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We theoretically study the superradiant gain and the direction of this coherent radiant for an array of
Bose-Einstein condensates in an optical lattice. We find that the density grating is formed to amplify the
scattering light with the phase-matching condition. The scattering spectroscopy in the momentum space can
provide a method to measure the overlap of wave functions of neighboring sites, which is related to the
inner-site and intersite coherences.
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I. INTRODUCTION

Superradiance from a Bose-Einstein condensation �BEC�
offers the opportunity to study the novel physics associated
with cooperative scattering of light in ultracold atomic sys-
tems. A series of experiments �1–8� and related theories
�9–14� have sparked related interests in quantum information
�6,7�, collective instability �15,16�, high-precision measure-
ment �17�, and coherent atom optics �2,18�.

In a typical BEC superradiant experiment, the pattern of
recoiling atoms in the absorption image provides information
about the atomic momentum distribution �2–8�, where the
moving atoms and the static BEC form a matter wave grat-
ing. At the same time, the scattering optical spectroscopy
shows the gain process with time �1�. To enhance the scat-
tering light signal, the optical cavity is applied in a similar
experimental setting, usually called the collective atomic re-
coil lasing �CARL� �15,16,19�, where the atoms are forced to
maintain in the density grating by the optical lattice �OL� in
the cavity. Different from these cases, here we consider the
scattering superradiance from an array of BECs.

OLs, created by pairs of off-resonance counterpropagating
laser beams, offer new opportunities to investigate quantum
information processing and strongly correlated quantum mat-
ter �20�. The periodical potential in an optical lattice forms
an atomic density grating; hence to study the superradiance
in this array the coherence of atoms from both the same site
and neighboring sites has to be considered. Therefore super-
radiance has the potential to become a method to detect the
coherence of atoms in an optical potential. This is different
from the interaction of light and BEC in an OL trap without
the atom recoiling �21�, where the intersite atomic coherence
was considered and the inner-site coherence is neglected.

To study the superradiance in an optical lattice, there are
several issues to be addressed with regard to the theory about
the superradiance from BEC �9�. First the frequency of an
optical lattice, usually of several kHz, is much larger than
that of the magnetic trap �tens to hundreds Hz�, and the ef-
fects of trap is usually neglected because its frequency is
much smaller than the recoil frequency. Secondly, we need to
calculate the gain in special emission angles. In the case of a
magnetic trap, the atomic cloud experiences the maximum

gain when the mode is along its long axis. This direction is
selected for the least width of momentum to get the maxi-
mum gain �9�. The long axis and the direction with least
width of momentum are the same in a magnetic trap but not
necessarily true in an OL trap. Lastly and importantly, since
the light scattering depends on the coherence of atoms from
different sites, the interference of scattered light results in
amplification at some special frequencies and suppression at
others. It could provide us a method to obtain the informa-
tion of the atoms in OL. The density grating formed by op-
tical lattice and by moving and static atoms gives two crite-
rions for the optical amplification. Hence, similar to the
coherent-enhanced imaging where Raman superradiance is
used to probe the spatial coherence of BEC in a magnetic
trap �18�, the scattering spectroscopy provides information
about the cooperative radiation of inner-site and intersite at-
oms.

II. GAIN FOR THE CONDENSATE IN THE TRAP

We consider the model that the atomic cloud is prepared
in an optical lattice, as shown in Fig. 1. The optical lattice is
placed along the x axis with M sites centered at origin. The
lattice constant is a0=� /2, the length of condensate is L
=Ma0, and the pumping laser incident with wave vector k0
propagates along its short axis y.
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FIG. 1. �Color online� The system sketch. For a cigar-shaped
condensate, the optical lattice is formed along x axis with M sites.
The pumping laser is propagating along y axis. Moreover in the x-z
plane, the trap length in z direction is bigger than that in x direction.
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In order to investigate the superradiant gain, we adiabati-
cally eliminate the excited state of the far-off resonant pump
laser and use the rotating wave approximation. Therefore the
effective Hamiltonian about the coupling between the atomic
and electromagnetic fields can be written as �9�

Ĥ = Ĥa + Ĥp + Ĥi, �1�

where the Ĥa=�d3r�̂†�r��p̂2 /2m+ V̂�r���̂�r� is the atomic
Hamiltonian, for the classical potential of OL is V�r�
=V0 cos�x /a0� with the lattice depth V0. Ĥp

=�d3k��kb̂
†�k�b̂�k� is the Hamiltonian of photon, and the

interaction Hamiltonian is

Ĥi =� d3kd3r��g�k��̂†�r�b̂†�k�ei�k0−k�·r�̂�r� + H.c.� ,

�2�

where �̂�r� is atomic field operator and b̂†�k� is the annihi-
lation operator of a photon in mode k in the frame rotating at
the pump frequency �0. Here the photon energy is �k=c�k�
−�0 and g�k� is the coupling coefficient for scattering be-
tween the pump and vacuum modes. The interaction between
atoms is neglected because it is too small in the time scale
considered here.

