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This work explores the possibility of controlling the dissociation of a monochromatically driven one-
dimensional Morse oscillator by recreating barriers, in the form of invariant tori with irrational winding ratios,
at specific locations in the phase space. The control algorithm proposed by Huang er al. [Phys. Rev. A 74,
053408 (2006)] is used to obtain an analytic expression for the control field. We show that the control term,
approximated as an additional weaker field, is efficient in recreating the desired tori and suppresses the
classical as well as the quantum dissociation. However, in the case when the field frequency is tuned close to
a two-photon resonance the local barriers are not effective in suppressing the dissociation. We establish that in
the on-resonant case quantum dissociation primarily occurs via resonance-assisted tunneling and controlling
the quantum dynamics requires a local perturbation of the specific nonlinear resonance in the underlying phase

space.
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I. INTRODUCTION

For over three decades the one-dimensional driven Morse
oscillator [1] has served as a fundamental model to under-
stand and elucidate the dissociation mechanism of diatomic
molecules. The continued interest in this seemingly simple
system is due to two main reasons. First, the hope is that
insights into the mechanism can be utilized to understand
infrared multiphoton dissociation of polyatomic molecules
[2-4] and related phenomena including vibrational predisso-
ciation [5] and mode-specific dynamics [6,7]. Second, at
present the focus of researchers is increasingly shifting from
gaining mechanistic insights to controlling [8—11] the vari-
ous processes and in this regard a firm understanding of the
underlying mechanisms is essential. Therefore, it is not en-
tirely surprising that the driven Morse system has been stud-
ied in great detail from the quantum, classical, and semiclas-
sical [12] perspectives and with an equally diverse choice for
the field-monochromatic [13-22], bichromatic (with relative
phase) [23-30], chirped [31-34], shaped pulses [21,26,35],
and stochastic noise [36]. More recently, the dynamics of a
Morse oscillator under the influence of external fields has
become relevant in the context of models for quantum com-
puting based on molecular vibrations [37].

A majority of the studies have addressed the problem
from a classical-quantum correspondence viewpoint; a
knowledge of the regimes where classical or quantum
mechanisms are appropriate and regimes where they coexist
and compete is crucial for control [38]. Several important
insights have originated from such efforts which have estab-
lished that molecular dissociation, in analogy to multiphoton
ionization of atoms [39-41], occurs due to the system gain-
ing energy by diffusing through the chaotic regions of the
phase space. For example, an important experimental study
by Dietrich and Corkum [42] has shown, among other things,
the validity of the chaotic dissociation mechanism. Thus, the
formation of the chaotic regions due to the overlap [43] of
nonlinear resonances (field-matter), hierarchical structures
[44,45] near the regular-chaotic borders acting as partial bar-
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riers, and their effects on quantum transport [46] have been
studied in a series of elegant papers [15,48,47]. A general
consensus, at least for the one-dimensional driven Morse
system, is that classical-quantum correspondence holds up
rather well except in the regimes of quantum multiphoton
resonances [13,16—18,33].

A recurring theme in many of the works on driven Morse
system has to do with enhancing the dissociation. The search
for ways to efficiently dissociate the molecule has led to a
variety of suggestions like bichromatic fields with the rela-
tive phase as a control knob [23,24,28-30], frequency-
chirped fields [31], and resonant stimulation [49]. However,
there are instances wherein one is interested in suppressing
the dissociation rather than enhancing it. This is important,
for example, in the context of vibrational quantum comput-
ing [37] where loss of population into states other than the
states of interest compromises the efficiency of the quantum
gates. Another example comes from coupled Morse oscilla-
tor systems where it might be necessary to keep one of the
modes “quiet” in order to carry out mode-specific dynamics
[4]. A powerful approach to implement such constraints on
the system comes from optimal control theory [50] (OCT)
and indeed driven Morse oscillator systems provide an ideal
testbed for OCT-based schemes [51]. Yet, in our opinion, it is
worthwhile addressing the issue from a classical-quantum
correspondence perspective as well. Not only is it natural,
given the extensive insights that classical mechanics can pro-
vide, but it might also provide a useful way of decoding
information buried in an otherwise complicated optimal field
coming out of an OCT calculation. Similar considerations
are at the heart of several works [52] aimed at understanding
the dynamical origins of the control fields.

Since a detailed understanding of the role of various
phase space structures in the driven Morse system already
exists, is it possible to use the phase space information to
control the dissociation using additional, hopefully simple,
fields? Recently, a similar question was addressed by Huang
et al. [53] in the context of suppressing the multiphoton ion-
ization of atomic systems. Using methods [54] developed in

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.79.033416

ASTHA SETHI AND SRIHARI KESHAVAMURTHY

a different context, it was found that the ionization process
could be suppressed by rebuilding some of the broken invari-
ant tori at carefully chosen locations in the phase space. In-
spired by their approach, and noting the mechanistic similari-
ties between molecular dissociation and atomic ionization
[55], in this work we attempt to control the dissociation of a
monochromatically driven Morse oscillator using the local
control algorithm. In their study, Huang et al. [53] focused
only on the classical aspects of suppressing the ionization. It
is, however, important to ask if the classical barriers are ef-
fective quantum mechanically as well since it is not imme-
diately clear that local barriers in the phase space translate to
local suppression of quantum dynamics. We address this is-
sue using the driven Morse system and show that phase
space barriers, especially cantori, do inhibit both classical
and quantum dissociation. As one would expect, such good
classical-quantum correspondence fails in the case of two-
photon resonance. However, we show that the complication
comes from a subtle interplay between classical and quantum
mechanisms with resonance-assisted tunneling [56-58] play-
ing a key role.

We begin by describing some of the salient features of the
driven Morse oscillator in Sec. II. After a brief description of
the methodology, Sec. III contrasts the dissociation dynamics
in the off-resonant and on-resonant situations and a specific
initial Morse state is identified to be subjected to the local
control strategy. In Sec. IV, we give a brief summary of the
local control method resulting in an analytic form of the
control field. A simplified control field, appropriate for
classical-quantum correspondence studies, is obtained. The
efficiency of the simplified control term in recreating various
cantori barriers in phase space and hence controlling the
classical and quantum dissociation dynamics is shown and
discussed in Sec. V. In the same section we illustrate the
importance of resonance-assisted tunneling in the on-
resonance regime. Finally we conclude in Sec. VI with some
comments on the method, possible generalizations, and fu-
ture applications.

