresponds to a single-
component BEC whose mean-field dynamics is governed by
the respective Gross-Pitaevskii equation (GPE) [1]. At the
same time, one of the focal points of activity in BEC physics
has been the study of multicomponent settings, a prototypical
one being presented by binary mixtures [32-34]. These two-
component media exhibit phase-separation phenomena
[35-37] due to the repulsion between different atomic spe-
cies, or possibly different hyperfine states of the same atom,
that constitute the mixture. The formation of robust single-
ring and multiring patterns [33,38], the evolution of initially
coincident triangular vortex lattices through a turbulent re-
gime into an interlaced square vortex lattice [39] in coupled
hyperfine states in the 8’Rb condensate, and the study of the
interplay between atomic states at different Zeeman levels in
the *Na condensate, forming striated magnetic domains in
optical traps [40,41], represent some of the many possibili-
ties that multicomponent BECs can offer. It is relevant to
note that mixtures with a higher number of components,
namely spinor condensates [34,42], are known too. Spinor
BECs have been realized with the help of far-off-resonant
optical techniques for trapping ultracold atomic gases [43],
which allow the spin degree of freedom to be explored (in
earlier experiments, it was frozen in magnetic traps).

Our aim in the present work is to unite these two areas by
investigating effects generated by the motion of an obstacle
in a “pancake”-shaped, i.e., effectively two-dimensional
(2D), two-component BEC. In an earlier work [44], the criti-
cal situation, when the obstacle had a velocity comparable to
the two speeds of sound in the two-component system, was
examined. Here, we extend the analysis to the supercritical
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case, when the speed of the moving body may be signifi-
cantly higher than the sound speeds. We demonstrate that
two branches of linear patterns (so-called “ship waves”) form
outside of the two Mach cones, which are associated with the
speeds of sound, while oblique dark solitons are located in-
side the wider Mach cone. While these dark solitons are
unstable at relatively low velocities of the motion of the
obstacle, they can be convectively stabilized at sufficiently
high values of the velocity.

The presentation is structured as follows. In Sec. II, we
present the model. In Sec. III, the linear ship waves are stud-
ied by means of analytical and numerical methods. In Sec.
IV, we are dealing with dark solitons again by dint of both
analytical and numerical methods. The findings are summa-
rized in Sec. V, where we also discuss potential directions for
future work.

II. MODEL AND SETUP

In the mean-field approximation, the 2D flow of the bi-
nary condensate past an obstacle obeys the system of nonlin-
early coupled GPEs. In the scaled form, the equations take a
well-known form [1,25]

J 1
i (;fl T EA% +(gulnl® + gulval ) + Vr, 0,
e, 1
i (;'22 - EA‘//Z + (gl tn* + gl + Vg, (1)

where Laplacian A acts on spatial coordinates r=(x,y). We
assume that atoms in both species have the same mass (i.e.,
they represent different hyperfine states of the same atom—
see, e.g., Ref. [38] and references therein) and potential
V(r,r) which represents the moving obstacle is identical for
both components.

Small-amplitude waves and solitons correspond to the po-
tential flow with zero vorticity, for which Eq. (1) can be
transformed into a hydrodynamic form by means of substi-
tutions

r
Py (r,0) = \r’n](r,t)exp{if u,(r',1) - dr' — i,u]t},

t!/z(r,t)=\'nz(r,t)eXp[i f Uz(r’,t)~dr’—imt] ()

where n;,(r,7) are atom densities of the two BEC compo-
nents, U ,(r,7) are their velocity fields, and u,, are the re-
spective chemical potentials. Because the velocity field is
vorticity free, the phase integrals in Eq. (2) do not depend on
the integration contour, being functions of the upper limit r
of integration only. Substituting Eq. (2) into the Eq. (1) we
arrive at the following system:

(n12)+V-(nou,,) =0,

(V”1)2 _ %)

(ul),+(u1~V)u1+g11Vn1+g12Vn2+V( 2
8711 41’11

+VV(r,1) =0,
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(Vny)? _ %)

(uz),+(u2-V)u2+g12Vn1+g22Vn2+V< 2
8n; 4n,

+VV(r,1)=0, (3)

with subscript ¢ standing for d/d¢. The first pair of the equa-
tions represents the conservation of the number of atoms in
each component, and the second pair corresponds to the Eu-
ler’s equations for fluid velocities under the action of the
pressure induced by interactions between atoms, the obsta-
cle’s potential, and “quantum pressure.”

