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Quantum fluctuations in time-dependent, harmonically trapped Bose-Einstein condensates are studied within
Bogoliubov theory. An eigenmode expansion of the linear field operators permits the diagonalization of the
Bogoliubov–de Gennes equation for a stationary condensate. When trap frequency or interaction strength is
varied, the inhomogeneity of the background gives rise to off-diagonal coupling terms between different
modes. This coupling is negligible for low energies, i.e., in the hydrodynamic regime, and an effective space-
time metric can be introduced. The influence of the intermode coupling will be demonstrated in an example,
where I calculate the quasiparticle number for a quasi-one-dimensional Bose-Einstein condensate subject to an
exponential sweep of interaction strength and trap frequency.

DOI: 10.1103/PhysRevA.79.033601 PACS number�s�: 03.75.Kk, 03.75.Nt

I. INTRODUCTION

Ultracold atomic gases offer various opportunities for the
study of interacting many-body quantum systems in a well-
controlled environment �1,2�. For instance, the Bose-
Hubbard model—a simplified description for bosons in a
periodic potential—can be studied with Bose-Einstein con-
densates confined in optical lattices �3,4�. Quantum gases
have also gained much attention lately regarding the emer-
gence of an effective space-time �5–19�: their low-energy
phase fluctuations obey the same covariant field equations as
a scalar quantum field in a certain curved space-time. Hence,
the study of phonons in this laboratory system might shed
some light on aspects of cosmic quantum effects, e.g., Hawk-
ing radiation �8–11,20� or the freezing and amplification of
quantum fluctuations in expanding space-times
�12–19,21,22�. Although the fluctuations in Bose-Einstein
condensates are usually small, it has recently become pos-
sible in experiments to go beyond the classical order param-
eter and resolve signatures of the fluctuations �23–27�.

Theoretically, the fluctuations in a Bose-Einstein conden-
sate are usually treated as small perturbations of the mean
field. The solution of the coupled field equations is rather
demanding and often requires further approximations, espe-
cially for time-dependent condensates. The Hartree-Fock-
Bogoliubov method �see, e.g., �28�� permits in principle the
self-consistent propagation of the mean field and the quan-
tum correlations for arbitrary time dependences of the trap
potential or interaction strength. But the scaling of the nu-
merics with system size often limits the actual calculations to
a low number of dimensions, certain symmetries, or a short
time interval. Thermal condensates might be studied using
the projected Gross-Pitaevskii equation �29�, where the low-
energy part of the fluctuations is expanded into an arbitrary
basis and, in view of the large thermal occupation, treated
classically; higher excitations as well as the vacuum effect
are omitted. On the other hand, studies in the context of

expanding space-times, e.g., �6,7,12–16�, indeed focus on the
quantum fluctuations but often assume a homogeneous back-
ground or start with the hydrodynamic action, which is only
valid on scales longer than the healing length.

In this paper, I will discuss the evolution of the quantum
fluctuations in trapped time-dependent Bose-Einstein con-
densates. The linear field operators will be expanded into
their eigenmodes, thus permitting the diagonalization of the
�initial� evolution equations. Although basis expansions of
the field operator are frequently used �e.g., in �29,30��, these
references usually consider the harmonic-oscillator eigen-
functions, a large number of which must be used in order to
describe the excitations properly. By adopting the eigen-
modes, a much smaller part of the basis needs to be consid-
ered and many more situations will become numerically fea-
sible. �Note, however, that in order to obtain the fluctuation
eigenmodes, a relatively large number of oscillator functions
must be employed—but they need not be propagated.�

This paper is organized as follows. Section II reviews the
field equations and their linearization. The Bogoliubov–de
Gennes equation for the linear quantum fluctuations can be
diagonalized by an eigenmode expansion, which will be per-
formed in Sec. III. However, as soon as trap frequency or
interaction strength is varied, off-diagonal terms appear. This
coupling of different modes is negligible for excitations with
energies much smaller than the chemical potential even in
time-dependent condensates, as will be shown in Sec. IV,
where the order parameter is treated in the Thomas-Fermi
approximation. It is then also possible to establish the anal-
ogy between phase fluctuations and a massless scalar field in
a certain curved space-time. If the excitation energies are of
the same order as the chemical potential, the coupling of
different modes might lead to a population transfer, which
will be illustrated in an example in Sec. V.

II. FIELD EQUATIONS

A. Scaling transformation

In dimensionless units, the field operator �̂ of a trapped
�quasi-�D-dimensional Bose-Einstein condensate obeys the
nonlinear Schrödinger field equation �31�
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with D-dimensional coupling strength g�t��as. By changing
the s-wave scattering length as through Feshbach resonances
�32� or by varying the trap frequency ��t�, an external time
dependence can be prescribed on the condensate. The gas
cloud will adapt to these changes and it will either expand or
contract and with it the quasiparticle excitations residing
upon it. A part of this background motion can be accounted
for by transforming to new coordinates x=r /b�t� with scale
factor b�t�. The field operator then reads �33�

�̂�r,t� = ei��̂�x,t�
bD/2 . �2�

The phase �= �r2 /2�ḃ /b is chosen so as to generate an iso-

tropic velocity field ��=rḃ /b which �at least partially� de-
scribes the expansion/contraction of the condensate. If the
scale factor b�t� obeys

f2�t� = b3�2b

�t2 + b4�2�t� =
g�t�
g0

b2−D, �3�

with g0 being the initial value of the coupling strength, a
scaled field equation follows:

ib2 �

�t
�̂ = �−

�x
2

2
+ f2�x2

2
+ g0�̂†�̂���̂ , �4�

where trapping and interaction terms have acquired the same
time-dependent prefactor f2�t� and all other coefficients are
time independent. �The scale factor b�t� on the left-hand side
might be included into a redefined time d�=dt /b2; see Sec.
IV B.�

B. Linearization

For large particle numbers N, one might formally expand
the field operator into inverse powers of 	N �34�,