II. MODEL HAMILTONIAN

The driven Morse oscillator, modeling the dissociation of
a diatomic molecule by linearly polarized laser fields, is de-
scribed [15] by the Hamiltonian

H(x,p:t) = Hy(x,p) = \ju(x)cos(wpt), (1)

with the unperturbed Hamiltonian
1
Hy(x,p) = —p* + Dg[1 — e ® ]2, 2
op) = 577+ il ] e

corresponding to a one-dimensional Morse oscillator. It is
well known that H,, provides a good model for describing the
anharmonic vibrations of diatomic molecules with Dy, «, x,,
and M being the dissociation energy, range of the potential,
equilibrium position, and the reduced mass of the molecule,
respectively. The bound eigenstates and eigenvalues corre-
sponding to the Hamiltonian H(x,p) can be expressed, with
z=2ae"*"%) as [59]
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Xy(z) = 1 We—z/ZzbyLibv(Z)’ (38.)

2D 1\ D 1\?
EV=_0<V+—>—_§<V+—) , (3b)
a 2 a 2

where Libv(z) is the generalized Laguerre polynomial, a
=v2MD,/ ah and, b,=\2(Dy—E,)M/ afi. Since this work is
concerned with studying dissociation caused by fields of
moderate intensity, a linear approximation for the dipole
function

,LL(X) = /-L(-xe) + (%) (.X _-xe) = M(-xe) + dl(x _xe) (4)

is valid as long as the qualitative nature of the classical and
quantum dynamics are unaltered as compared to working
with the full dipole function w(x). Moreover, as seen later,
the linear form allows for a relatively easier implementation
of the local control algorithm [54] in terms of deriving ana-
lytic expressions for the control field.

Given that this work focuses on suppressing dissociation
by creating robust Kolmogorov-Arnol’d-Moser (KAM) tori
in the phase space, the action-angle variables (J, 6) of the
unperturbed Morse oscillator

2MD, —
J=\ T (1=\1-B), (5a)
a

1-E 1
0= —sgn( )cos‘l{ o) —}, (5b)
gn{p \/’E \’/E

are a convenient and natural representation to work with. In
terms of (J,6) the Hamiltonian in Eq. (1) can be written
down as

with e=\;d, and

[O%) 2)
Hy(J)= J—-—J),
o( ) wo( 4D,

oo

v(J,0;1)=2 |: Vo(J) + E V., (J)cos(n 0)] cos(wpt), (7)

n=1

being the zeroth-order (matter) Hamiltonian and the interac-
tion with the field, respectively. In the above equations, E
=H)/Dy<1 denotes the dimensionless bound state energy,
wy=(2a’Dy/M)"? is the harmonic frequency, and sgn(p)
=1 for p=0, sgn(p)=—1 for p<0. The Fourier coefficients
Vo(J) and V,(J) are known analytically [16,47] and given by

1 lDO +\VD§— DyE(J) ]
, (8a)

Vol =3 b - E )]
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n+l ISy n
V=0 { Do) ] (8b)
an | Dy+ D} - DyE()

Note that the classical nonlinear frequency of the Morse os-
cillator is given by

aH() (O0)
Qo(J) = o) = (1)0(1 ZDOJ) . (9)

We highlight and illustrate the central features of our
work using the specific example of the hydrogen fluoride
(HF) molecule [15]. Also, note that throughout this work we
use atomic units for both the molecular and field parameters
with time being measured in units of the field period 7
=27/ wp. Thus, we choose [15] Dy=0.225,a=1.174,x,
=1.7329 and, M=1744.59 corresponding to a total of Np
=24 bound states supported by the Morse potential well. A fit
[60] to the ab initio data on HF yields the following dipole
function:

ulx) = Axe P , (10)

with A=0.4541 and 8=0.0064. The dissociation dynamics is
studied with a fixed driving laser field amplitude of A;
=0.0287 (~30 TW/cm?) implying a field of moderate inten-
sity. Consistently, we use a linear approximation to u(x) cor-
responding to d, = 0.33 [cf. Eq. (4)].

III. CLASSICAL AND QUANTUM DISSOCIATION
DYNAMICS

Although one can choose different classes of initial states
for the study, in this work the initial states are chosen to be
the zeroth-order Morse eigenstates y, given by Eq. (3). The
initial states are time evolved on a grid using the well estab-
lished split-operator method [61] involving the short-time

propagator
Sl -2
i T )exp{—i V).

A

R A
U(Ar) = exp(— lzﬁ V)exp(—

(11)

with 7 and V denoting the kinetic and potential energy op-
erators, respectively. The time step was set to Ar=5X 1077
to ensure convergence of the dissociation probabilities over
the timescales of interest of about 5007;. As is usual, un-
physical reflection at the grid boundaries is avoided by em-
ploying an optical potential [15,62]

iV,

e —— 12
(1+ e[—(x—x*)/n])’ (12)

Vopl(x) ==

with parameters (in atomic units) V,=0.02, 7=0.35, and x"
=16.74. The introduction of V, smoothly damps the outgo-
ing wave function and does not modify the time evolution of
the bound states. The quantum dissociation probability is
then calculated as

Np

PN =1- 2 [xdxd )P, (13)
k=0

where Ny is the number of bound states.
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FIG. 1. Classical dissociation probabilities for the Morse oscil-
lator states v=10 (circles), 11 (squares), 12 (triangles), and 13 (dia-
monds) with driving field frequencies (in atomic units) (a) wg
=0.0129 (b) 0.0178 and fixed field amplitude \;=0.0287 a.u.
(~30 TW/cm?). The corresponding quantum results are shown in
the right column as (c) and (d), respectively. In case of wp
=0.0178 an additional state v=14 (dashed line) is also shown. Note
that in this figure and all subsequent figures the various parameter
values are in atomic units and time (7) is measured in units of the
field period, i.e., 7=t/ Tp=H(wp/27).

