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We investigate ground-state properties of interacting two-component Bose gases in a hard-wall trap using
both the Bethe ansatz and exact numerical diagonalization method. For equal intra-atomic and interatomic
interaction, the system is exactly solvable. Thus the exact ground-state wave-function and density distributions
for the whole interacting regime can be obtained from the Bethe ansatz solutions. Since the ground state is a
degenerate state with total spin S=N /2, the total density distributions are the same for each degenerate state.
The total density distribution evolves from a Gauss-like Bose distribution to a Fermi-like one as the repulsive
interaction increases. The distribution of each component is N� /N of the total density distribution. This is
approximately true even in the experimental situation. In addition the numerical results show that with the
increase in interspecies interaction the distributions of two Tonks-Girardeau gases exhibit composite-
fermionization crossover with each component developing N peaks in the strongly interacting regime.
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I. INTRODUCTION

Since two-component Bose-Einstein condensates �BECs�
of trapped alkali atomic clouds were realized experimentally
�1,2�, low-dimensional multicomponent Bose gases have at-
tracted much attention from theory and experiment due to
their connection to many areas of physics. Theoretical inves-
tigation mainly focuses on the stability, phase separation,
collective excitation, Josephson-type oscillations, and other
macroscopic quantum many-body phenomena �3–7� in the
frame work of mean-field theory. Other fundamental prob-
lems such as topological defects and symmetry-breaking ef-
fects also attract growing interest �8,9�.

Advances in experiment with ultracold atoms provide ex-
citing opportunities to control and manipulate ultracold atom
gases in one-dimensional �1D� waveguides by tightly confin-
ing the atomic cloud in two radial directions and weakly
confining it along the axial direction �10–12�. Successful re-
alization of 1D interacting quantum degenerate gases enables
us to study many-body effect in various interacting regimes,
for example, in the strongly interacting limit, i.e., the Tonks-
Girardeau �TG� gases �13�. Tunability of the scattering
length cross Feshbach resonance allows experimentalists ac-
cess to whole interaction regime from a weakly interacting
limit to a strongly interacting limit. Strong correlation effect
in 1D quantum degenerate gases �14� have been extensively
studied in recent years �15–19�. It is shown that 1D quantum
systems exhibit particular features which are significantly
different from its three-dimensional counterpart.

The exact results for single-component bosons with a re-
pulsive �-function interaction show that the density profiles
evolve from Gaussian-like distribution of Bosons to shell-

structured distribution of Fermions when interaction strength
increases �20–25�. In order to study the system in the strong
interacting regime, nonperturbation method is highly desir-
able and reliable because the mean-field theory is proven to
be insufficient. For the multicomponent quantum gases, stud-
ies were carried out by means of various schemes such as
mean-field theory �3–6�, extended Bose-Fermi mapping in
the infinitely repulsive limit �26–29�, and exact Bethe ansatz
�BA� �31–34�. The 1D homogeneous two-component Bose
gas with spin-independent s-wave scattering �equal interspe-
cies and intraspecies interacting strengths� is exactly solvable
by the Bethe ansatz method in a whole physical regime
�31,32�. The ferromagnetic ordering in spinor Bose gases
was predicted some years ago �35,36�. However, the system
is no longer integrable if the atomic gas no longer has the
SU�2� symmetry or it is trapped in an inhomogeneous poten-
tial. In this situation numerical methods have to be exerted
and rich phenomena are shown for various parameters
�29,30�.