�̂ = ��0 + �̂ + �̂�
Â

	N̂
. �5�

Here, Â and N̂= Â†Â are the atomic operators. They commute
with the linear �̂=O�N0� and higher-order quantum excita-

tions �̂ and thus yield the exact conservation of particle num-
ber. The order parameter �0=O�	N� in the center of the trap
but diminishes toward the edge of the condensate. Insertion
of expansion �5� into scaled Heisenberg equation �4� yields
the Gross-Pitaevskii equation for the classical background �0
�35�,

ib2 �

�t
�0 = �−

�x
2

2
+ f2�x2

2
+ g0
�0
2���0. �6�

The linear quantum fluctuations �̂ obey the Bogoliubov–de
Gennes equation �36�

ib2 �

�t
�̂ = �−

�x
2

2
+ f2�x2

2
+ 2g0
�0
2���̂ + f2g0�0

2�̂†, �7�

and the residual terms comprise the equation of motion for �̂,

i
b2

f2

�

�t
�̂ = �−

�x
2

2f2 +
x2

2
+ 2g0
�0
2��̂

+ g0�0
2�̂† + g0�2�0�̂†�̂ + �0

��̂2 + �̂†�̂2� + O�g0�̂� .

�8�

These higher orders �̂ must remain small in order for mean-
field expansion �5� to be valid, i.e., for the linearized Eq. �7�
to be applicable. This means that the terms involving prod-
ucts of �̂ must remain small because they act as source terms

for higher orders �̂.
From Gross-Pitaevskii equation �6�, I can infer when the

evolution of the order parameter �0 is solely described by the
scale factor b�t�: apart from the trivial case f2=const, this
occurs only when the spatial derivatives can be neglected
with respect to the interaction and trapping terms, �x

2�0
	 f2�x2+2g0
�0
2��0, i.e., in the Thomas-Fermi approxima-
tion. Density and phase of the order parameter �0=ei
0	�0
then assume the forms

�0
TF =

�0 − x2/2
g0

���0 − x2/2� ,


0
TF = − �0�t

dt�
f2�t��
b2�t��

, �9�

where the Heaviside step function ���0−x2 /2� is 1 for �0
x2 /2 and 0 elsewhere. In this approximation, the motion of
the classical background becomes stationary and the scaled
coordinates x are comoving with the condensate.

Bogoliubov–de Gennes equation �7� can be tackled by
introducing self-adjoint operators

�̂+ = e−i
0�̂ + ei
0�̂†,

�̂− =
1

2i
�e−i
0�̂ − ei
0�̂†� , �10�

with 
0=arg �0 being the phase of the order parameter.
These operators resemble �relative� density and phase fluc-
tuations ��̂ /�0= �̂+ /	�0 and �
̂= �̂− /	�0 up to the prefactor
1 /	�0. Since this prefactor eventually becomes large near
�and beyond� the surface of the condensate, the smallness of
��̂ /�0 and �
̂ cannot be ensured. Therefore, I will stick to
�̂� in the following, but still refer to them as density and
phase fluctuations. They obey

2�b2 �

�t
+ v0�x +

1

2
��xv0���̂− = − K+�̂+,

1

2
�b2 �

�t
+ v0�x +

1

2
��xv0���̂+ = K−�̂−, �11�

where the velocity field v0=�x
0 results from the residual
background phase beyond Thomas-Fermi approximation �9�.
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However, v0 is small for g00 and if f2 does not change too
swiftly because an almost homogeneous phase will develop
with only small deviations near the boundary of the conden-
sate. On the other hand, attractive g0�0 invalidate the
Thomas-Fermi approximation and generally v0�0 even in
the center of the trap. The differential operators on the right-
hand sides,

K+ = −
�x

2

2
+

v0
2

2
+ f2�x2

2
+ 3g0�0 +

b2

f2 
̇0� ,

K− = −
�x

2

2
+

v0
2

2
+ f2�x2

2
+ g0�0 +

b2

f2 
̇0� , �12�

generally do not commute for inhomogeneous condensates
�x�0�0,

�K+,K−� = fg0���x
2�0� + 2��x�0��x . �13�

III. EIGENMODE EXPANSION

In order to define the initial state unambiguously, I will
assume that the condensate is at rest before t= tin. Then b

=1, ḃ=0, f2=1, and v0=0 such that the left-hand sides of Eq.
�11� reduce to partial time derivatives and the initial eigen-
mode equations for �̂� follow

�2

�t2 �̂+ = − K−K+�̂+,

�2

�t2 �̂− = − K+K−�̂−. �14�

Because K+K−�K−K+ for inhomogeneous condensates �cf.
Eq. �13��, density and phase fluctuations of each mode must
have different space dependences. This leads to the expan-
sions �37� �I will adopt the sum convention throughout this
paper for brevity; any indices appearing only on one side of
the equation are to be summed�

�̂+�x,t� = hn
+�x�X̂n

+�t� ,

�̂−�x,t� = hn
−�x�X̂n

−�t� �15�

of �̂+ into different eigenmode bases �hn
+ and �hn

−; see Ap-
pendix A for more details on how to obtain hn

�. Usually,
these two bases are neither orthogonal nor normalized,
�hn

+hm
+ ��nm��hn

−hm
− , but instead can be chosen to be dual to

each other,

� dDxhn
+�x�hm

− �x� = �nm. �16�

Note that this condition does not fix the norm of hn
� but still

permits the multiplication by an arbitrary factor, hn
+→�nhn

+

and hn
−→ �1 /�n�hn

−. Observables must be unaffected by this
ambiguity; see Appendix B.

Insertion of eigenmode expansion �15� into linear field
equations �11� yields a set of coupled first-order differential
equations,

b2 �

�t
X̂n

− = −
1

2
Anm�t�X̂m

+ − Vnm�t�X̂m
− ,

b2 �

�t
X̂n

+ = 2Bnm�t�X̂m
− + Vmn�t�X̂m

+ , �17�

with time-dependent coefficients. The symmetric matrices

Anm�t� =� dDxhn
+K+hm

+ ,

Bnm�t� =� dDxhn
−K−hm

− �18�

are initially diagonal, Anm�tin�=An�tin��nm and Bnm�tin�
=Bn�tin��nm. At later times, they acquire off-diagonal ele-
ments because of the different-time commutators
�K+�t� ,K+�t����0 and �K−�t� ,K−�t����0 when K��t�
�K��t��. The velocity coupling matrix

Vnm =� dDxhn
+�v0�x +

1

2
��xv0��hm

− �19�

is not symmetric, but vanishes for homogeneous phases 
0
of the order parameter, e.g., initially or in Thomas-Fermi
approximation �9�. For repulsive g00 and slow variations
in interaction strength g�t� and trap frequency ��t�, the
order-parameter phase is homogeneous except for small
ripples near the boundary of the condensate such that the
matrix Vnm is usually negligible.