In order to compare and contrast the quantum dissociation
dynamics with the classical dissociation dynamics we com-
pute [63] the classical dissociation probabilities P-(7) by
choosing an ensemble of initial trajectories N, with energy
E, corresponding to the specific initial Morse state with the
angle uniformly distributed in [—r, 7). During the time evo-
lution, a trajectory is considered to be dissociated when the
compensated energy

1 € . 2 .
Eczﬁ[p—w—psm(wﬂ')] +Dy[1-e¢ olx 9)]2 (14)

exceeds the Morse dissociation energy D,. The number of
dissociated trajectories Ny, at a given time is determined
from the above criteria and the resulting classical dissocia-
tion probability is the fraction

Nais
Py(n)=—". 15
p(7) N, (15)
In Fig. 1 we show P}, and P}, as a function of time for
some of the high-lying Morse eigenstates for two specific
driving field frequencies (in atomic units) of wz=0.0129 and
0.0178. In particular note that, given the specific Morse pa-
rameters, w;=0.0129 is not resonant with the transition fre-
quency between any of the states of interest in Fig. 1 and
hence represents an off-resonant situation. However, wp
=0.0178 is involved in a resonance with two of the states
shown in Fig. 1 (specifically, E\4,—E,y=2hwg) and hence
characterized as a two-photon resonant case. These cases,
which will be used to highlight the results, are selected since
they represent two limits in which classical-quantum corre-
spondence either holds (off-resonant) or does not hold (on-
resonant).
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FIG. 2. (a) Quantum (filled squares, solid line) and classical
(filled circles, dashed line) dissociation probabilities (y axis) for the
Morse eigenstate =10 of HF as a function of the field frequency
oy (in atomic units). Note that the probabilities shown correspond
to the final time 5007 with fixed field strength A;=0.0287 a.u.
Panels (b) and (c) show the stroboscopic surface of section for the
two representative wy cases (indicated by arrows) considered in this
work with wz=0.0129 and 0.0178, respectively. The thick black
lines in (b) and (c) are at the classical action value J=10.5 corre-
sponding to quantum initial state v=10. The inset in (a) shows the
control of w»=10 dissociation, over the range wg
€(0.0128,0.0178), by building the 1+~ cantorus barrier in the
classical (open circles, dashed line) and quantum (open squares,
solid line) cases. The uncontrolled cases [filled symbols as in (a)]
are also shown for comparison.

A comparison of the classical [Fig. 1(a)] and quantum
[Fig. 1(c)] results in the off-resonant case reveals that the
dissociation probabilities monotonically increase with in-
creasing vibrational excitation. However, P}, is considerably
smaller as compared to Pj,. The reasons for this are well
known and can be explained based on the classical phase
space shown in Fig. 2(b). Extensive classical stickiness [63]
around the initial action J=10.5 (corresponding to the quan-
tum initial state »=10) leads to the reduced P}, for this state.
At the same time the density variation in the chaotic regions
of the phase space is symptomatic of the existence of partial
barriers-in this case corresponding to a cantorus with
wp/ Qo(N)=1+y" with y=(y5+1)/2=~1.618 being the
golden mean. Based on earlier works [15,47], it is reasonable
to surmise that the quantum dissociation is blocked by the
cantorus. On the other hand, dissociation probabilities for the
on-resonant case shown in Figs. 1(b) and 1(d) indicate non-
trivial behavior as compared to the off-resonant case. The
quantum dissociation probabilities are nonmonotonic with
initial states v=10, 14, having nearly identical P9, dissociat-
ing far more than the state v=13. Quantum mechanically,
resonant two-photon transition of state v=10 to v=14 leads
to direct coupling with the continuum and hence enhances
the dissociation of state v=10. The state-to-state transition
probabilities indicate [15], not shown here, Rabi cycling be-
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tween the states v=10, 12, and 14. Insights into such behav-
ior can also be gained by studying the classical phase space
structures as seen in Fig. 2(c). In this on-resonant case J
=10.5 is essentially located around the 1+7~! cantorus and a
prominent wgp/y(J)=2/1 nonlinear resonance is observed.
Clearly, the 2:1 resonance is the classical analog of the quan-
tum two-photon resonance and must be playing a crucial role
in the observed dissociation dynamics [17]. In the subse-
quent sections we will highlight the classical-quantum corre-
spondence for both the off-resonant and on-resonant cases.

In order to illustrate the key features of this work we
focus on the dissociation dynamics of the Morse state v
=10 for the above mentioned field frequencies. The analysis,
however, can be performed for any initial state and our spe-
cific choice is inspired by the earlier work of Brown and
Wyatt [15]. Moreover, for moderate field intensities, state v
=10 is an ideal choice to illustrate the interplay between
classical and quantum dissociation mechanisms. Figure 2(a)
provides the comparison of quantum and classical dissocia-
tion probabilities for v=10 interacting with a field with fixed
intensity and for varying choice of the field frequencies wpg.
The quantum distribution exhibits peaks at certain frequen-
cies corresponding to resonant multiphoton transitions. The
classical dissociation profile rises with wg, broadens and dies
out smoothly at higher frequencies due to the transition from
trapping of trajectories in KAM tori at low frequencies to
trapping inside the resonance island regions at higher fre-
quencies. These observations are rather general and a de-
tailed interpretation has been given earlier by Nicolaides and
co-workers [63].

We now pose several questions in the context of Fig. 2. Is
it possible to correlate the changes in classical phase space
structures with the quantum dissociation probabilities in both
off-resonant and on-resonant cases? What is the role, if any,
of the classical nonlinear resonances in regulating the decay
of quantum states? Finally, and the main focus of this work,
can one control the classical and quantum dissociation dy-
namics by creating suitable local barriers in the classical
phase space? For the present system the answer is in the
affirmative and, as a preview to the rest of the paper, the
inset to Fig. 2(a) shows the suppression of classical and
quantum dissociation by locally creating a cantorus with
winding number wz/Qy(J)=1+7y"'. We now turn to the issue
of local phase space control of dissociation which, as seen
later, provides answers to the first two questions posed above
as well.