Previous study on the integrable two-component Bose gas
mainly focuses on the energy spectrum and excitation prop-
erties �31–34�. However, important quantities, which are re-
lated to the wave function of the system and are accessible
experimentally, such as the density distribution and momen-
tum distribution, are rarely addressed except in the limit of
infinitely repulsive interaction �26�. In this paper, we are
aimed to study the two-component bosonic systems with
SU�2� symmetry in the whole interacting regime by means of
the Bethe ansatz. In the case of broken SU�2� symmetry, we
resort to exact diagonalization method. The total density dis-
tribution and the density distribution for each component can
be derived from exact ground-state wave function. In addi-
tion, numerical method will be used to evaluate the reduced
one-body density matrix and momentum distribution of each
component as well as interspecies and intraspecies density-
density correlations.*schen@aphy.iphy.ac.cn
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The present paper is organized as follows. Section II in-
troduces the model and gives the exact solutions by means of
the Bethe ansatz for the integrable point. In Sec. III the nu-
merical diagonalization method is introduced and we inves-
tigate the system for accessible experimental parameters af-
ter checking the accuracy of the numerical result. Section IV
is devoted to the interaction of two TG gases. A summary is
given in the last section.

II. EXACT SOLUTION OF TWO-COMPONENT BOSE GAS

We consider two-component Bose gas confined in a 1D
hard-wall trap of length L, which is composed of two internal
states �pseudospins �↑ � and �↓ � denote state 1 and 2, respec-
tively� of the same kind of Bose atoms with equal mass m1
=m2=m. The atom numbers in each component are N1 and
N2 and N=N1+N2 is the total number. The many-body sys-
tem can be described by the second quantized Hamiltonian

H =� dx �
�=1,2

	 �2

2m�

��̂�
†�x�

�x

��̂��x�
�x

+
g�

2
�̂�

†�x��̂�
†�x��̂��x��̂��x�


+ g12� dx�̂1
†�x��̂2

†�x��̂2�x��̂1�x� ,

where g� ��=1,2� and g12 denote the effective intraspecies
and interspecies interaction which can be controlled experi-
mentally by tuning the corresponding scattering lengths a1,
a2, and a12, respectively. The field operator ��

†�x�����x��
creates �annihilates� an �-component boson at the position x.
A standard rescaling procedure brings the Hamiltonian into a
dimensionless one,

H =� dx�
�
	�̂�

†�x��−
�2

�x2 + U��̂�
†�̂���̂��x�


+ 2U12� dx�̂1
†�x��̂2

†�x��̂2�x��̂1�x� �1�

with U�=mg� /�2 ��=1,2 ,12�. Here we have rescaled the
energy and length in units of �2 /2mL2 and L. The system
with equal interaction constants U1=U2=U12=c is integrable
in both the periodic boundary �31� and open boundary con-
ditions �32,33� and the eigenproblem for the original Hamil-
tonian is reduced to solving the coordinate nonlinear
Schrödinger equation

H��x1, . . . ,xN� = E��x1, . . . ,xN� �2�

with

H = − �
j=1

N
�2

�xj
2 + 2c�

j�l

��xj − xl� . �3�

The Hamiltonian H commutes with the total spin operator Ŝ,
i.e., commutes with all the three components of the total spin
operator, so that they share a common set of eigenstates and

the system possesses a global SU�2� symmetry. Explicitly,
the three components of total spin operator are defined as

Ŝ� =
1

2
� dx�

�,�
�̂�

† �x�	�,�
� �̂��x� ,

where � ,�� 
↑ ,↓� with ↑ �↓� corresponding to the first com-
ponent �second component� and 	� ��=x ,y ,z� denotes the
Pauli matrices.

The coordinate wave function can be determined by
means of Bethe ansatz method and takes the following gen-
eral form:

��x1, . . . ,xN� = �
P,Q


�xqN
− xqN−1

� ¯ 
�xq2
− xq1

�

� �
r1,. . .,rN

�A�Q,rP�exp�i�
j

rpj
kpj

xqj�� ,

�4�

where Q= �q1 ,q2 , . . . ,qN� and P= �p1 , p2 , . . . , pN� are
one of the permutations of 1 , . . . ,N, respectively,
A�Q ,rP� is the abbreviation of the coefficient
A�q1 ,q2 , . . . ,qN ;rp1

p1 ,rp2
p2 , . . . ,rpN

pN� to be determined
self-consistently, and the summation �P ��Q� is done for all
of them. Here rj =� indicates that the particles move toward
the right or the left, 
�x−y� is the step function, and the
parameters 
kj� are known as quasimomenta. Moreover the
wave function Eq. �4� should fulfill the open boundary con-
dition �37� for hard-wall trap

��. . . ,xj = 0, . . .� = ��. . . ,xj = L, . . .� = 0,

which enforces the relations

A�Q; . . . ,− pi, . . . ,rpN
pN� = − A�Q; . . . ,pi, . . . ,rpN

pN� .