The atomic field operator can be decomposed to the dif-
ferent side modes as

�̂�r,t� = �
q

�0�r�eiq·re−i�tĉq�t� , �3�

where the operator ĉq refers to the recoiling atom scattering
with the q mode light, �0�r� is the ground-state wave func-
tion of the condensate with the chemical potential �. When
the OL potential is weak enough, we could deal this case as
in a magnetic trap �9�. When it is extremely strong, we are
able to approximate the potential as the spatial replication of
harmonic trap V�r�= �V0 /a0

2�x2, decompose the operator ac-
cording to the eigenstate of the trap,

ĉq = �
n�0

	�n��0eiq·r
ĉn, �4�

and define the coefficient

An � 	�n��0eiq·r
 = �P�n,�� , �5�

where �n is the eigenfunction of nth level of the trap, the
P�n ,�� is the Poisson distribution with parameter �
= �q�� /2m�T�2=�r /�T, and �r=�q2 /2m is the recoiling fre-
quency. With the first-order side modes considered, the inter-
action Hamiltonian becomes

Ĥi = �
q�0

�
n�0

� d3k��g�k��q�k�Anĉn
†b̂†�k�ĉ0 + H.c.� , �6�

where

�q�k� =� d3r��0�r��2exp�− i�k − k0 + q� · r� �7�

is the Fourier transform of the ground-state density distribu-
tion centered at k0−q.

As the experiment shows that there are just several side
modes dominating the whole scattering process, in order to
simplify this problem, we just take one side mode q into
consideration. Under the Born-Markov approximation, the
optical field could be obtained that

b̂�t� = b̂�0�e−i�kt + �
n�0

g�k��q�k�Anĉn
†ĉ0���k� . �8�

Inserting Eq. �8� into the dynamic equation of atomic field,
ċn= �H ,cn� / i�, we obtain its evolution equation,

d

dt
ĉn = An

Gq

2

ĉ0
†ĉ0

N
�

m�0
Amĉm + f̂†�t� − i�nĉn, �9�

and the BEC’s gain with the q mode,

Gq = N
g2

k0
2� d3k��q�k��2���k� − k0� , �10�

where we assumed that g�k� is isotropic in the kx−kz plane.
The first term on the right-hand side of Eq. �9� is the gain
from the condensate. The second term is the quantum fluc-
tuation, which as discussed in Ref. �9� does not affect the
superradiant behavior in long time, and we just take it as an
initial seed. The last term on the right-hand side of Eq. �9� is
the energy term.

In order to compare the two cases of pumping the con-
densate with and without the external potential, we need to
discuss Eq. �9� by the mean-field approximation by replacing
the field operator ĉn by a c-number cn. With the transforma-
tion c̃n=cn exp�−i�nt�, Eq. �9� becomes

d

dt
c̃n = An

Gq

2

c̃0
�c̃0

N
�

m�0
Amc̃mei�n−m��Tt. �11�

For the case that the potential is turned off when pumping
the condensate by the laser, we assume that there is just only
one level n satisfying the condition An=1, with eigenenergy
�n= p2 /2m=�r, and for the other An=0. Thus on the right-
hand side of Eq. �11� the magnitude of the phase factor
ei�n−m��Tt is always equal to one. This form is consistent with
Eq. �8� in Ref. �9�. The gain of atomic number is therefore
Gq. For the case that the external potential exists, the param-
eters An are centered at �r /�T with a standard deviation
��r /�T, and we just need to consider these trap levels within
2��r /�T which make An�0. The phase factor ei�n−m��Tt is
different for different levels. These factors could be approxi-
mated by calculating the average phase difference
�T

��r /�Tdt=��T�rdt in a during time dt. Thus the different
phases of different levels lead to the sum in the right-hand
side of Eq. �11� smaller than that in the case with the same
phase, as in the previous case. This results in the gain loss
given by

Gq� − Gq 	 −
��T�r

N
. �12�

A typical value of the gain is Gq=4
104 for I
=100 mW /cm2 and N=106, which is close to the frequency
of the atom in the optical lattice trap. Thus when �T is large
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enough to dephase the coherence of condensate and side
mode, the gain of light is suppressed. Since the effect of the
trap is just a shift in the gain, in the following we mainly
discuss the gain without the trap Gq.