IV. CONTROL BY REBUILDING A KAM TORUS

The phase spaces shown in Figs. 2(b) and 2(c), and the
discussion in the previous section, suggest that if one can
rebuild some of the irrational tori, such as the 1+y‘1 can-
torus, locally in the phase space then it ought to be possible
to suppress the dissociation. Given the close parallels be-
tween the atomic ionization and the system of interest to us,
i.e., molecular dissociation, we employ the same classical
perturbation theory approach [53] to obtain an analytic ex-
pression for the control field in case of the driven Morse
oscillator. Since the technique has been described in consid-
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erable detail in the earlier works [54,53], in what follows we
provide the main results which are of relevance in the present
context. In addition, note that we use the notation of Huang
et al. for convenience as well as uniformity.

A. Methodology

To start with, the nonautonomous Hamiltonian is mapped
into an autonomous one by considering [#(mod 27r),E] as an
additional angle-action pair. Denoting the action and angle
variables by A=(/,E) and 8= (6,r) we can write the origi-
nal driven system Hamiltonian [see Eq. (6)] as

H(A,0)=Hy(A) - €V(A,0), (16)

where we have denoted V(A ,0)=uv(J, 0;t). Note that for a
fixed driving field strength \; and the value of d; corre-
sponding to the HF molecule, e=\d, is also fixed. More-
over, for physically meaningful values of d; for most diatom-
ics and typical field strengths far below the ionization
threshold one always has €<1 (e~0.01 in the present
study). In the absence of the driving field (e=0), the zeroth-
order Hamiltonian is integrable and the phase space is foli-
ated with invariant tori labeled by the action A correspond-
ing to the frequency w= dH,/ IA=({),, wr). However, in the
presence of the driving field (e# 0) the field-matter interac-
tion renders the system nonintegrable with a mixed regular-
chaotic phase space. More specifically, for field strengths
near or above a critical value €. one generally observes a
large scale destruction of the field-free invariant tori leading
to significant chaos and hence the onset of dissociation. The
critical value e, itself is clearly dependent on the specific
molecule and the initial state of interest. We remark here that
the fixed value of the field strength, and hence €, chosen for
the present study is above the critical €. for the states of
interest (shown in Fig. 1).

The aim of the local control method is to rebuild a non-
resonant torus Ay=(Jy,0), k- @ # 0 with integer k, which has
been destroyed due to the interaction with the field. Assum-
ing that the destruction of A, is responsible for the signifi-
cant dissociation observed for some initial state of interest,
the hope is that locally recreating the A, will suppress the
dissociation, i.e., A acts as a local barrier to dissociation.
Ideally, one would like to recreate the local barrier by using
a second field (appropriately called as the control field)
which is much weaker and distinct from the primary driving
field. Following Huang et al. such a control field f(#) can be
obtained and has the form

f(0) =—H[Ay-3,I'b(6), 0], (17)

where b(0)=H(A,, 6) == bce™ ? and I being a linear opera-
tor defined by

Tog) = S 2 ko (18)

kw0 K- @

The classical control Hamiltonian can now be written down
as
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H.(A,0)=H(A,0) +f(6) = Hy(A) - €V(A, ) + (0)
(19)

and below we show that the control term f(6) is O(€%) to
leading order. Since 1>e> €., the control term is indeed
weaker than the primary driving field.

The control term can be explicitly derived for the Morse
oscillator since the Fourier coefficients [cf. Eq. (8)] are
known analytically. In addition, as we are focusing on the
dissociation dynamics of the initial Morse oscillator state v
=10, a look at the phase spaces shown in Figs. 2(b) and 2(c)
suggests the appropriate local barriers that need to be recre-
ated. Referring to Figs. 2(b) and 2(c) it is clear that the clas-
sical action corresponding to the quantum initial state »
=10 is located between the primary resonances wp:{),
=1:1 and 2:1. Thus, in our case the aim is to try and rebuild
tori with irrational frequency ratios between the two reso-
nances. In particular, the golden mean tori (1+ ™", integer n)
are of specific interest in the driven Morse system [15,47]. In
the absence of the primary driving field, such an invariant
torus with frequency Qy=, is located at J.=(w

—Q,)(2Dy/ w?). We shift the action J=J—J, to focus on the
specific region of the phase space and expand the autono-
mous Hamiltonian to second order (exact for the Morse os-

cillator) in J. Following the methodology outlined above the
control term is obtained as

2
1(0) =1(6.1) = 62{ 0[5, Tb(O) +2C,(6) + C1(0)},

(20)
where we have denoted
o (=DF
Co(0) =2 0 €7 'Vor(J)(90b) (cos wpt),
=1 K
o) EDF
Cl(O) =2 2~ €Vl @b)* ([eos(nb+ wpr)
n=1 k=1 .
+cos(nf— wpt)], (21)
with
d- -
V) ==V, d+0)| .
‘ (djk ’ )]:0
B _ - cos(nf+ wpt)
T'agh(0) = 3,I'b(0) = 2‘; nv,l(J,)[—(nQrJr o)
cos(nf— wpt)
(1), — wp) ] 22

It is important to note that the full control field f(6), given
by Eq. (20), is O(€?) to leading order as discussed earlier and
hence weaker than the primary driving field. Since we are in
a regime corresponding to €<<1 it is sufficient to retain the
O(é€®) term in Eq. (20) and, as a consequence, the full control
Hamiltonian can be approximated as
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H(J,0;t)=Hy(J) — ev(J, 6;1) + f(6,1)
zI-IO(‘I)_Ev(‘l’e;t)"'ezga(e’t)’ (23)

where we have denoted

2
[0))
2a(0,0)= {ﬁ(agrb)z — 2V, (90 b)cos(wpt)
0

= (9gI'b) {0, H;t)}, (24)

and it can be shown that

wé (2(,004‘9,)

Vo =
o1 SCYQ,,D() (O} + Qr
V== 1)n+1( c"(3) ) (wp— Q)"
nl 2CYDO (wo + Qr)n/2+] ’

©

07,60 =2, V, (J)[(cos(nb+ wpt) + cos(nf— wpt)].

n=1
(25)

As a remark we mention that the perturbative treatment car-
ried out to derive the control field f(6,¢) breaks down when
n{),=~ wp. Thus, assuming a nonresonant (),, the recreated
torus to O(e) is located at

J(0)=J,— €dlb. (26)

B. Simplifying the control term

The control fields f(6) and f,(0) = €°g,,(6) obtained above
can be used for studying the control of classical dissociation
dynamics. However, a direct use of the control terms in
quantum studies is subtle since the notion of action-angle
variables does not exist except in the semiclassical limit.
Moreover, transforming back even the leading order control
term f,(@) to the original (x,p,7) variables via the canonical
transformations in Eq. (5) is difficult. In any case, at the
quantum level one would face the usual xp-ordering issues in
order to have the proper quantum control Hamiltonian. Thus,
in order to implement the classical control terms for studying
their effect on the quantum dissociation dynamics it is nec-
essary to simplify the form of the control field. Fortunately,
Huang et al. [53] have already suggested such a simplifica-
tion and we briefly outline their approach.