Furthermore, the coefficients fulfill the general relations

A�Q; . . . i, j . . .� = Y ji
abA�Q; . . . j,i . . .�

with Y ji
ab given by

Y ji
ab =

�kj − ki�Pqaqb
− ic

kj − ki + ic
,

where Pqaqb
is the permutation operator on A�. . .qa ,qb , . . . ; P�

so that it interchanges qa and qb �31–33,38�. For the eigen-
state with total spin S=N /2−M �0
M 
N /2�, the Bethe
ansatz equations �32,33� satisfied by the quasimomentum 
kj�
and spin rapidity 
��� are given by

exp�2ikjL� = �
l=1�j

N � kj − kl + ic

kj − kl − ic

kj + kl + ic

kj + kl − ic
�

� �
�=1

M � kj − �� − ic�

kj − �� + ic�

kj + �� − ic�

kj + �� + ic�
� ,
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�
l=1

N ��� − kl − ic�

�� − kl + ic�

�� + kl − ic�

�� + kl + ic�
�

= �
���

M ��� − �� − ic

�� − �� + ic

�� + �� − ic

�� + �� + ic
� ,

with c�=c /2. The energy eigenvalue is E=� j=1
N kj

2. Taking the
logarithm of Bethe ansatz equations, we have

kjL = �Ij − �
l=1

N �tan−1kj − kl

c
+ tan−1kj + kl

c
�

+ �
�=1

M �tan−1kj − ��

c�
+ tan−1kj + ��

c�
� ,

�
j=1

N �tan−1�� − kj

c�
+ tan−1�� + kj

c�
�

= �J� + �
���

M �tan−1�� − ��

c
+ tan−1�� + ��

c
� . �5�

Here the quantum numbers Ij and J� take integer or half-
integer values, depending on whether N−M is odd or even.
The ground state corresponds to the case with M =0 �31–34�.
For the ground state Ij = �N+1� /2− j and J� is an empty set,
and the Bethe ansatz equations reduce to the situation of
Lieb-Liniger Bose gas. In this case, the coefficient
A�Q ; p1 , p2 , . . . , pN� can be explicitly expressed as

A�Q;p1,p2, . . . ,pN� = �− 1�P�
j�l

N

�ikpl
− ikpj

+ c��ikpl
+ ikpj

+ c� ,

with �−1�P= �1 denoting sign factors associated with even
or odd permutations of P= �p1 , p2 , . . . , pN�. By numerically
solving the sets of transcendental equations Eq. �5�, the qua-
simomentum 
kj� and thus the ground-state wave function
can be determined exactly.

For the two-component Bose gas with SU�2� symmetry, it
has been proven that the ground states are �N+1�-fold de-
generate isospin “ferromagnetic” states �31,32,35,36�, which
are symmetrical under permutation of any two spins. Among
the degenerate ground states, the fully polarized state can be
represented as

��N�N

2
,
N

2
�� =� dNx��x1, . . . xN�

� �̂↑
†�x1��̂↑

†�x2� ¯ �̂↑
†�xN��0� , �6�

where ��x1 , . . .xN� is given by the Bethe ansatz ground-state
wave function �4�. Other degenerate states can be generated

by applying the total lowering operator Ŝ− to the polarized
state. For example, the total ground-state wave function for
the degenerate ground state with N2 spin-down particles �the
state with S=N /2 and Sz= �N1−N2� /2� can be expressed as

��N�N

2
,
N1 − N2

2
�� = �Ŝ−�N2��N�N

2
,
N

2
�� , �7�

where the total lowering spin operator Ŝ− is defined as Ŝ−

= 1
2�dx�̂↓

†�x��̂↑�x�.
In terms of the ground-state wave function ��x1 , . . . ,xN�

the total density distribution �tot�x�=��=1,2���x� can be ex-
pressed as

�tot�x� =

N�
0

L

dx2 . . . dxN���x,x2, . . . ,xN��2

�
0

L

dx1 . . . dxN���x1,x2, . . . ,xN��2
.