We consider waves generated by the obstacle moving at
constant velocity U along the x axis,

V(r,7) = V(x - Ur), 4)

through a uniform condensate so that both components have
constant densities and vanishing velocities at |x|— . This
setting implies the absence of a trapping potential in the
plane of the quasi-2D BEC (or, more realistically, a very
weak trapping). In the reference frame moving along with
the obstacle, the unperturbed condensate flows at constant
velocity u=(-U,0); hence the respective boundary condi-
tions for the densities and velocities are

ny — Ny u, —u at x| — .

ny — Ny, u —u,

(5)
As follows from Eq. (5), chemical potentials wu, , are related
to asymptotic densities nyg, 15,

MHi=&ulo+ oM M2 = &12M10 + &22M00- (6)

In this reference frame, the wave pattern is a stationary one,
which is convenient for the analysis.

III. LINEAR “SHIP WAVES”

We first consider linear waves generated by the moving
obstacle, assuming that potential V(r,7) is weak enough to
allow the application of the perturbation theory based on
linearized Eq. (7). Actually, the approximation is valid when-
ever the amplitude of the waves is small—in particular, far
enough from the obstacle outside the Mach cones associated
with the speeds of sound. Thus, we introduce small devia-
tions from the uniform state,

U =u+u;, Ww=u+u,

(7

! !
ny=nytng, ny=ny+ny,

and linearize Eq. (3) accordingly,
(n));+n,o(V-up) +@-Vn; =0,

(1), +ny(V-uy) + (- V)ny =0,

(u))+(-Vyuj+g,, Vni+g,Vn;— I V (Any)
0

=_VV, (8)

1
1
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(wy),+ (- V)uy+ g1, Vny+ g5, Vs — ——V (Any)

UoN)
=-VV. 9)

In the stationary case, all time derivatives vanish. Further, we
apply the Fourier transform

2
ny(r,t) = f f i) (k,t)e™ " (577]_;2. (10)

Then, we eliminate the velocity perturbations in Eq. (9) in
favor of the densities, arriving at the following system of two
linear equations:
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[ (k- w)? + k(g 11710 + K2/4) )T} + K2gponyity = — K2V,

K2g 1oty + [= (K - )% + K2(gaomng + k2/4) ity = — k2Vnyy,
(11)

where tildes denote the Fourier components. This linear sys-
tem can be readily solved for 7] ,, and the inverse Fourier
transform yields

r_ f f V(- (k- u)* + K (gaomg + K*/14)] = kg 1ona}e™ ™ d’k
nee [k w2 - w2[(k - w2 - 2]

2m?’

=" f f V(= (k- w)* + k(gm0 + K274)] = g omyole™ ™ d*k
S [0 w7 - o]k - w? - o]

where the dispersion relations for the linear waves in the
binary mixture are given by

2

_ 172
Wi =7 [811n10+ 820120

! I
+5k% = \(g11m10— gaom20)* + 48%2”10”20} (13)

In the long-wave limit, Eq. (13) yields the sound velocities
[44],

2 2
- \/811”10+822n20 * \/(811n10—822n20) + 48110120
= 5 .

(14)

The presence of the two different sound velocities leads to
the existence of two Mach cones defined by relations

. C+ 1
§in @y =—=—, (15)
U M.

where M. =U/c. are the corresponding Mach numbers and
6. are angles between the direction of the obstacle’s motion
and the lines representing the “outer” and “inner” cones,
which correspond to sound velocities ¢, and c_, respectively.
Hence, the wave pattern created by the moving obstacle is
divided by the Mach cones into three regions: (i) inside the
inner Mach cone, (ii) outside the outer Mach cone, (iii) and
intermediate region in between the two Mach cones. The
intermediate region is a feature of the two-component set-
ting.

am?’ (12)

Expression (12) can be analyzed following the lines of
Refs. [10,11]. To this end, we introduce the polar coordinates
(see Fig. 1),

r=(-rcos x,rsiny), k= (kcos nksinzn), (16)

and assume that the wavelength of the pattern is much
greater than the characteristic size of the obstacle; hence its
potential can be approximated by V(r)=V,4&(r). Then, we
obtain

n! 4V0”10f f k[(g25 = g12)ns0 + K14 = U* cos® 7le
. (k2 = k2 = i0)(K? - k2 — i0)

ik-r

X dkd,

J

FIG. 1. (Color online) The coordinates defining radius-vector r
and wave vector k. The latter one is normal to the wave front of one
of the ship-wave modes, which is shown schematically by a curve.
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n 4V0”2(>f J k[(gy; =