From evolution equations �17� with the initially diagonal
coupling matrices �18�, the introduction of bosonic operators
ân

† and ân creating or annihilating an initial quasiparticle is
straightforward,

X̂n
−�t� = Fn

m�t�âm + F̄n
m�t�âm

† ,

X̂n
+�t� = Gn

m�t�âm + Ḡn
m�t�âm

† . �20�

Here, a bar shall denote complex conjugation, e.g., F̄n
m

= �Fn
m��. The coefficients obey the initial values

Fn
m�tin� =	 Am

2�m
�nm, Gn

m�tin� = i	 �m

2Am
�nm, �21�

where the phase has been appropriately chosen and the fre-
quencies �m=	AmBm. The upper index of the coefficients Fn

m

and Gn
m labels the mode, while the lower index denotes the

component of this particular mode when expanded in a cer-
tain basis, e.g., the initial eigenfunctions �hn

�.
Since coupling matrices �18� become nondiagonal even

for slow �adiabatically� variation in the trap frequency ��t�
or coupling strength g�t�, the initial bases �hn

� cannot repre-
sent the eigenmodes at later times. Although hn

� might be
employed in order to calculate the spatial correlation func-
tions �see Appendix B�, the use of these functions might be
misleading regarding the correlations between different
modes. Furthermore, when probing the excitations using,
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e.g., the scheme proposed in �39�, the proper particles de-
fined at the time of measurement will be detected and not the
initial ones.

The particle definition in the time-dependent background
is a nontrivial task; see, e.g., �22�. Nonetheless, it is always
possible to expand �̂�,

�̂��x,t� = hn;t1
� �x�X̂n;t1

� �t� , �22�

into bases �hn;t1
� , which are defined such that the

coupling matrices Anm;t1
=�dDxhn;t1

+ K+hm;t1
+ and Bnm;t1

=�dDxhn;t1
− K−hm;t1

− �cf. Eq. �18�� become diagonal at any par-
ticular instant t1,

Anm;t1
�t1� = An;t1

�nm, Bnm;t1
�t1� = Bn;t1

�nm. �23�

Of course, the velocity term Vnm;t1
is then generally nondi-

agonal and the evolution equations of the different modes
will not exactly decouple at this particular instant t1. But one
should bear in mind that measurement occurs usually in an
adiabatic region, where the external parameters are only
slowly varying functions of time. Then, the background
phase is approximately homogeneous and the velocity v0
�0. Hence, quasiparticle creators and annihilators might be
introduced that are analogous to Eq. �20�,

X̂n;t1
− �t1� =	 An;t1

2�n;t1

�b̂n;t1
+ b̂n;t1

† � ,

X̂n;t1
+ �t1� = i	 �n;t1

2An;t1

�b̂n;t1
− b̂n;t1

† � , �24�

where �n;t1
=	An;t1

Bn;t1
.

IV. THOMAS-FERMI APPROXIMATION
AND EFFECTIVE SPACE-TIME

In Secs. II and III, I made no approximations except for
linearization �5� and the assumption of an isotropic trap. The
formalism is, in principle, applicable for arbitrary variations
in trap frequency ��t� and interactions g�t�. To this end, it
would be necessary to solve Gross-Pitaevskii equation �6�
and linear evolution equations �17� simultaneously. The nu-
merical solution is complicated by the fact that coupling ma-
trices �18� and �19� need to be calculated at each time step.
Some of the numerical difficulties can be circumvented by
adopting Thomas-Fermi profile �9�, where density and phase
of the background become time independent �in the coordi-
nates x� and thus require the calculation of the coupling ma-
trices only once. Despite some shortcomings regarding the
dynamics of the order parameter, this approximation is usu-
ally applicable for repulsive interactions and in the center of
the trap, but becomes inaccurate toward the surface of the
condensate, where the quantum pressure ���	�0�2 is
relevant.

A. Coupled evolution equations

Within Thomas-Fermi approximation �9�, the coordinate
transformation r→x associated with scaling transformation

�2� renders the background density time independent, �̇0
TF

=0, while the phase becomes homogeneous, �x
0
�TF=0 and

thus Vnm
TF =0. The integrals of coupling matrices �18� simplify

considerably and the evolution equations can be cast into the
forms

− 2b2 �

�t
X̂n

− = AnX̂n
+ + �f2 − 1�MnmX̂m

+ ,

1

2
b2 �

�t
X̂n

+ = BnX̂n
− + �f2 − 1�NnmX̂m

− , �25�

i.e., Anm and Bnm can be split into time-independent diagonal
parts �cf. Eq. �18��,

An�nm =� dDxhn
+�−

�x
2

2
+

x2

2
+ 3g0�0

TF − �0�hm
+ ,

Bn�nm =� dDxhn
−�−

�x
2

2
+

x2

2
+ g0�0

TF − �0�hm
− , �26�

and constant, symmetric, nondiagonal coupling matrices,

Mnm =� dDxhn
+�x2

2
+ 3g0�0

TF − �0�hm
+ ,

Nnm =� dDxhn
−�x2

2
+ g0�0

TF − �0�hm
− , �27�

with time-dependent prefactors f2�t�−1. The external varia-
tion in trap frequency ��t� and coupling strength g�t� is
solely encoded in the scale factor b�t� and the scalar function
f2�t�=g�t�b2−D. Note also that coefficients �27� and thus also
evolution equations �25� for the fluctuations are independent
of the initial coupling strength g0. The addend g0�0

TF appear-
ing in the parentheses in Eqs. �26� and �27� can be expressed
through the chemical potential g0�0

TF= ��0−x2 /2���xTF−x�,
where xTF=	2�0; cf. Thomas-Fermi equation �9�.