Here the ground-state density distribution of the � compo-
nent is given by

���x� = ��N�S,Sz���̂�
†�x��̂��x���N�S,Sz�� .

From the explicit form of the many-body wave function, it is
straightforward to get the ground-state density distribution of
the � component, which is found to fulfill a simple relation
with the total density distribution �see the Appendix�

���x� =
N�

N
�tot�x� . �8�

We obtain unique total density profiles for all configurations
with the same total atom number N: �N1 ,N2�= �N ,0� ,
�N−1,1� , . . . �0,N�, which is also confirmed by the numeri-
cal exact diagonalization method in the later evaluation.
Conclusion �8� is valid for the integrable two-component bo-
son system in the whole regime of repulsive interaction.
Moreover, we would like to indicate that conclusion �8� is
valid even in the presence of an external confinement if the
system has the total SU�2� symmetry, i.e., the case with U1
=U2=U12 �39�. We thus recover the result in Ref. �26� where
only infinitely repulsive limit was considered by a general-
ized Bose-Fermi mapping method.

In the following calculation, L=1 will be used through the
paper. In Fig. 1 we display the ground-state density distribu-
tions of the first component for N=4 and N2=0 ,1 ,2 ,3 for
different interacting constants, where we find similar cross-
over behavior as those of a single-component Bose gas.
When the interaction is weak the density profiles show
Gaussian-like distribution and in the strongly interacting re-
gime the density profiles exhibit a shell structure with N
peaks for each component. In the intermediate interacting
regime the distribution shows obvious evolution from Bose
distribution to Fermi distribution. According to Eq. �8�, each
component takes the same density profiles and is normalized
to the atom number in the component. Therefore, all configu-
rations with the same total atom number share the same total
density distribution. It is worth to note the absence of the
demixing in the integrable system, which is contrary to pre-
diction of a mean-field approximation.
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III. NUMERICAL DIAGONALIZATION METHOD

Although the system is integrable for the situation of
equal intra-atomic and interatomic interactions and some ex-
act results can be obtained in this case, we have to turn to the
numerical method when the system deviates from the inte-
grable point. In fact it is very difficult to adjust the intra-
atomic and interatomic interactions to be exactly the same in
the realization of experiment. For instance the scattering
lengths and thus the effective 1D interaction constants are
known to be in the proportion U1 :U12:U2=1.03:1 :0.97 in
the two components of Bose gas composed of internal states
�F=1,mf =−1� and �F=2,mf =1� in 87Rb atoms �40�. In this
situation Bethe ansatz method is not applicable and we resort
to the numerical exact diagonalization method.

Let us first briefly review the numerical diagonalization
method and then investigate the ground-state properties of
the Bose-Bose mixture. The normalized eigenwave function
�orbital� of one particle in a hard wall takes the form �i�x�
=� 2

L sin� i�
L x�, upon which the field operator ���x� can be

expanded as

���x� = �
i=0

�

�i�x�b̂i�.

The operator b̂i�
† �b̂i�� creates �annihilates� one �-component

atom in the ith orbital. As a result Hamiltonian �1� is dis-
cretized as

H = �
�=1,2

��
i

�ib̂i�
† b̂i� + U� �

i,j,k,l
Ii,j,k,lb̂i�

† b̂j�
† b̂k�b̂l��

+ 2U12 �
i,j,k,l

Ii,j,k,lb̂i1
† b̂j2

† b̂k2b̂l1 �9�

with �i= �i��2 �i=1,2 ,3 , . . .� and the dimensionless integrals
Iijkl=�0

Ldx�i�x�� j�x��k�x��l�x�. The dimension of the Hilbert
space is now CN1+M−1

N1 �CN2+M−1
N2 if N1 one-component atoms

and N2 two-component atoms are populated on M orbitals.
Then the ground state �GS� can be obtained after diagonaliz-

ing the Hamiltonian in the Hilbert space spanned by the one-
particle eigenstates. In order to assure the precision of evalu-
ation sufficient orbitals should be considered particularly for
the systems in strongly interacting regime. The total density
distribution is given by