X dkd,

g1+ k214 = U? cos® ple’™T

(k2 — k2 — i0) (k* — k> — i0)

(17)

where infinitesimal imaginary parts in the denominators are
written to define correct contributions from the poles corre-
sponding to adiabatically slow switching on of the potential,
and

= 2\U? cos® p—c%. (18)

Next, we split the integration domain of 7 into two parts:

M dn= "2, dn+ [2T2dy. After substitution 7’ = 7— in
the second term, one can notice that the integrand turns into
its own complex conjugate, allowing one to write the inte-
grals in Eq. (17) as

, 8V0n10 /2
=—— Re d
" 7T2 /2 7
XJOC k[(g2y — g12)na0 + k*/4 — U? cos? 77]eik-rdk
0 (K = k2 - i0) (k> — K~ i0) ’
, 8V0n20 fﬂ'/2
= R
" 772 © —/2
Xd JOC k[(g11 = g12)n1o + K14 — U? cos’ ﬂ]eik.rdk
"Jo (K* = k% = i0)(K* - k2 = i0) '
(19)

The integration over k should be carried out along the posi-
tive real half axis. However, we can add to this path a quarter
of an infinite circle and the imaginary half axis in the com-
plex k plane to build a closed integration contour. It is easy to
show that the contribution from the infinite quarter circle is
zero, and contribution from the imaginary axis depends on r
as r~2, decaying at large » much faster than the contribution
from the pole, which is ~7~/2. Thus, far from the obstacle, it
is sufficient to keep only the contribution from the poles,

which yields
2V n /2
ﬁ{[ci — (g2~ glz)”zo]lmf

!

ny=- ik r cos v

dne
W(Ci - CE) —7/2

dneik-’ cos v} ,

/2

- [CE —-(gn- glz)nzo]lmj

—/2
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’ 2V0n20 2 2 ik, r cos v
ny=- 2 2 [ci = (g11 = g12)nyo]im dne"™+
7T(C+ - C—) -2
/2 )
—[CE— (g1 _gIZ)HIO]Imf dﬂelk‘rm” s (20)
—/2

where v=m—yx—7. Far from the obstacle, where phases
k.r=rs. with
s+(m) =k=(m)cos(x + ) (21)

are large, the integrals in Eq. (20) can be estimated by means
of the stationary-phase method. Since calculations of both
integrals are identical, we consider for definiteness, the inte-
gration over k,. Condition ds,/dn=0 determines the
stationary-phase point, which can be easily cast in the form
of

tan(v,) = (QU/k2)sin(27,). (22)
Taking into regard the definition of v, we obtain from here an
expression for y,

[1+k%/(2c2)]tan(7,)

tan(y,) = (23)

2 2,07 ,2\]’
Ut =1 +k3/(2¢3)]
with 7, taking values in interval
1 1 U
—arccos| — | =y, =arccos| — |, M,=—, (24)
M, M, cy

while the corresponding vector {x,y}, given by the paramet-
ric expressions,

Abe?
x(n,) = 22

+

4>
¥(m) = 22 ah2e0s(m,) ~ 1sin(,). (25)

+

moves along a curve with constant phase ¢ (e.g., a crest
line).

As usual in the method of stationary phase, we reduce the
integrals in Eq. (20) to Gaussian ones, which yields a final
result,

[1 + (4U%k3)sin*(27,)]"

){[ ~ (&0 =g 2"]\/ [1+(4U2/k2)cos(277+)+(12U4/k4)s1n2(277+)]”2
[1+ (4U%K*)sin®(27.)]"*

cos(k,r cos v, — m/4)

) 2V0n10
ny=-
m(c;
277
- [CE —-(gn- 812)”20]

kr[1 + GUI3)cos(27.) + (12U%Ksin?(2 )]

X cos(k_r cos v_— 77/4)} , (26)
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FIG. 2. (Color online) Spatial contour plots of densities of the two components (left and right panels, respectively) in the binary BEC for
flow velocity U=3.5, at r=75. The form of the obstacle’s potential used in this case is V(x,y,)=2 sech*(\(x— Ur)>+y?/2). Solid and dashed

thin lines correspond to wave crests of two modes of the ship waves.

where v.=m—y.—n. and similar expressions can be de-
rived for the density oscillations of the second component of
the binary condensate.