B. Low energies and effective space-time metric

The mode functions hn
� of excitations with low energies,

�n	�0, are localized inside the condensate. Hence, chang-
ing the bounds of integrals �26� and �27� from infinity to the
Thomas-Fermi radius xTF will not alter these matrix elements
significantly. Bearing further in mind that x2 /2+g0�0

TF−�0
=0 for x�xTF, it follows that Nnm=0 and Mnm
=�dDxhn

+2g0�0hm
+ . Also An�nm=�dDxhn

+2g0�0hm
+ because of

the restriction to low energies, �n=	AnBn	�0�g0�0, and
one gets Mnm=An�nm. Hence, the evolution equations of dif-
ferent eigenmodes approximately decouple and I obtain
second-order equations of motion for phase �40�

� �2

��2 − 2
� ln f

��

�

��
+ f2AnBn��
̂n = 0, �28�

and density fluctuations,
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� �2

��2 + f2AnBn���̂n = 0, �29�

where I also introduced proper time d�=dt /b2. Equation �28�
is the evolution equation of a mode of a minimally coupled
massless scalar field in a Friedman-Lemaître-Robertson-
Walker space-time �21,22�, provided the scale factor aFLRW
of the space-time is identified with 1 / f �cf. �17��,

aFLRW =
1

f
. �30�

�Note that the prefactor of the damping term is 2 in Eq. �28�,
while it is D in a D+1–dimensional Friedman-Lemaître-
Robertson-Walker space-time.�

Analogy �28� is not restricted to the evolution equations
in mode expansion but applies in the low-energy limit of
field equations �11� as well: within the Thomas-Fermi ap-
proximation, x2 /2+g0�0−�0=0 for x�xTF and v0=0, and
for low excitations, �x

2�̂+	4g0�0�̂+, the phase fluctuations
obey a second-order field equation �17�,

� �2

��2 − 2
� ln f

��

�

��
− f2g0�0�x

2��
̂ = 0, �31�

which is similar to that of a minimally coupled scalar field in
a Friedman-Lemaître-Robertson-Walker space-time.

Having established this kinematical analogy �cf. Eq. �31��,
some of the concepts of general relativity can be applied to
time-dependent Bose-Einstein condensates. Sonic analogs of
horizons �21,41–46� are of particular interest for the study of
nonequilibrium effects because they give a rough estimate of
whether and when adiabaticity will be violated and the
�quantum� fluctuations freeze and get amplified, i.e.,
�quasi�particle production occurs. An effective particle hori-
zon occurs if a phonon emitted at a time �0 can only travel a
finite �comoving� distance, i.e., if the integral

� = �
�0

�

cs����d�� = 	g0�0�
�0

�

f����d�� �32�

converges to a finite value �Horizon for ��t→��. Wave pack-
ets emitted at time �0 at the origin x=0 can reach only points
within the horizon, x��Horizon, in a finite time. All other
points are concealed by the horizon. �For simplicity, I as-
sumed in Eq. �32� a homogeneous sound velocity cs.�

C. Particle production in static traps

In order to point out the analogy of phase fluctuations to
cosmic quantum fields, I formulated evolution equations �28�
and �31� using proper time �. On the other hand, experiments
are usually performed in the laboratory and thus the varia-
tions in trap frequency � and coupling strength g are pre-
scribed in laboratory time t. Since � is a complicated func-
tion of t, it is not quite obvious whether or not the quantum
fluctuations will experience nonadiabatic evolution for a
given modulation of ��t� or g�t�. In laboratory time t, Eq.
�29� reads

� �2

�t2 + 2
ḃ�t�
b�t�

�

�t
+ �n

2�t����̂n = 0, �33�

which is the evolution equation of a damped harmonic oscil-

lator with time-dependent coefficients 2ḃ /b, and

�n
2�t� = ��2 +

b̈

b
�AnBn =

g�t�
b2+D�t�

AnBn. �34�

Initially, when ḃ=0, the field modes perform free oscilla-

tions. Upon the gradual increase in the damping term 2ḃ /b
with respect to the oscillation frequencies �n, the nonadia-
batic evolution of the quantum fluctuations slowly sets in,
until they finally freeze and get amplified when both terms

2ḃ /b and �n are of the same order �6,7,12–17�.
Let me discuss the two extremal ways a time-dependent

scale factor b�t� can be achieved: first, only the trap fre-
quency might be varied, while the interaction strength g=1.
With instantaneous frequencies �n�b−1−D/2, adiabaticity can

be violated for any finite change ḃ /b�0 if b becomes suffi-
ciently large. The quantum fluctuations cannot adapt to the
changing background anymore; they freeze and get ampli-
fied. Second, for static traps, �=1, where g�t� is time depen-
dent. Then, the situation is not so clear because �n

2

�g /b2+D=1+ b̈ /b; cf. Eq. �3�. Hence, only the rapid accel-

eration of the scale factor 
b̈ /b
�O�1� will lead to notable
changes in the excitation frequencies. On the other hand,
adiabaticity could be violated by increasing the magnitude of

the damping term, 2ḃ /b. Then, however, a continuous accel-

eration of b is required because otherwise, if ḃ /b was con-
stant, the system would equilibrate.

As an example for the absence of particle production in-
side a static trap, �=1, I will consider an exponential sweep
of the coupling coefficient

g�t� = exp��t , �35�

with �0. In this case, Eq. �3� for the scale factor permits an
analytic solution,

b�t� = � �2 + D�2

�2 + �2 + D�2�1/�2+D�

exp� �t

2 + D
� . �36�

The coefficients of Eq. �33� become time independent,

2
ḃ

b
=

2�

2 + D
, �n

2 = �1 +
�2

�2 + D�2�AnBn, �37�

and the density eigenmodes are just damped harmonic oscil-
lators with solutions

��̂n = e−�t/�2+D���̂n�, �38�

where ��̂n� is some residual oscillating function with fre-
quency �n. Hence, the density-density fluctuations diminish,