The control term being periodic in 6 and ¢ has a rich
Fourier spectrum. However, only few of the Fourier compo-
nents are dominant and the parameter

|Fe iy

=z 27

with F Kk being the coefficients in the double Fourier expan-
sion of the control term f or f, is used to identify those
dominant modes. Note that this implies large amplitude F/ Kk
and kQ,+k,wr=0 i.e., the corresponding wave vector is
close to being in resonance with the frequency vector @ of
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the integrable motion. Once identified, only the dominant
Fourier modes are retained in the control term. Further sim-
plification, required for quantum studies, is obtained by map-
ping a typical dominant term as

Fkl’kZ COS(k] 0+ kszt) — )\2(k1,k2)C0$(k2wFt) . (28)

The coefficients \,(k;,k,) are determined [53] by comparing
the dominant Fourier mode amplitudes in the original control
Hamiltonian with the corresponding amplitudes in the sim-
plified control Hamiltonian

H,.=H(J,0;t) + u(x)\5(k,ky)cos(kywpt). (29)

If more than one dominant Fourier modes are present then
they will appear as additional terms in Eq. (29). For all the
results presented in the next few sections we have used the
control Hamiltonian of the form given above.

V. INFLUENCE OF THE CONTROL FIELD ON
DISSOCIATION DYNAMICS

We now present our results for the effect of local phase
space barriers on the dissociation dynamics of the Morse
state v=10 for the two representative field frequencies and
compare to the uncontrolled results summarized in Figs. 1
and 2. As we are interested in understanding the effect of
creating cantori barriers on both the classical and quantum
dynamics we also show, following earlier studies on quan-
tum transport through cantori [46,64,65], the time-averaged
probability

P

e
et [ de@E GO

—00 0

of being in a state y,, having started in the initial state y,. In
this work 7=5007 is a sufficiently long time for computing
P, .. The classical analog of Eq. (30) is constructed by
coarse-graining the actions, i.e., the trajectory is considered
to be in the action region J if it is located within a bin of
width 0.5 centered about J. Reasonable variations of the bin
width lead to qualitatively similar results and convergence
can be easily checked. Such a coarse-graining procedure is
appropriate for studying the classical-quantum correspon-
dence of P, .

A. Off-resonant laser field

Figure 3 summarizes our results for the off-resonant case
with two different cantori barriers being rebuilt in the phase
space. These cantori, corresponding to wz/Q,=1+7y"!
(shown in red/dark gray), and 1+772 (shown in green/light
gray), are located at actions J,=~ 13.8 and 12.0, respectively.
The modified (6,J) phase spaces shown in Figs. 3(c) and
3(d) clearly show the reconstruction of the respective barriers
as evidenced by the reduction of stochasticity and increased
stickiness around the regular regions. These phase spaces
should be compared to the one shown in Fig. 2(b) corre-
sponding to the uncontrolled phase space. Importantly, and
as anticipated from the discussions in Sec. IV, the control
fields are indeed weaker than the primary driving field

033416-6



LOCAL PHASE SPACE CONTROL AND INTERPLAY OF ...

I I -
200 T 400 ' 200 400

FIG. 3. (Color online) This figure summarizes the result of cre-
ating two local phase space barriers wp/Q(J)=1+v"! and
wp/ Q(J)=1+772 on the classical and quantum dynamics for wp
=0.0129 a.u. (off-resonance) and initial state v=10. The recreated
barriers effectively reduce the extent of chaos, as compared to Fig.
2(b), and evident from the (6,J) phase spaces shown in (c)
wp/ Q) =1+v72 and (d) wp/QJ)=1+7y". Note that (c) and (d)
have identical axes range as in Fig. 2(b) and the perturbatively
recreated tori, 1+v! in red/dark gray, and 1+772 in green/light
gray, according to Eq. (26) are also shown. (a) Classical time-
averaged (T=5007y) cross probabilities P, [cf. Eq. (30)] as a
function of J=v'+1/2 for the uncontrolled (filled circles), con-
trolled (1+y~!, red/dark gray open circles), and controlled (1+y72,
green/light-gray open circles) showing the influence of the recreated
barriers. (b) Same as in (a) showing the quantum time-averaged
(T=5007) cross probabilities P, s (squares) versus J. The thin
vertical lines in (a) and (b) show the expected location of the rec-
reated (1+77! in red and 1+ 72 in green/light gray) KAM barriers.
In (e) and (f) the dissociation probabilities, with colors and symbols
as in (a) and (b), are shown as a function of time and correspond to
cases (d) and (c), respectively. See text for discussion.