An example of wave patterns generated by numerical
simulations of Eq. (1) is displayed in Fig. 2 for parameters
g11= 15, 8= 125, 812= 10, np= 10, n20=2.0, and VelOCity
U=35.

Three different types of waves can clearly be distin-
guished in this picture. First, one observes ship waves out-
side the Mach cones, which were analyzed above (the mode
between the two cones has a smaller amplitude than the
mode outside the outer Mach cone for chosen values of the
parameters). Second, oblique dark solitons are observed in-
side the outer Mach cone; they will be discussed in Sec. IV.
Also, third, one can also notice that oblique solitons and ship
waves located between the Mach cones are modulated by
concentric circular waves, which were actually generated by
the initial switching on of the obstacle’s potential. These cir-
cular waves are not related to the steady regime and are not
considered hereafter.

We have compared the analytical results of Eq. (25) for
the crest lines with the numerical findings. The analytically
predicted curves are shown by thin solid and dashed lines in
Fig. 2 and they demonstrate good agreement with numerical
simulations. It is worth noticing that the ship waves between
the Mach cones interact elastically with the oblique solitons.
As a result, the solitons are slightly broken at points where
they are crossed by the crest lines of the ship waves. Besides
that, the oblique solitons are modulated by the cylindrical
waves produced by the initial pulse, as mentioned above. If
parameters of the binary BEC are chosen so as to make the
chemical potentials [Eq. (6)] of both components equal, then
the smaller sound velocity is given by 2=(g,— g1
=(g2n—&12)120; hence the last term in Eq. (26), as well as in
the similar expression for n,, vanishes, and the ship waves in
the region between the two Mach cones are not visible in this
case. We have also checked this prediction and concluded
that the mode between two Mach cones indeed completely
disappears at u;=u,.

Amplitudes of the ship waves are predicted by Eq. (26)
only qualitatively, as these expressions correspond to the far-

field region, whereas in numerical simulations only a near-
field region can be simulated effectively enough. Neverthe-
less, the analytical predictions provide correct estimates for
the amplitude and its coordinate dependence.

IV. OBLIQUE DARK SOLITONS

As mentioned above, in Fig. 2 one can observe oblique
dark solitons located inside the outer Mach cone. It is worthy
to note that they decay into vortices at end points, which is a
result of the “snaking” instability of dark-soliton stripes in
the 2D geometry [15-17] (see also review [18]). However,
for large velocities U this instability is convective only [19],
which means that the dark solitons may be effectively stable
around the obstacle and, hence, the length of the dark-
solitons’ crests increases with time. The solitons originate
from a depression in the density distribution formed behind
the obstacle by the flow, therefore their depth also varies near
the obstacle. However, upon sufficiently long evolution time,
there exists a region where the oblique dark solitons can be
considered as quasistationary structures. In this region, the
solitons are described by the stationary solution of the GPE:s.
This allows us to take the stationary GPEs in the hydrody-
namic form of Eq. (3),

V.- (ny5u,)=0,

[ (Vn)?  An, |
(ul'V)u1+g|]V7l1+g12V}’l2+V —12——1 :O,
L 8”1 4}’11_
[ (Vn,)?  An, |
(uy-VIu,+ 81,V +gnVn+V —22——2 =0.
L 8”2 4}’12_
(27)

Here, it is taken into regard that the obstacle’s potential is
negligible far from it. Equation (27) should be solved with
boundary conditions
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ny— nj, u, — (- U,0),

u, — (= U,0) at |x| — o, (28)

Ny — Ny,

where —U is the common velocity of both components rela-
tive to the obstacle. Under the assumption that the solution
depends only on

_Xx-—ay

“Tre (29)

where a determines the slope of the oblique dark soliton, this
system can be readily reduced to the following equations
(with the prime standing for d/dé):