��X̂n;t
+ �2��e−2�t/�2+D�, and, consequently, the phase-phase

fluctuations increase. But this is just the adiabatic evolu-

tion because An;t�e2�t/�2+D� and thus �X̂n;t
+ �ad=�n;t / �2An;t�

�e−2�t/�2+D�; cf. Appendix B. This means that no quasiparti-
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cle production occurs for dynamics �35� in the hydrodynamic
regime, i.e., for low-energy excitations with order parameter
treated in the Thomas-Fermi approximation. These findings
can also be inferred from �the absence of� effective particle
horizon �32�. For particular shape �36� of the scale factor b
follows

� � �
0

�

f�t�
dt

b2�t�
= �

0

�

dt → � , �39�

because f�t��exp�2�t / �2+D��b2�t�.
Note that the presented solution assumes g=e�t at all

times, especially also for t� tin. Hence g�t���1 at some time
t� when b�t��=1; cf. Eqs. �35� and �36�. On the other hand,
b�tin�=1 and g�tin�=1 for a condensate at rest; see Eq. �3�.
Since both solutions �static initial state and exponential
sweep� cannot be matched at tin such that g and b are both
continuous, the switching on of the exponential sweep would
excite breathing oscillations. These oscillations, however,
generally affect particle production, e.g., through parametric
resonance.

V. QUASI-ONE-DIMENSIONAL CONDENSATE

The simplest application of the presented formalism con-
sists of a quasi-one-dimensional condensate. In highly aniso-
tropic traps, where the perpendicular trap frequency �� is
much larger than the chemical potential, the motion in the
perpendicular directions is restricted to the ground state and
might be integrated out. An effectively one-dimensional field
equation �1� follows, where the interaction strength

g1D =
g3D

2�a�
2 = 2as�� �40�

can be varied through Feshbach resonance or by changing
��. However, one should bear in mind that the transversal
extent of the condensate a�=1 /	m�� has to be much larger
than the s-wave scattering length as such that the interaction
of different atoms can still be described through three-
dimensional scattering theory. For simplicity, I will adopt in
this section Thomas-Fermi approximation �9� for the order
parameter but will permit arbitrary energies for the
excitations.

A. Spectrum

In Fig. 1, the excitation frequencies �n=	AnBn of the
lowest modes are plotted versus the chemical potential �0.
For �0=0, one has the equidistant spectrum of the harmonic
oscillator �n= �n+1 /2��0, whereas for high �0��n, the fre-
quencies become almost independent of the chemical poten-
tial. In particular, the frequency �1 of the lowest excitation
with odd parity tends for �0→� toward the Thomas-Fermi
breathing frequency �breath

TF =	3�0 obtained from Eq. �3�.
The discrepancy between these two frequencies �1 and

�breath
TF for finite values of the chemical potential �0 hints at

shortcomings of the Thomas-Fermi approximation. In par-
ticular, Eq. �3� does not describe the breathing motion of the
background properly and care must be taken when employ-

ing Eq. �9� for the order parameter. Nonetheless, Eq. �3� still
predicts the correct order of magnitude of the characteristic
response time of the background, 1 /�breath=O�1 /�breath

TF �, to
variations in trap frequency or interaction strength.

Hence, it is still possible to discuss several cases where
the difference between �breath and �breath

TF is either small or
does not matter: first, if the shape of the condensate varies

only slowly, i.e., if ḃ	�breath and the condensate can adapt
to changes in � and/or g immediately; second, if no breath-
ing oscillations are excited, e.g., because the condensate ex-
pands or contracts �see also Eqs. �35� and �36��; and third,
for very large chemical potentials, �0→�, the Thomas-
Fermi approximation becomes exact. The quantum fluctua-
tions are in the hydrodynamic regime and their effective evo-
lution equations �28� decouple. In order to address cases
where breathing of the background occurs, it would be nec-
essary to abandon Thomas-Fermi approximation �9� and to
solve Gross-Pitaevskii equation �6�, which could, e.g., be
done by expanding the order parameter �0 into oscillator
functions �47�.

B. Exponential sweep in stationary condensate

A stationary condensate, i.e., b=1, can be accomplished
through simultaneous variations in trap frequency � and in-
teraction strength g �cf. Eq. �3��,

f2�t� =
�2�t�

�0
2 =

g�t�
g0

, �41�

though one should be aware that this only holds within the
Thomas-Fermi approximation: the instantaneous chemical
potential must at all times be much larger than the trap fre-
quency,

�inst�t� = �0f2�t� � ��t� = �0f�t� . �42�

If both were of the same order, the kinetic term −�x
2�0 /2 in

Gross-Pitaevskii equation �6� becomes important; no station-
ary background could be realized even for simultaneous
variations in � and g.
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FIG. 1. �Color online� Frequencies of even �solid curves� and
odd �dashed curves� excitations versus the chemical potential �0

calculated using 200 harmonic-oscillator basis functions. The fre-
quencies equal the chemical potential at the intersections with the
dash-dotted line. The lowest odd mode converges for �0→� to
the classical Thomas-Fermi breathing frequency �breath

TF =	3�0

�dotted curve�, which follows from Eq. �3�.
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1. Analytical effective space-time solution

For an exponential sweep

f2�t� = e−2�t, �  0, �43�

the effective second-order Eq. �31� for the phase fluctuations
in the hydrodynamic limit,

� �2

�t2 + 4�
�

�t
− f2g0�0�x

2��
̂ = 0, �44�

is that of a massless scalar field in a de Sitter space-time with
exponentially growing scale factor aFLRW=1 / f =e�t �cf. Eq.
�30��—which is believed to describe the universe during the
epoch of cosmic inflation �21,41�. For time dependence �43�,
integral �32� is finite and an effective sonic horizon occurs;
the quantum fluctuations freeze and get amplified.