III. GAIN FROM AN ARRAY OF CONDENSATES
IN RELEASED TRAP

Now we consider the case that the pump beam is imme-
diately incident after switching off the potential so the exter-
nal trapping potential could be neglected. The wave function
of the ground state for the ith site is the Wannier function
wi�r�, which can be approximated by the Gaussian function
exp�−� j=1

3 rj
2 /2� j

2� with the half width of the wave function
� j in j direction �j=x ,y ,z�. Thus the ground-state wave
function in the optical lattice is given by �0�r�=Cnor�iwi�r�,
where Cnor= ��d3r��i=1

M wi�r��2�1/2 is the normalization factor.
We assume �z��x and �z��y. For a single site, the maxi-
mum gain is the z direction because the photon could expe-
rience the most atomic amplification �9�. Here, we need to
carefully discuss the gain for the whole atomic cloud. Since
the M sites are placed along x axis with lattice spacing a0,
then the atomic density can be expressed as

��0�r��2 = Cnor
2 �

i=1

M

�wi�r��2 + 2 �
i=1

M−1

wi�r�wi+1�r�� , �13�

where the first term on the right-hand side describes the
atomic density of site i. The second term is the overlapping
between neighboring sites, which is considered only when
the wave function of one site is wide enough to overlap its
neighbors. The Fourier transformation of the density at q
=k0 is

�k0
�k� = Cnor

2 exp�− �
j=1

3 � j
2kj

2

4
� sin�Ma0

2
kx�

sin�a0

2
kx�


1 + exp�−
a0

2

4�x
2�� . �14�

We proceed to calculate the superradiant gain according
to Eq. �10�. The sampling factor in �q�k�,
sin�

Ma0

2 kx� /sin�
a0

2 kx�, as shown in solid line of Fig. 2, gives
the density profile a sampling, namely, �q�k� is not zero only
in the regions with half width 2 /Ma0 and separation dis-
tance 2 /a0 between neighboring regions. Moreover, the

Gaussian factor of �q�k�, exp�−� j=1
3 � j

2kj
2

4 �, is centered at k0
−q and spreads in ki direction, which is significant in the
region �ki−k0+q��1 /�i, as shown in the dashed and dot-
dashed lines in Fig. 2. The Gaussian factor is wider when the
width in the single-site wave function is smaller. We assume
that k0�1 /� j ,k0�1 /a0, which means that the atomic mo-
mentum is narrow enough so that all its components could
contribute to the optical amplification �9�. Moreover in the
region of �q�k� where the Gaussian factor is significant, we
can approximate the surface of the sphere �k�= �k0� near k0

as a plane tangent to the sphere, and the integral in Eq. �10�
is equivalent to be the integral on this plane. We consider

q=k0+k0�̂, where �̂=cos �k̂x+sin �k̂z is a unit vector in the
kx-kz plane.

Here we mainly consider the maximum gain of light in
two extreme directions: �=0 in z direction and �= /2 in x
direction. For �= /2, the gain is

Gx = G0
M2

�z
, �15�

where

G0 =
g2

k0
2 Cnor

2 2

�y
1 + exp�−

a2

4�x
2�� �16�

is related to the normalization factor Cnor with the width in
y-direction �y and the factor �1+exp�− a2

4�x
2 �� reflecting the

coherence of neighboring sites. Equation �15� shows that the
gain Gx is proportional to the number of site squared, M2,
which is the result of cooperative radiation.

When �=0, since the nonzero region of � function in Eq.
�10� is a plane parallel to the kx-ky plane, the width of �q�k�
will affect the result of Gq. Hence, we need to discuss two
conditions: �x�a0 and �x�a0. For the case that �x
�a0 ,�q�k� has a0 /�x sidebands, after summing all these
sidebands which are with half width 1 /Ma0, we get the su-
perradiant gain given by

Gz = G0M2 a0

�x

1

Ma0
= G0

M

�x
. �17�

For the case that �x�a0, there is just one nonzero region of
�q�k�, thus, the superradiant gain is
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FIG. 2. �Color online� The sampling and the Gaussian factor.
The solid line is the sampling factor for M =10, which is the result
of interference between different sites. The Gaussian factor is the
result of single-site amplification of light, which is drawn in dash
line for �x=0.1a0 and in dash dotted line for �x=a0.
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Gz = G0M2 1

Ma0
= G0

M

a0
. �18�

In both cases, the gain Gz is proportional to M due to the
incoherent sum of different sites.

When �x�a0, the gain ratio for the two extreme direction
is that

Gx

Gz
=

Ma0

�z
=L /�z which is the aspect ratio, consistent

with the theory without OL trap. When �x�a0, the gain ratio
becomes

Gx

Gz
=

M�x

�z
which is the effective length ratio in this

two directions. It should be noted that this theory is sound
under the condition that k0�1 /�x. A typical experimental
value is k0=2 /780 nm, satisfying �x�1 /k0. If we need the
gain in z direction larger than that in x direction, we need
�z�M /k0, which is hard to be realized in experiment. Thus
the radiation usually takes place in x direction.