! " 1
(1/8)[(”1)2 —-2nmnf]+ g, In? + 812”%”2 + 56]”%0

1 2
- 54‘*‘#1 ny=0,

1

(1/8)[(n3)* = 2nynh] + g 1omim5 + gooits + Eqngo

1
- <EC]+M2>”§:0, (30)

where u; and u, are the chemical potentials defined above in
Eq. (6) and

U2
1+a*

q= (31)

The flow velocities are related to the densities as follows:

{ (nj+a’n)U
lll-=

(1+a»n; ’

aU(ny—ny)
(1+a*n;

}, i=1,2. (32)

In general, system (30) has to be solved numerically. How-
ever, if the chemical potentials of the two components are
again taken to be equal,

M= o= M, (33)

the system admits a simple analytical solution. In this case,
we look for the solution as n;=nyf(&), n,=n,yf(§), reducing
both Eq. (30) to a single one,

1 1 1
LU =21+ puf7+ Sq - <5q + M)ﬁ =0. (34)
Dark-soliton solutions to Eq. (34) are known [13],
ny=ni=nof(§), ny=ny=nyf(§, f(&=1
1- q/ci

coshz[v/cfr —g(x—ay)\1+a*]

where we have taken into regard that condition (33) leads to
the following expressions for the sound velocities (for the
definiteness, we suppose here that g, g20> g, i.€., the in-
terspecies repulsion is weaker than the repulsive self-
interactions of the two components):
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032(811—812)”10’ C%r:,Uw (36)

Obviously, solution (35) exists if condition ¢ <¢? is satisfied.
If we introduce the angle 6 between the direction of the flow
and the orientation of the dark-soliton stripe, so that a
=cot 6, the latter condition can be transformed into
2
sin20<c—+2=L2, m =Y (37)
Uus M; Cy

Thus, the soliton must be located inside the outer Mach cone,
which is defined by the Eq. (15). Although we have arrived
at this conclusion under assumption (33), we conjecture that
it is correct too in the general case of unequal chemical po-
tentials, which is confirmed by our numerical simulations,
that always produced oblique solitons confined inside the
outer Mach cone. The respective numerically generated pro-
files of the densities are shown in Fig. 3 as a function of y at
a fixed value of x; the corresponding phase profiles are also
shown in the figure. It is observed that the oblique solitons
are indeed located inside the outer Mach cone [as defined by
Eq. (37)]) but outside of the inner cone, which is defined by
sin(6_)=1/M_. Profiles of the solitons’ densities are close to
the analytically predicted ones, and the phase jumps are also
in agreement with the expected dark-soliton behavior.

According to condition (37), solution (35) exists for any
supersonic flow with U>c,, the same being true for the
existence of numerical solutions to system (30) in the general
case, u; # u,. However, that does not mean that the oblique
dark solitons can be generated by any such flow. While the
numerical results presented in Fig. 2 show that oblique soli-
tons indeed exist for velocity U=3.5, another situation, when
oblique dark solitons do not emerge, is presented in Fig. 4 by
means of density patterns which correspond to a lower su-
personic flow velocity, U=1.2. In the latter case, it is ob-
served that vortex streets are generated, rather than dark soli-
tons. Such a behavior is related to the above-mentioned
instability of dark solitons with respect to transverse pertur-
bations [15-17]. The instability splits dark solitons into
vortex-antivortex pairs; hence dark solitons cannot develop
from the density depression behind the obstacle moving at a
relatively low velocity. However, the numerical simulations
presented in Fig. 2 indicate that the oblique solitons become
effectively stable if the flow velocity is sufficiently high, as
first was noticed in Ref. [13] for the case of the one-
component BEC. As said above, the stabilization was ex-
plained in Ref. [19] as the transition from the absolute insta-
bility of dark solitons to their convective instability, at some
critical value of the flow velocity, U, =c,. In that case, un-
stable disturbances are carried away by the flow from the
region around the obstacle, where, as a result, the dark soli-
tons look as effectively stable objects. Here, we aim to con-
sider such a stabilization transition for the case of the two-
component BEC, which features two unstable modes of
perturbations around dark solitons.