Instead of solving Eq. �44� for �
̂, I will consider the

evolution equation of the density fluctuations X̂n
+,

� �2

�t2 + �2e−2��t−tn��X̂n
+ = 0, �45�

where AnBn=�2e2�tn. Obviously, all modes undergo the same
evolution, just at different times. Equation �45� can be solved
analytically in terms of Bessel functions �48�

X̂n
+ =	�Bn

2�
�ânH0

�1��ez� + ân
†H0

�2��ez� , �46�

where z=−��t− tn�. The Hankel functions H0
�1/2� have the

proper asymptotics for early times t→−� such that the op-
erators ân annihilate the initial vacuum state. The phase fluc-

tuations X̂n
−= �1 /2Bn�� X̂n

+ /�t read

X̂n
− =	 ��

8Bn
�ânezH1

�1��ez� + ân
†ezH1

�2��ez� . �47�

From these expressions �46� and �47�, I can infer the corre-
lations of each mode. At late times it follows that

��X̂n
+�2��t → �� =

2�Bn

�
�t − tn�2,

��X̂n
−�2��t → �� =

�

2�Bn
. �48�

Comparison with the adiabatic values ��X̂n
��2�ad �cf. Eq. �B8��

yields the quasiparticle number at late times,

Nn�t → �� =
1

�
e��t−tn� − 1. �49�

The occupation number of all modes grows exponentially
though at different times t− tn, where the shift tn is deter-
mined by the excitation frequencies 	AnBn=�e�tn. However,
one should bear in mind that Eq. �45� is only valid for a
limited time before leaving the hydrodynamic regime.

2. Numerical results

In order to go beyond the effective space-time description
and thus analytical findings �46�–�49�, I will now consider

full evolution equations �25�. The sweep rate �=0.1 shall be
chosen such that all modes evolve adiabatically at first, i.e.,
�	�n�tin� for all n. When subsequently reducing trap poten-
tial and coupling strength, the excitation frequencies �n�t�
decrease and nonadiabatic evolution sets in at different times
for each mode. The fluctuations freeze and get amplified.

Figure 2 shows the instantaneous particle numbers of the
lowest three modes for initial chemical potential �0=50 and
�=0.1. The lowest excitation, n=0, which becomes nonadia-
batic first, acquires the largest particle number. The next two
modes, n=1,2, experience less squeezing, though, remark-
ably, N2N1—an unexpected result, which can be explained
by the coupling of different modes: the second even mode,
n=2, gets populated from the principle excitation, n=0,
whereas the coupling matrix elements between n=0 and n
=1 are zero because of different parity.

VI. SUMMARY

The main objective of this paper was the investigation of
quantum fluctuations in time-dependent harmonically
trapped Bose-Einstein condensates with repulsive interac-
tions. To this end, the linear fluctuations were expanded into
their initial eigenmodes and the field equations were diago-
nalized. This diagonal form, however, persists only as long
as the condensate is at rest; as soon as trap frequency or
interaction strength is varied, the coupling of different modes
sets in �only part of which can be accounted for by trans-
forming to the instantaneous eigenmodes, though the defini-
tion of instantaneous eigenmodes is a nontrivial task�.

Two regimes were identified: first, for energies much
smaller than the chemical potential, the coupling of different
modes is negligible and an effective space-time metric might
be introduced for the phase fluctuations. This, however, ne-
cessitates a redefinition of the time coordinate such that the
required change in trap frequency and/or interaction strength
for a certain dynamics of this effective space-time is not
obvious. It turned out that the sole variation in the interaction
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FIG. 2. �Color online� Instantaneous particle number in the low-
est three quasiparticle modes for an exponential sweep �43�. The
initial chemical potential is �0=50 and the sweep rate �=0.1. At
t�80, the chemical potential equals the trap frequency. For the
calculation of the eigenmodes hn

� and coupling matrices �18�, I used
the harmonic-oscillator functions h��x� up to �=79; cf. Appendix

A. The lowest 20 modes X̂n
� were then propagated. The numerical

accuracy was set to 10−6.
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coefficient g�t� in a smooth monotonic way is hardly suffi-
cient to render the evolution of the quantum fluctuations
nonadiabatic, since the expansion/contraction of the back-
ground might compensate for changes in g such that the
sound velocity �in comoving coordinates� remains constant.
Breathing oscillations of the background, excited, e.g., by the
sudden change in the interaction coefficient g, might still
yield a notable amount of quasiparticles. Second, if the ex-
citation energy is of the same order as the chemical potential,
different quasiparticle modes couple.

The amplification and freezing of the fluctuations and also
the coupling of different modes were illustrated in an ex-
ample, where the trap frequency and interaction strength
were exponentially ramped down such that the shape of the
condensate remains constant. For the considered parameters,
a quasiparticle number of 0.5 was obtained in the lowest
mode, though higher occupation numbers could be achieved
by faster sweep rates or by starting with a higher chemical
potential. The inversion of the occupation number in the next
two modes could be attributed to the intermode coupling:
although the third excitation, n=2, experiences a much
briefer period of nonadiabatic evolution than the second
mode, n=1, only the former couples to the lowest mode, n
=0, and gets populated from it.
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APPENDIX A: EIGENMODES

The aim of this appendix is the derivation of the initial
eigenfunctions hn

� of density and phase fluctuations. To this
end, let me expand the field operator into any orthonormal
basis �h��x� of the underlying Hilbert space L2�RD� with
some operator-valued coefficients �̂�

��t�,

�̂��x,t� = h��x��̂�
��t� . �A1�

Lowercase Greek indices �� ,� , . . .� shall denote the compo-
nents in this arbitrary basis, while lowercase Latin indices
�m ,n , . . .� label the initial eigenmodes.

If the condensate is initially at rest, the scale factor b=1
and the phase of the order parameter is homogeneous,
�x
0=0, such that v0=0 and thus Vnm=0; cf. Eq. �19�. Evo-
lution equations �11� simplify considerably and can be ex-
panded into the basis �h�. It follows that �cf. Eq. �17��

− 2
�

�t
�̂�

− = A���̂�
+ =� dDxh�K+h��̂�

+ ,

1

2

�

�t
�̂�

+ = B���̂�
− =� dDxh�K−h��̂�

− , �A2�

where K� are defined in Eq. �12�. The matrices A�� and B��

are real and symmetric but do not commute due to
�K+ ,K−��0; cf. Eq. �13�. From Eq. �A2�, I obtain second-
order evolution equations for phase and density fluctuations,

�2

�t2 �̂�
− = − A��B���̂�

−,

�2

�t2 �̂�
+ = − B��A���̂�

+, �A3�

which can be diagonalized by a transformation to the eigen-
vectors.