IV. SPECTROSCOPY OF SUPERRADIANT SCATTERING

In Sec. III, we understand that the gain of light is usually
propagating along x axis. Considering q=qx̂ in the x direc-
tion, for the different q the gain can be expressed as

Gq =
G0

�z
exp−

�x
2�k0 + q�2

2
� sin2 Ma0�k0 + q�

2

sin2a0�k0 + q�
2

. �19�

In this equation, we know that the maximum gains emerge at
a0�k0+q�

2 =n. In other words, the gain has maximum around
k0+2n /a0 with separation 2 /a0.

The spectroscopy for different width of single-site wave
function is plotted in Fig. 3. As shown in subfigure �a�, when
�x�a0, there is only one peak in the gain. Subfigure �b�
shows that when the �x�a0, there are sidebands. The radiant
light has sidebands when wave functions of neighboring sites
are not overlapped. The reason is that atoms in different sites

are pumped by the same phase light and become the same
phase dipole. The radiant light which is propagating along
the lattice has a phase difference in neighboring sites, a0�k
−k0� · x̂. Thus radiant lights with different frequencies will
have different gains by the averaging over the whole lattice.
The constructive interference will single out the frequency
component satisfying the condition a0�k−k0� · x̂=2n to am-
plify, and other components will be suppressed due to the
destructive interference of M sites.

For the larger width of single-site wave function, the gain
of sidebands is smaller. Thus by measuring the sideband gain
could give us a method to obtain the information about the
width �x. Figure 4 shows the ratio of maximum gain to the
second maximum gain versus �x. By the spectroscopical
measuring, we could obtain the information of the width of
wave packet, which is relevant to the potential quantum
phase transition.

V. DISCUSSION AND CONCLUSIONS

In the BEC superradiant experiment �1�, a photon is scat-
tered by an atom in the BEC which acquires the recoil mo-
mentum. The moving atoms and the static BEC form a mat-
ter wave grating which enhances the same direction
scattering. Due to the mode competition, the highly direc-
tional emissions of light are along the long axis of the con-
densate. Considering the self-amplification only exists within
the coherence time of the system, the stability of the relative
phase between different atomic matter waves determines the
coherence time of the matter wave in the superradiance scat-
tering. On the other hand, the coherence is preserved as the
relative phase of the probe beam and pump light field in the
CARL, where the atoms are forced to maintain in this grating
formed by these two light fields.

Different to these experimental schemes, here we extend
the theory of superradiance of BEC �10� to the case of an OL
trap where an array of atoms forms a density grating. The
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FIG. 3. �Color online� The gain with a factor �z /G0, in x direc-
tion for the �a� �x=a0 and �b� �x=0.1a0. The gain has satellites
when the width of single-site wave function is large. When it is
narrow, the satellites disappear. Here, M =10.
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FIG. 4. �Color online� The ratio of the maximum gain to the
second maximum gain in x direction versus the one-site wave-
packet width. Here, M =10.
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superradiance gain is calculated in the quantum theory. In
this theory, we consider inner-site and intersite coherences of
atoms. Only the scattering light satisfying the condition �k
−k0� ·a0x̂=2n will be singled out for amplification and the
other components will be suppressed to different extent. To-
gether with the grating formed by the static and moving con-
densates, both gratings give frequency selection rules. It is
similar to a diode laser with internal and external cavities.
Only the light resonant to both cavities will be amplified.

The motion of recoiling atoms in the high-frequency OL
trap causes the loss of coherence and the loss of the optical
gain proportional to ��T�r. In a typical magnetic trap, the
trap frequency is smaller, and the loss can be neglected. It
can inhibit the collective radiation when the trap frequency is
high enough. By calculating the ratio of optical gain in the
two extreme direction, we show that the gain is proportional
to the length that the light travels in the condensate.

Depending on the lattice depth, the wave function of a
single-site overlaps differently with its neighboring sites.
When the OL potential is low enough, wave functions of
neighboring sites fully overlap, similar to a condensate in the

magnetic trap. When the OL potential is high enough, wave
functions of neighboring sites are separated. The different
overlapping results in the different scattering spectroscopy.
Thus the spectroscopy provides us with a new method to
detect the coherence of different sites. Moreover, unlike the
time-of-flight method used in detecting quantum phase tran-
sition �20�, the spectroscopy method is a nondestructive
method. More understanding of this mechanism can be help-
ful in understanding self-organization, especially how the
long-range order arising in the self-synchronization process,
such as in the phase transition between the superfluid �SF�
and Mott-insulator �MI�.
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