strength. This is confirmed in Figs. 4(a)—-4(c) where we com-
pare the primary driving field with frequency wy;=0.0129,
the full control term given by Eq. (20), and the leading order
control term of Eq. (24), respectively, as a function of 6 and
7. It is clear that not only are the control fields weaker by an
order of magnitude but the leading order approximation to
the full control term is fairly good. Furthermore, in Fig. 4(d)
we show the result of Fourier transforming the leading order
term f,(6) via the parameter Gy ;. defined in Eq. (27), in
order to obtain a simplified control field. One finds a single
dominant Fourier mode with (k,k;)=(3,-2) with \,
~0.017. In other words the control field is of the form
N\, cos(2wgt) (=N, cos(4m) since ¢ is in units of the field
period 7) and, since \,>0, comes with a phase difference
of 7 relative to the driving field. Figure 4(e) shows that the
simplified control field is not just an out of phase contribu-
tion that acts to reduce the primary driving field strength
below the critical threshold for dissociation. Note that the
same dominant Fourier mode is observed (not shown) in case
of the control field used to create the 14772 barrier and
yields A, =~0.011. We remark at this juncture that the simpli-
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FIG. 4. (a) Primary driving field ev(J,, 0;1) with frequency wp
=0.0129 a.u. corresponding to the off-resonant case. (b) Control
field given by Eq. (20) designed to recreate the wg/{,=1+7v"" tori
located at J,=~ 13.8. (c) Leading order approximation to (b) given
by Eq. (24). Note that the classical control fields in (b) and (c) are
an order of magnitude smaller as compared to the primary field in
(a). In (d) the parameter Gy, x, 35 defined in Eq. (27) shows the
dominance (via circles with varying sizes) of the (k;,k;)=(3,-2)
Fourier mode. (¢) The simplified control field [\, cos(4 7+ ), tri-
angles] [see Eq. (29)] and the primary driving field [\, cos(277),
circles] as a function of time 7=/ 7, in units of the primary field
period 7. The sum of the driving field and the simplified control
field is also shown as a line (no symbols). Note that the simplified
control field is roughly a factor of 2 weaker as compared to the
driving field, in contrast to those shown in (b) and (c). See text for
discussion.
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fied control fields, for example as shown in Fig. 4(e), in both
cases have strengths which are a factor of 2-3 weaker than
the primary driving field. This is in contrast to the full or
leading order classical control fields which are nearly an or-
der of magnitude smaller as seen in Figs. 4(b) and 4(c). This
is clearly due to the fact that we are approximating the clas-
sical control field as f,,(0,1) =N, (k, ,k;)cos(k,wpt) in order to
obtain the simplified control field. Nevertheless, it is crucial
to observe that the simplified control fields are weaker than
the primary driving field and, in particular, Figs. 3(c) and 3(f)
show that the dissociation can be suppressed substantially by
an even weaker simplified control field corresponding to rec-
reating the 1+ 72 barrier. Interestingly, Wu et al. [27] in an
earlier work have suggested precisely the same control field
characteristics for suppressing chaos in the driven Morse sys-
tem. However, they were not clear about the mechanism for
the suppression and this work yields the necessary insight in
terms of the creation of local cantori barriers.

For further insights into the role and efficiency of the
cantori barriers toward controlling the dissociation dynamics,
in Figs. 3(a) and 3(b) the classical and quantum time-
averaged probabilities P, defined in Eq. (30) are shown.
Also shown in these figures are the approximate locations of
the cantori as thin vertical lines at the corresponding action
values J=J,. The classical P, in Fig. 3(a) show that the
probabilities fall rapidly in the vicinity of the rebuilt cantori,
especially in case of the 1+ cantorus. Consequently, dra-
matic reduction in the classical dissociation probability in
both the cases can be seen (circles) from Figs. 3(e) and 3(f).
It is possible to investigate more detailed aspects of the clas-
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sical phase space transport across the cantori, as done for
other systems [64,65], but we do not pursue them in this
work. Moreover, it is known that the driven Morse oscillator
dynamics near the separatrix can be analyzed from the per-
spective of a whisker map for which Maitra and Heller [65]
have already provided a detailed classical-quantum corre-
spondence of the transport across cantori.

A key issue that we are interested in this paper is whether
the quantum dissociation is sensitive to the classical phase
space barriers being rebuilt. Note that all the quantum calcu-
lations performed herein have Zi=1 and hence we are in the
“quantum regime.” Therefore, a priori one might anticipate
that quantum effects can override or ignore the changes in
the classical phase space. However, in this off-resonant case,
we see from Figs. 3(e) and 3(f) that the quantum results
(squares) exhibit clear reduction in the dissociation prob-
abilities [see inset to Fig. 2(a) for the entire range of field
frequency]. Analogous to the classical case, the 1+ 7> can-
torus is a stronger barrier to dissociation as seen by compar-
ing Fig. 3(e) with Fig. 3(f). The quantum time-averaged
probability P, ,, is shown in Fig. 3(b) and exhibits the ex-
pected suppression of probabilities for states lying around
and beyond the location of the classical cantori. Comparing
the quantum P, with the classical results shown in Fig.
3(a) we make a few important observations. First, the finite
probabilities for low lying Morse states (¢v=4) seen in the
quantum P, are strictly zero in the classical case. This is
due to dynamical tunneling through the classical KAM bar-
riers as proposed nearly two decades ago by Davis and Wyatt
[14]. Second, the quantum results exhibit oscillations beyond
the cantori barrier in contrast to the smooth classical decay.
We suggest that this is a manifestation of what Maitra and
Heller called “retunneling” in their study [65] of the whisker
map. Although the reconstructed cantori are perceived as
complete barriers by the quantum system, some of the quan-
tum states are able to tunnel efficiently across the cantori
since 7 is large, i.e., the quantum mechanism (enhancement
due to tunneling) dominates the classical (suppression due to
cantorus) mechanism. This might explain as to why the sup-
pression of quantum dissociation probability due to the 1
+v~! barrier is not significantly different from that due to the
1+ 772 barrier in contrast to the classical results.

Despite the comments made above, it is clear from Fig. 3
that the classical-quantum correspondence holds for local
phase space control in the off-resonance case. We now dis-
cuss the on-resonant case wherein such a correspondence is
not expected to hold.

B. On-resonance laser field

As mentioned in Sec. III, with the primary driving field
frequency value of w;=0.0178 the quantum system is in the
two-photon resonant regime involving the Morse states v
=10, 12, and 14. This is reflected in the quantum dissociation
probabilities shown in Fig. 1(d) as well as in the classical
phase space as a large 2:1 nonlinear resonance zone [cf. Fig.
2(b)]. Importance of this resonance, embedded in the chaotic
region between the unperturbed 1+7' and 2+ %! cantori,
was noted by Brown and Wyatt [15] as well as Dardi and
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FIG. 5. (Color online) Results for initial state =10 in the on-
resonant case wr=0.0178 a.u., with same notations as in Fig. 3,
showing the effect of creating local barriers wp/Q(J) =3 (green/
light gray) and wp/Q(J)=1+7y"' (red/dark gray). The respective
(0,J) phase spaces near the 2:1 resonance are shown in (c) and (d).
In (c) and (d) the angle 6 e (—r, ) but the action J € (6,16.5). As
in Fig. 3, the comparison of the uncontrolled and controlled disso-
ciation probabilities for cases (c) and (d) are shown in (f) and (e),
respectively. Note that in this figure the results corresponding to
wp/ Q)= V3 are obtained by retaining the (3,-2) Fourier mode
alone. See the discussion following Eq. (31) and Fig. 6 for details.