Because the matrix A��B���B��A�� is not symmetric,
phase and density fluctuations obey different eigenvalue
equations,

A��B��v�
n = �nv�

n ,

B��A��ṽ�
n = �̃nṽ�

n , �A4�

where n denotes the vectors and � merely counts the com-
ponents in the particular basis representation �A1�. For brev-
ity, I will only discuss the eigenvectors of AB in the follow-
ing, though the same applies for those of BA as well. The
eigenvectors are generally not orthogonal,

�
�

v�
nv�

m � �nm, �A5�

but �v�
n usually still forms a basis. �Note, however, that the

eigenvectors of a nonsymmetric matrix do not always span
the entire vector space. But if the vn were no basis, evolution
equation �A3� could not be diagonalized. This would mean
that there existed some fluctuations, which have constant
losses to some eigenmodes—rather unphysical in view of the
stationary initial state considered here. Therefore, I will not
discuss this case any further.� With the vn=h�v�

n forming a
basis of L2�RD�, there must exist a dual basis �vd,n in the
space of linear functionals �the dual� on L2�RD�, which obeys

� dDxvd,nvm = �
�

v�
d,nv�

m = �nm. �A6�

�Roughly speaking, the elements of L2�RD� become column
vectors in basis expansion �A1�, whereas row vectors corre-
spond to the functionals on L2�RD�, i.e., the elements of the
dual. Since the eigenvectors vn form a basis, the matrix with
the vn as columns must be invertible. The rows of the �left�
inverse matrix then comprise the elements of the dual basis
�vd,n in the particular basis expansion �A1�.�

After the multiplication of the first equation in Eq. �A4�
with v�

d,m from the left and summation over � follows

v�
d,mA��B��v�

n = v�
d,mv�

n�n = �nm�m, �A7�

which, because �vn is a basis, implies that the vd,n are the
left eigenvectors of A��B�� with the same eigenvalues �n,

v�
d,nA��B�� = v�

d,n�n. �A8�

Transposition yields

B��A��v�
d,n = �nv�

d,n, �A9�

i.e., the eigenvalue equation of BA; cf. Eq. �A4�. Hence,
ṽn�vd,n and AB and BA �i.e., density and phase fluctua-
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tions� must have the same spectrum, ��n= ��̃n. For simplic-
ity, ṽn=vd,n, which can be achieved by renormalization of ṽn,
in the following.

Note that the spectrum of a real nonsymmetric matrix
might contain pairs of complex conjugate eigenvalues �n and
�n

�, which can be seen when taking the complex conjugate of
Eq. �A4�. Complex eigenvalues I�n�0 are associated with
exponentially growing solutions, i.e., unstable modes. Since
I am interested in the quantization of the stationary initial
state, I will not discuss this case but instead assume �n
�R∀n. �As can be easily verified, the components of the
eigenvectors v�

n and ṽ�
n must be real valued as well.� None-

theless, complex eigenvalues might still occur in dynamical
situations, e.g., during the signature change event proposed
in �13� or during �quantum� phase transitions �49� �see also
Ref. �50� for an illustrative example�.

Initial evolution equations �A3� can be diagonalized by
multiplication with the left eigenvectors,

�2

�t2 ṽ�
n �̂�

− = − ṽ�
nA��B���̂�

− = − �nṽ�
n�̂�

−,

�2

�t2v�
n �̂�

+ = − v�
nB��A���̂�

+ = − �nv�
n�̂�

+, �A10�

which leads to the definition of the density and phase fluc-

tuation eigenmodes X̂n
� through

X̂n
− = ṽ�

n �̂�
−, X̂n

+ = v�
n �̂�

+ , �A11�

where the spatial mode functions

hn
− = v�

nh�, hn
+ = ṽ�

nh� �A12�

follow from comparison of Eq. �A1� with Eq. �15� and dual-
ity �A6� of the v�

n and ṽ�
n implies Eq. �16� for the hn

�.
In view of Eq. �A11�, initial evolution equations �A2� can

be transformed to the new basis �cf. Eq. �17��,

− 2
�

�t
X̂n

− = AnX̂n
+,

1

2

�

�t
X̂n

+ = BnX̂n
−, �A13�

where the transformed matrices

Anm = ṽ�
nA��ṽ�

m = An�nm,

Bnm = v�
nB��v�

m = Bn�nm �A14�

have become diagonal. Note that transformation �A11� is not
orthogonal because the matrices comprising the eigenvectors
v�

n and ṽ�
n are not orthogonal. Hence, the commutators are

not preserved, in particular,

A��B�� � B��A��,

AnmBml = BnmAml, �A15�

where the latter can be inferred from Eq. �A7�,

�n�nm = ṽ�
nA��ṽ�

k v�
kB��v�

m = AnkBkm = ��n�nm�T

= v�
nB��v�

k ṽ�
kA��ṽ�

m = BnkAkm. �A16�

Since Anm and Bnm also commute with their product,
AnkBkm=�n�nm, which is diagonal, they must be diagonal,
too.

APPENDIX B: OBSERVABLES

Duality condition �16� does not fix the norm of the eigen-
vectors but still permits the multiplication with an arbitrary
factor �n,

hn
+ → �nhn

+, hn
− →

1

�n
hn

−. �B1�

This renormalization then leads to a stretching/shrinking of
the operator-valued coefficients �cf. Eq. �15��,

X̂n
+ →

1

�n
X̂n

+, X̂n
− → �nX̂n

−. �B2�

Since this is merely a basis transformation, the time evolu-

tion of the quantum fluctuations X̂n
� must be unaffected. To

see this, recall definitions �18� and �19� of the coupling ma-
trices: they are the matrix elements of the operators K� and
of v0�x+ ��xv0� /2 with respect to the basis functions hn

� and
thus acquire additional factors as well. As expected, all of
these factors cancel such that the time evolution remains un-
changed. In particular, the eigenfrequencies are invariant,
�n=	AnBn→	�n

2AnBn /�n
2=�n.