To find the spectrum of small-amplitude linear waves
propagating along the dark soliton, we now consider this
solution in the reference frame in which the condensate has
zero velocity far from the obstacle. To this end, we rotate the
coordinate system by angle g=arctan a [recall that the angle
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FIG. 3. (Color online) Plots of densities (top) and phases (bottom) of the two BEC components for flow velocity U=4.5. The positions
of the Mach cones are shown by dashed lines, making it evident that the oblique dark solitons are located inside the outer Mach cone, in
agreement with Eq. (37). The chemical potentials are u;=pu,=3.5, cf. Eq. (33), and the configurations are shown at r=30. The phases of both
components coincide with each other in the case of equal chemical potentials, and the densities have the same profile multiplied by the

density at infinity.

a determines the orientation of the dark soliton, according to
Eq. (29)], and perform the Galilean transformation to the

frame moving relative to the obstacle at velocity
(U cos ¢, U sin o),
X=xcos ¢—y sin ¢ — U cos ¢f,
y=xsin @+y cos ¢ — U sin ¢f. (38)

After the transformation, the velocity fields (32) become
ﬁl = (U(nlo/nls - 1),0), ﬁz = (U(nzo/nzs - 1),0), (39)
and the densities take the form of

my=n10f(0),  7ps=naaf(0),
-100

07
50 06
05
. 04
03
50 0.2
0.1

1995 0 50 100 150
(a) X

1- (vz/ci)

=l-——, =X-ut, 40
D=1 COShZ[mﬂ {=x-vt (40)

where the soliton’s velocity in the new reference frame is

U

U=\/Taz.

Below, we omit tildes attached to the new variables.
We take small transverse perturbations around the dark-
soliton solution as

(41)

= (O + (g + i)expli () = ipyt],

50

100
=50 0 50 100 150
(b) X

FIG. 4. Plots of densities of two BEC components for flow velocity U=1.2 at t=55. In this case, oblique dark solitons do not emerge.
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= () + (i + ig)explic () — ipot], (42)

where the unperturbed solution depends only on {=x-uvt,

Wiy = g explich;(Q) — i, (43)

and phases ¢, are related to the densities by equations

%:0@@—1). (44)

Perturbations ' and i/’ depend on y and ¢ as exp(ipy+1).
The substitution of expressions (42) into Eq. (1) and linear-
ization with respect to ¢’ and iy’ lead to the following ei-
genvalue problem:

Ay -Lp 0 O I I

Ly Ay B 0 P _r i 45)
0 0 A -Lp || o |

B 0 Lp A ¢'2’ ¢g

A= VRjoljs ;. UNjo J
i 2 T ’
anS njs ﬁf

N
— |
B =—-2gp\n ny,

1# 1o’ 1,
LleEa_gz_E ”ir +E(U -p )—8jj”js—glj”ls+ﬂj,
(46)
1 Inwt 1,
LRj=5a_§2_§ ”jz's E(U -p )—3gjj”js—glj”1s+//«j,
j=12, =12, [+#].

System (45) determines growth rates I'; 5(p) of small per-
turbations traveling along the dark-soliton’s crest. As a re-
sult, two unstable branches have been found, examples of
which are shown in Fig. 5. One can see that both branches
feature regions of wave vector p with Re I'(p) > 0. The tran-
sition to the convective instability should be considered
separately for each branch.

Returning to the reference system attached to the moving
obstacle, we arrive at dispersion relations

w,(p) =Ugp +il'(p,v), (47)

where U,=v sin p=aU/ V1+d? is the component of the flow
velocity along the dark soliton. The perturbations may be
represented as Fourier integrals over linear modes obeying
dispersion relations (47),

Sy p f 71, o(p)etPr=12P)gp (48)

—00

This representation implies that the integral is convergent,
i.e., the wave packet is finite along coordinate y. Its time
dependence at fixed value of y is determined by dispersion
relations w; ,(p). Since expressions (47) contain imaginary
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FIG. 5. (Color online) Two branches of dispersion curves I'(p)
for unstable disturbances around the dark-soliton solution. Real
parts of I' are shown by crosses, and imaginary parts by dots. Pa-
rameters are g;;=1, g»=1.6, g1,=0.1, n19=1, and n,(=0.6.