Gray [17] in an earlier work. Indeed, our computations (not
shown here) indicate that the Wigner function of state v
=12 is localized on the resonance with the Wigner functions
associated with v=10 and 14 straddling the resonance zone.
Such a situation is tailor made for the manifestation of
resonance-assisted tunneling in the system [47,56—58]. Com-
bined with the observation that the initial state of interest is
located right around the 1+~ cantorus [see Fig. 2(c)], one
expects significant competition between the quantum and
classical mechanisms for dissociation. Consequently, the
two-photon case provides a difficult challenge for the local
phase space control method.

In Fig. 5 we summarize the results of our attempts to
control the dissociation by creating the local barriers with
wp/ Q,~\3 (green/light gray) and wgz/Q,=1+7y"' (red/dark
gray). We did not attempt to create the 1+ 2 barrier since it
would be located much below the action (J=10.5) of the
initial state in the classical phase space. Results for the two
cases will be discussed separately in order to illustrate the
interplay between classical and quantum dissociation mecha-
nisms. Moreover, in the wy/{),~3 case, complications
arise in determining the simplified control Hamiltonian
which requires additional discussion.

Since Fig. 2(c) shows that the initial state is located in the
region corresponding to the 1+y~! cantorus we attempt to
rebuild the cantorus and Fig. 5(d) shows that the attempt is
successful. The simplified control field in Eq. (29) is of the
form \, cos(2wyt), corresponding to the dominant Fourier
mode F5_,, with A,=0.008 and hence, as in the previous
off-resonance case comes with a relative phase of 7. Robust
barriers have been created in the phase space with a local
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control field strength N, which is nearly four times weaker
than the driving field strength. The time-averaged probabili-
ties in Fig. 5(a) exhibit rapid decay in the vicinity of the
recreated barrier and the classical dissociation probability,
shown in Fig. 5(e), is reduced by nearly a factor of 2. Sur-
prisingly enough, Fig. 5(e) shows that the quantum dissocia-
tion is enhanced by a small amount consistent with the be-
havior of the time-averaged probabilities shown in Fig. 5(b).
The quantum result, in contrast to the off-resonance case,
indicates that both classical and quantum mechanisms are at
work in this instance.

On the other hand, attempts to create the wp/ (), =~ \3 bar-
rier pose a problem, associated with the simplification of the
control term Eq. (29), which was not encountered in the
previous examples. Interestingly, in this case two dominant
Fourier modes F5 _, and F _, are found with the correspond-
ing values G;_,=~0.029 and G,_,~0.024 [cf. Eq. (27)].
Taking into account only the marginally dominant (3,-2)
mode Fig. 5(c) shows that the desired local barrier is created.
Consequently, Fig. 5(f) shows that the classical dissociation
probability is, as in the case of the 1+ 7! barrier, reduced by
a factor of 2. Again one observes that the quantum counter-
part behaves in an opposite manner, i.e., the dissociation is
slightly enhanced. However, given that the Fourier mode
(4,-2) is nearly as dominant as the (3,-2) mode, it seems
reasonable to use an effective N\, in the simplified control
term of Eq. (29) as

A, = Fop | Fam (31)
Vi(J,) Vi)

Such a procedure yields A,=~—-0.015 and thus the control
field, still less intense than the primary field, comes with a
relative phase of zero. Nevertheless, such an attempt fails as
seen by inspecting the phase space shown in Fig. 6(c) which
exhibits increased stochasticity and, expectedly, leads to en-
hanced classical dissociation observed in Fig. 6(d). Now,
however, Fig. 6(e) shows that the quantum dissociation is
suppressed appreciably and hence it would seem as if the
quantum dynamics feels the barrier where there is none. Ar-
guments invoking the large finite value of # and dynamical
localization can be safely ignored since the phase space in
Fig. 6(c) does not show any appreciable stickiness near the
apparent barrier. The resolution to such an unexpected result
comes from a closer inspection of the phase space in Fig.
6(c). One can clearly see that the attempt to create the local
barrier has resulted in a severe perturbation of the 2:1 non-
linear resonance. As the additional Fourier mode (4,-2) im-
plies 2Q), =~ wp, the observed perturbation can be tracked to
the specific mode as long as it comes with an opposite phase.
This will be established in the following subsection [cf. Eq.
(38)]. Since this specific resonance is key to the two-photon
process, it should not be surprising that the quantum disso-
ciation is suppressed.

It is crucial to note that failure to create the barrier of
interest occurs only when the control term is mapped to the
simplified form as in Eq. (29) using the effective value for \,
shown above. This is confirmed by inspecting the phase
spaces shown in Figs. 6(a) and 6(b) associated with the full
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FIG. 6. Phase spaces (6,J), with e (-, ) as x axis, corre-
sponding to creating wg/Q(J)= V3 barrier in the on-resonant case
with (a) full leading order control term [cf. Eq. (24)], (b) retaining
two dominant Fourier modes [cf. Eq. (32)], and (c) simplified con-
trol term [cf. Eq. (29)] using both Fourier modes and effective
strength A, obtained from Eq. (31). In (a) the size of the black
square represents =1. The rebuilt KAM torus can be clearly seen
in (a) and (b) around the region J=10.5 (thick line). However, in (c)
it is clear that the intended barrier is not created. In (c) the pertur-
bation of the 2:1 resonance is indicated by an arrow. Panel (d)
shows the classical dissociation probabilities corresponding to (b)
dashed line and (c) open circles as compared to the uncontrolled
case (filled circles). Panel (e) shows the quantum dissociation prob-
ability corresponding to (c) open squares as compared to the uncon-
trolled case (filled squares).