�tot�x� = �
�=1

2

���x�

with the density distribution of � component

���x� = �GS���
†�x����x��GS�

= �
i,j

�i
��x�� j�x��GS�b̂i�

† b̂j��GS� . �10�

In terms of the ground-state wave function the reduced one-
body density matrix for each component and the two-body
correlation of intraspecies and interspecies atom can be for-
mulated as

���x,x�� = �GS���
†�x����x���GS�

= �
i,j

�i
��x�� j�x���GS�b̂i�

† b̂j��GS� �11�

and

����x,x�� = �GS���
†�x����x���

†�x�����x���GS�

= �
i,j,k,l

�i
��x�� j�x��k

��x���l�x��

��GS�b̂i�
† b̂j�b̂k�

† b̂l��GS� . �12�

The momentum distribution is simply the Fourier transfor-
mation of ���x ,x��,

n��k� =
1

2�
�

0

L

dx�
0

L

dx����x,x��e−ik�x−x��. �13�

In order to test the accuracy of our numerical code, we
compare the numerical result with that from Bethe ansatz
method on calculating the ground-state energy and total den-
sity profiles of two-component Bose gas with N=4. The re-
sults are shown in Figs. 2 and 3 for an intermediate interac-
tion constant c=10. The ground-state energy is shown to
asymptotically approach the BA result E /N=35.22 if suffi-
cient orbitals are taken into account. For instance, we have
the ground-state energy E /N=35.60 for M =40, the deviation
of which is already within 1%. The density profiles calcu-
lated for M =15 can match the BA result very well. In the
following calculation, the orbital number is taken as M =20
�M =15� for N=4 �N=5� and the reduced Hilbert space is
typically composed of 1�104 basis states with a correspond-
ing energy cutoff �M��2=3947.84�2220.66�.

Using the numerical method the density profiles of each
component can be obtained even for unequal atom numbers
and SU�2� symmetry broken atomic interaction constants,
i.e., U1�U2�U12. In Fig. 4. we display both the total den-
sity distribution and that of each component in the full inter-
acting regime for equal and unequal intra-atomic and inter-
atomic interactions in the case of N1=2, N2=3. In the
situation of unique interaction constant, two components dis-

FIG. 1. �Color online� The ground-state density distribution of
the first component for �a� N1=4, N2=0, �b� N1=3, N2=1, �c� N1

=2, N2=2, �d� N1=1, N2=3, and c=0,5 ,15,50.
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play the same density distribution in the full interacting re-
gime, i.e., ���x�=

N�

N �tot�x�. The density profiles show evolu-
tion from Bose to Fermi distribution with the increase in
atomic interaction. In Fig. 4�d� we compare the distribution
of the system of finite strong interaction with the distribution
of TG gas, which is obtained using the Bose-Fermi mapping.
It turns out that even if the interaction is finite the result from
Bose-Fermi mapping can describe the system very well.
Generally the ground-state energy and the density profiles of
two-component Bose gas do not show distinct difference
from its single-component counterpart. For unequal intra-
atomic and interatomic interacting constants as in the experi-
ment �U1 :U12:U2=1.03:1 :0.97�, the density profiles do not
change drastically comparing with those of integrable system
even in the strongly interacting regime. Particularly in the
weakly interacting regime, the exact solution of integrable
system provides a trustable description of the real experi-
mental system because of the relatively small asymmetry of
the intraspecies and interspecies interacting constants.