parts, dn;, can grow exponentially in time, which implies
instability of the dark soliton, as is well known for the zero
flow, U;=0. However, it may happen that, for U, large
enough, wave packets are carried away so fast that they can-
not grow at fixed value of y, which is precisely the transition
from absolute to convective instability [45]. Mathematically,
the convective instability means that one can transform inte-
grals over p in wave packets (48) into integrals over @ be-
cause these wave packets have finite duration. In other
words, the function w=w(p) can be inverted to define a
single-valued dependence, p=p(w). Thus, the distinction be-
tween the absolute and convective instabilities depends on
analytical properties of dispersion relations (47) [45,46]. Ac-
tually, the transition from absolute to convective instability is
determined by critical points p.,, at which the derivative van-
ishes, dw/dp=0, and the function p=p(w) changes its be-
havior: at U;<(U,),, it is represented in the complex-p plane
by disconnected curves, whereas for U,> (U,),, these curves
are connected with each other. In the latter case, one can
deform the contour of the integration over p, with regard to
the single-valuedness of w=w(p), allowing to transform it, as
said above, into an integral over w. In other words, the spa-
tial Fourier decomposition of the perturbation wave packet
can be transformed into a temporal form, which actually
means that the instability is convective.

As is known, the asymptotic behavior of integrals (48) is
determined by branching points of the function p=p(w),
where dw/dp=0. This yields equation

dr
U=-i—, (49)
dp

where, as one can see in Fig. 5, I'(p,v) has either real or
purely imaginary values for real p. Therefore, critical values
of U,, at which disconnected contours transform into con-
nected ones, correspond to the appearance of a double root
P Of Eq. (49) on the real axis of p. This means dp,,/dU;
— o at U;=(U,).,. Then, the differentiation of Eq. (49) with
respect to U, leads to equation
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FIG. 6. (Color online) Curves separating regions of the absolute
and convective instabilities of dark solitons in the two-component
condensate with parameters g;;=1, g,»=1.6, g1,=0.1, n;p=1, and
n,0=0.6. The respective sound velocities are c¢,=1.03,c_=0.95.
Squares and circles refer to two different unstable modes. Below
each curve, the corresponding mode is absolutely unstable and dark
solitons cannot be created by the flow with velocity U less than
U= 1.5, for most values of slope a. Dark solitons become convec-
tively unstable (i.e., effectively stable) above both curves, i.e., for
U>u,=1.5.

o1

=0 50
= (50)

P=P¢r

for the corresponding critical value, p.(v). The substitution
of that value into Eq. (49) yields function U (v). When this
function is known, we find, with the help of relations

Y _ u-us Ua_ (51)
U= , =Usin ¢= =av,
\e’l+a2 \,1+a2

the slope and velocity,

acr(v) = M, (52)
v
Ul)=vVl+ agr(v), (53)

as functions of v for all values in interval (0<v<c,). As a
result, we obtain, in a parametric form, the dependence U(a)
for the curve separating regions of the absolute and convec-
tive instabilities. Two such curves for both branches are
shown in Fig. 6, where the region of the convective instabil-
ity is located above the curves.
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It is seen that the dark solitons with large slope a undergo
the transition to the convective instability at flow velocities
greater than U, =1.5, as suggested also by the numerical
findings reported above.

V. CONCLUSION

We have considered the effect of the supercritical motion
of a small obstacle through a two-component Bose-Einstein
condensate. Our study was motivated by a number of recent
experiments in such settings, which examine the dynamics of
mixtures of hyperfine states of 8’Rb. The presence of two
speeds of sound in the mixture results in the existence of two
Mach cones. The motion of the obstacle, in turn, produces
two main features, namely, the linear “ship waves” and ob-
lique dark solitons. For the former pattern, we have devel-
oped a description of their density oscillations, which occur
outside the Mach cones, in good agreement with numerical
findings. On the other hand, for the dark solitons we have
developed an analytical description of their profile, which
was also found to be in good agreement with numerical ob-
servations. In particular, it was predicted that the dark soli-
tons are confined to the area inside the outer Mach cone,
which was confirmed by the simulations.

This work may be a relevant starting point toward a more
detailed understanding of the interplay between interspecies
interactions and the loss of superfluidity caused by the super-
critical motion of defects. A natural extension of the present
setting may be the consideration of the three-dimensional
context, with vortex rings being formed as a result of the
motion of the obstacle, which is closest to the experimental
settings reported in Refs. [2,3]. Another possibility would be
to consider the supercritical motion of the obstacle in a mul-
ticomponent spinor BEC, where it would be relevant to ex-
amine the role of the spin-dependent and spin-independent
parts of the interatomic interactions (see, e.g., discussion in
recent work [47]) in producing patterns such as those con-
sidered herein. Such studies are currently in progress and
will be reported in future works.
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