1. Correlation functions

Furthermore the observables should not depend on the
particular normalization of the basis functions. The relative
density-density correlations at time t read

���̂�x���̂�x���
��̂�x����̂�x���

=
hn;t

+ �x�hm;t
+ �x��

	�0�x��0�x��
�X̂n;t

+ X̂m;t
+ �

=
hn;t

+ �x�hm;t
+ �x��

	�0�x��0�x��
Gn;t

k Ḡm;t
k , �B3�

where I used the instantaneous eigenmode basis hn;t
+ ; see Eq.

�22�. Obviously, the factors �n and 1 /�n contributed by hn;t
+

and X̂n;t cancel each other and the spatial correlations are
independent of the normalization �n. Similarly, the expres-
sion for the spatial phase-phase correlations,

��
̂�x��
̂�x��� =
hn;t

− �x�hm;t
− �x��

	�0�x��0�x��
�X̂n;t

− X̂m;t
− �

=
hn;t

− �x�hm;t
− �x��

	�0�x��0�x��
Fn;t

k F̄m;t
k , �B4�

yields the same result regardless of the employed basis.
Hence, the factors �n can be chosen at will. There exist,

however, several convenient choices for �n: first, the density
modes might be normalized to unity, �dDx�hn

+�2=1. This is
advantageous if left and right eigenvectors are the same, i.e.,
if AB is symmetric. The drawback is that if AB is not sym-
metric and therefore hn

+�hn
−, only one of the mode functions,
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hn
+, can be normalized to unity, whereas the norm of the hn

−

follows from Eq. �16�. Second, these factors �n can be fixed
by demanding that An=Bn=�n. In this case, the prefactors
of Eq. �20� initially obey Fn

m�tin�=�nm /	2 and Gn
m�tin�

= i�nm /	2 and both quadratures ��X̂n
��2��tin�=1 /2. However,

one should note that neither of the eigenfunctions hn
� is gen-

erally normalized to unity, �dDx�hn
��2�1.

Of course, the coefficients �X̂n;t
+ X̂m;t

+ � and �X̂n;t
− X̂m;t

− � do de-
pend on the particular choice of the basis functions hn;t

� and
thus also on the factors �n. For instance, the adiabatic
density-density and phase-phase correlations of a particular
mode read

�X̂n;t
− X̂n;t

− �ad�t� =
An;t

2�n;t
�

1

�n
2 ,

�X̂n;t
+ X̂n;t

+ �ad�t� =
�n;t

2An;t
� �n

2. �B5�

The dependence on the factor �n becomes important regard-
ing the low excitations in the Thomas-Fermi approximation
�cf. Sec. IV�: the modes decouple and it is not necessary to
introduce a new spatial basis hn

� at the time of measurement.
One has instead An;t= f2An;t0

and Bn;t=Bn;t0
such that

�X̂n;t
+ X̂n;t

+ �ad� f , while �X̂n;t
− X̂n;t

− �ad�1 / f , i.e., the phase and
density fluctuations apparently increase or decrease even for
adiabatic evolution. In view of this �n ambiguity, the �abso-
lute� density-density or phase-phase correlations provide no
adequate measure for the squeezing �i.e., nonadiabaticity� of
a single mode. The Fourier transforms of Eqs. �B3� and �B4�
on the other hand are independent of �n but do not represent
the excitation eigenmodes.

2. Bogoliubov transformation and particle production

As will be shown in the following, the �instantaneous�
quasiparticle number measures the relative deviation of den-
sity and phase fluctuations from their adiabatic values. In
view of the different expansions �15� and �22� of density and
phase fluctuations into their initial and adiabatic eigenfunc-
tions, the corresponding creation and annihilation operators

ân
†, ân and b̂n;t

† , b̂n;t, respectively, can be transformed by virtue

of a Bogoliubov transformation. For the annihilators b̂n;t fol-
lows in particular

b̂n;t =	 �n;t

2An;t
X̂n;t

− − i	 An;t

2�n;t
X̂n;t

+ = �nm�t�âm + �nm�t�âm
† ,

�B6�

with the Bogoliubov coefficients �nm and �nm. The first
equality follows from inversion of Eq. �24� and the second

equality can be inferred after transforming Eq. �20� to the
new basis hn;t

� . Since �nm�0 for nonadiabatic evolution, the

quasiparticle number operator N̂n�t�= b̂n;t
† b̂n;t will have a non-

zero expectation value as well,

Nn�t� = �b̂n;t
† b̂n;t�

= �
m


�nm�t�
2

=
�n;t

2An;t
��X̂n;t

− �2� +
An;t

2�n;t
��X̂n;t

+ �2� +
i

2
��X̂n;t

+ ,X̂n;t
− �� ,

�B7�

where the commutator �X̂n;t
+ , X̂n;t

− �=−i. Noting that the prefac-
tors �n;t /2An;t and An;t /2�n;t are just the adiabatic density-
density and phase-phase correlations �see Eq. �B5��, the par-
ticle number can be rewritten as

Nn�t� =

��X̂n;t
− �2� −

An;t

2�n;t

2An;t/�n;t
+

��X̂n;t
+ �2� −

�n;t

2An;t

2�n;t/An;t
, �B8�

i.e., the instantaneous particle number gives just the relative
deviation of the density and phase correlations from their
adiabatic values. Note that expression �B8� does not contain
the correlations between different modes. To this end, it

would be necessary to evaluate �N̂nN̂m�, which is fourth order

in the b̂n;t. This observable can be reduced to expectation

values quadratic in the b̂n;t by virtue of Wick’s theorem; see,
e.g., �51�.

3. Scaling

Another interesting aspect is with regard to the scaling of
correlation functions �B3� and �B4� with the interaction
strength: within the Thomas-Fermi approximation �see Sec.
IV�, evolution equations �25� are independent of g0. All
properties of the linear excitations are determined by the
chemical potential �0 and the variations g�t� /g0 and ��t� /�0,

in particular, the expectation values �X̂n;t
� X̂m;t

� �. Only the nor-
malization factor

	�0�x��0�x�� = �1/g0�	�� − V�x����0 − V�x���

in Eqs. �B3� and �B4� depends on g0. Hence, the relative
density-density and phase-phase correlations in the Thomas-
Fermi approximation are both proportional to g0 for fixed �0.
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