IV. INTERACTION BETWEEN TWO TG GASES

We have shown how the fermionization crossover for the
one-component Bose gas extends to a two-component mix-

ture in the whole repulsive regime with almost equal intra-
atomic and interatomic interactions. The numerical diagonal-
ization method can be used to investigate two components of
Bose gases even when there are great differences between
the intra-atomic and interatomic interactions. Now we focus
on the crossover induced by the interatomic interaction con-
stants. We start with the case with U12=0 and U1=U2=60,
where each component is an independent TG gas, and in-
crease the interatomic interaction U12 to see how the
composite-fermionization crossover happens for two initially
fermionized components. In Fig. 5 the total density profiles
are given for N1=N2=2 and U1=U2=60. In this situation the
distributions of each component match each other and they
are one half of the total distribution because of equal atom
numbers in two components. When the interatomic interac-
tion disappear the system is composed of two isolated TG

FIG. 2. �Color online� The ground-state energy for c=10 and
N=4 vs utilized orbital number. Dashed line: The exact result of
Bethe ansatz method; Scatters: Numerical diagonalization results.
Units of energy: �2 /2mL2.

FIG. 3. �Color online� Density distribution of the ground state
for c=10 and N=4. Inset: enlarged profiles in x� �0.3,0.7�.

FIG. 4. �Color online� Density distribution of the ground state
for N1=2, N2=3 and U=1.0�a� ,10.0�b� ,40.0�c� ,80.0�d�. ��

BA

��=1,2 , tot�: Bethe-Ansatz result for equal intra-atomic and inter-
atomic interactions �U1=U2=U12=U�; �� ��=1,2 , tot�: Numerical
result for unequal intra-atomic and interatomic interactions
�U1 :U12:U2=1.03:1 :0.97�.

FIG. 5. �Color online� Density distribution of the ground state
for N1=N2=2 and U1=U2=60.
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gases that display N� peaks. With the increase in interatomic
interaction the density profiles become flatter with more
peaks appearing. In the strongly interacting limit the shell
structure with N peaks display, which is the same as the
density profiles of single component of TG gas of N atoms.
For the 1D Bose-Bose mixtures under harmonic confine-
ment, such a composite-fermionization crossover has been
observed as the interspecies coupling strength is varied to the
limit of infinite repulsion �29,30�.

In Fig. 6 we show the reduced one-body density matrix
for each component, which means the probability that two
successive measurements, one immediately following the
other, will find the same component particle at the point x
and x�, respectively. We notice that for all interacting
strengths there exists a strong enhancement of the diagonal
contribution ���x ,x�� along the line x=x�. The identical mo-
mentum distributions for the two components are shown in
Fig. 7. For all interatomic interaction strengths, Bose atoms
accumulate in the central regime close to zero momentum
and the distributions decrease rapidly for large momentum.
For strong intercomponent interaction, the momentum distri-
bution becomes broader and broader with the k=0 peak di-
minishing.

It is also interesting to study the density-density correla-
tion functions, which denote the probability that one mea-
surement will find an atom at the point x and the other one at
the point x�. In Fig. 8 we display the intraspecies and inter-
species correlations between two atoms. At U12=0.0 we
have two uncorrelated TG gases and thus ��̂1�x��̂2�x���
= ��̂1�x����̂2�x���. With the increase in the interatomic inter-

action two components will try to avoid each other and it
becomes more unlikely that one will find two atoms in dif-
ferent components at the same position. The intraspecies cor-
relation is always small in all cases because of the strong
intra-atomic interactions in TG limit.

V. SUMMARY

In conclusion we have investigated the ground state of
two-component Bose gas with Bethe ansatz method and nu-
merical diagonalization method. It turns out that the numeri-
cal results describe the ground state of the system quantita-
tively well. When intra-atomic and interatomic interactions
are same �U1=U2=U12�, the two-component Bose gas is in-
tegrable and the ground-state wave function can be obtained
exactly. The ground-state energy and total density distribu-
tion are same for all configurations with same total atom
number. With the increase in the interaction the total density
distribution show evolution from a Gauss-like Bose distribu-
tion �one peak� to a shell structure of nointeracting spinless
Fermions �N peaks�. The distribution of each component is
N� /N of the total density distribution. If the interaction con-
stants deviate the integrable point a little, which is the real
situation in experiment, the Bose mixture shows almost the
same behaviors as the integrable system. In addition we in-
vestigate the effect induced by the interatomic interaction
constants for two TG gases with the numerical diagonaliza-
tion method. It turns out that with the increase in interspecies
interaction the system shows composite-fermionization
crossover.
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FIG. 6. The reduced one-body density matrix for each compo-
nent of the ground state for N1=N2=2 and U1=U2=60.0. U12

=0.0,30.0,60.0 �from left to right.� Units of length: L.

FIG. 7. �Color online� Momentum distribution of the ground
state for N1=N2=2, U1=U2=60.0.

FIG. 8. Two-body correlation of intracomponent and intercom-
ponent of the ground state for N1=N2=2 and U1=U2=60.0. Top:
correlation between two atoms in different components; bottom:
correlation between two atoms in the same component. U12

=0.0,30.0,60.0 �from left to right.� Units of length: L.
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APPENDIX

The total ground-state wave function with N2 spin-
down particles �the state with S=N /2 and Sz= �N1−N2� /2�

can be generated by applying the total lowering operator

Ŝ−= 1
2�dx�̂↓

†�x��̂↑�x� to the polarized state according
to Eq. �7� and its normalized formula shall be expressed
as

��N�N

2
,
N1 − N2

2
�� =

1
�c
� dNx��x1,x2, . . . ,xN� � �̂↓

†�x1� ¯ �̂↓
†�xN2

��̂↑
†�xN2+1� ¯ �̂↑

†�xN��0� �A1�

with the normalized constant

c = N1 ! N2 !� dx1 ¯ dxN � ��x1,x2, . . . ,xN����x1,x2, . . . ,xN� .

The density distribution of �th component can be expressed as

���x� = ��N�S,Sz���̂�
†�x��̂��x���N�S,Sz��

=
1

c
� dNydNx��y1, . . . yN����x1, . . . xN� � �0��̂↑�yN� ¯ �̂↑�yN2+1��̂↓�yN2

� ¯ �̂↓�y1��̂�
†�x�

� �̂��x��̂↓
†�x1� ¯ �̂↓

†�xN2
��̂↑

†�xN2+1� ¯ �̂↑
†�xN��0� .

For the first component the above formulation can be evaluated as follows:

�1�x� = ��N�S,Sz���̂↑
†�x��̂↑�x���N�S,Sz��

=
1

c
� dNydNx��y1, . . . yN����x1, . . . xN� � �0��̂↑�yN� ¯ �̂↑�yN2+1��̂↑

†�x� � �̂↑�x��̂↑
†�xN2+1� ¯ �̂↑

†�xN�

� �̂↓�yN2
� ¯ �̂↓�y1��̂↓

†�x1� ¯ �̂↓
†�xN2

��0�

=
1

c
N1N1 ! N2 !� dx2 ¯ dxN � ��x,x2, . . . ,xN����x,x2, . . . ,xN� .

Similarly, for the second component we have

�2�x� = ��N�S,Sz���̂↓
†�x��̂↓�x���N�S,Sz��

=
1

c
� dNydNx��y1, . . . ,yN����x1, . . . ,xN� � �0��̂↑�yN� ¯ �̂↑�yN2+1��̂↑

†�xN2+1� ¯ �̂↑
†�xN�

� �̂↓�yN2
� ¯ �̂↓�y1��̂↓

†�x��̂↓�x��̂↓
†�x1� ¯ �̂↓

†�xN2
��0�

=
1

c
N2N1 ! N2 !� dx2 ¯ dxN � ��x,x2, . . . ,xN����x,x2, . . . ,xN� .

Thus the total ground-state density distribution is given by

�tot�x� = �1�x� + �2�x� =

N� dx2 ¯ dxN��x,x2, . . . ,xN����x,x2, . . . ,xN�

� dx1 ¯ dxN��x1,x2, . . . ,xN����x1,x2, . . . ,xN�

with the density distribution of � component

���x� =
N�

N
�tot�x� .
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