O(é€®) control Hamiltonian [see Eq. (24)] and the approxi-
mate Hamiltonian

H.(J,0,t) = H(J,0,0) + >, F,_5cos(nf—2wt), (32)
n=3,4

obtained by retaining only the dominant Fourier modes in the
control term. The recreated barriers in the phase space can
now be clearly seen and Fig. 6(d) shows that the classical
dissociation computed using the Hamiltonian in Eq. (32) is
indeed suppressed. Clearly, the opposing classical and quan-
tum results in this subsection, with the associated phase
space structures, point to the importance of the quantum dis-
sociation mechanism in the on-resonant case. In what fol-
lows we show that these observations can be rationalized
based on the phenomenon of resonance-assisted tunneling.

1. Dissociation via resonance-assisted tunneling

In order to confirm the above arguments and to gain a
better understanding of the results shown in Figs. 5 and 6 for
the dissociation of the state v=10 we focus on the role of 2:1
resonance within the paradigm of resonance-assisted tunnel-
ing. Following the earlier works [56-58], the motion in the
vicinity of a r:s resonance is analyzed by applying secular
perturbation theory on the uncontrolled Hamiltonian in Eq.
(6) and for details we refer the reader to the original work
[56]. First, a canonical transformation to the appropriate
slow angle 60— ¢=60-Q,.t,J—J is made resulting in the
new Hamiltonian
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H(J’¢’t)=HO(J)_Qr:sJ+ ‘7(]’¢’t)’ (33)

where V(J,$,0)=V(J,$p+Q,.7,1) and we have denoted
V(J,0,1)=-ev(J, 6;1) [cf. Eq. (8)]. We now expand H, in
Eq. (33) about the resonant action J,.; to obtain the zeroth-
order Hamiltonian in the vicinity of r:s of the form

~ ~ 1
HO(J) = HO(Jr:s) +

(AJ)?, (34)

r.s

with AJ=J-J,., and mmE—2D0/w§. Since, ¢ varies slowly

near r:s, \7(J ,p,1) is replaced by its average over r field
periods

VI, ) = VLT f " V(J, é,0)dt = N, >, V,(J)cos(nrd).
0 n=1

(35)

Ignoring the higher harmonics in the above expression and
neglecting the action dependence of the Fourier coefficients
V,, we obtain an effective (integrable) pendulum Hamiltonian

1 ~
Heff(‘]a d)) = ZT(AJ)Z + 2Vr:s(Jr:s)COS(r¢)a (36)

r.s

to describe the dynamics near the r:s resonance with 7i,.
=-m,, and V,(J)=€V,(J)/2.

Specializing the above result to the observed 2:1 reso-
nance, the resonant action is determined to be J,.;=12.6, thus
confirming the participation of the Morse state v=12. Using
the zeroth-order Hamiltonian in Eq. (36) one finds, with J
=10.5 (quantum state »=10) and J'=14.5 (quantum state
v'=14), that

1

2:1

|E,—E;|= (J=INJ+J =2J5,) | =3.2X 107,

(37)

i.e., the states v=10 and v=14 are nearly symmetrical with
respect to the state v=12 localized on the 2:1 resonance
[47,56]. Therefore, the nonzero coupling V,.; will efficiently
connect the states ¥=10 and v=14. Moreover, it is possible
to estimate the strength of the resonance for the given pa-
rameters as V5. (J,.;) =0.01464. It is crucial to note that the
effective control field coupling strength from Eq. (31) in case
of wp/Q,= /3, i.e., relevant to the phase space shown in Fig.
6(c) satisfies

Ny ==V (Jn). (38)

Thus the control field with a zero relative phase tends to
negate the effect of the 2:1 resonance generated by the pri-
mary driving field and this can be clearly seen in Fig. 6(c).
We also remark here that the substantial quantum dissocia-
tion probability seen in Fig. 6(e), despite the strong pertur-
bation of the 2:1 resonance, is due to the higher harmonics
which have been neglected in the present analysis. This con-
firms our suspicion that the decay of state v=10 in the two-
photon regime is dominated by resonance-assisted tunneling.
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FIG. 7. Effect of the local barriers on the dissociation probabil-
ity of nearby states, specified by v, at t=5007. (a) and (b), with
off-resonance wy=0.0129 a.u., correspond to the creation of the
1+ ! and 14772 barriers, respectively. Panels (c) and (d), with
on-resonance wp=0.0178 a.u., correspond to the creation of the 1
+v~ ! and \3 barriers, respectively, with fixed field strength as in the
previous figures. The uncontrolled results are shown as filled sym-
bols, classical (circles) and quantum (squares), while the controlled
results are shown as corresponding open symbols. The lines are
drawn as a guide for the eyes.

C. Are the rebuilt barriers local?

Up until now most of our results and discussions have
focused on a specific initial Morse state. The barriers were
created locally in phase space to influence the dissociation
dynamics of the state »=10. From a control point of view, it
is of some interest to examine the effect of such barriers on
the dynamics of other states, especially states that are in the
vicinity of state v=10. In other words, how local are these
barriers? Toward this end, in Fig. 7 we show the influence of
the local barriers on the dissociation probabilities of other
nearby Morse states with v>10. At this stage it is useful to
recall the results shown in Fig. 1 with the essential differ-
ences between the off-resonant and on-resonant cases. The
effects of the 1+~ and 1+ 772 barriers in the off-resonant
case, located around J,~13.8 and 12.0, are shown in Figs.
7(a) and 7(b), respectively. These figures confirm that to a
large extent the barriers are indeed local, i.e., dissociation is
suppressed to varying extent for initial states lying below the
barrier. For states lying above the barrier, dissociation is ei-
ther enhanced (mostly in the quantum case) or slightly re-
duced.

On the other hand the quantum results for the on-resonant
case, shown in Figs. 7(c) and 7(d) for the 1+y! (J,=9.9)
and V3 (J,=10.9) barriers [corresponding to Fig. 5(c), i.e.,
with only the (3,-2) Fourier mode included] respectively,
are far less straightforward to interpret. This is not entirely
surprising since, as shown in the last section, resonance-
assisted tunneling plays an important role and overrides the
suppression due to the local barriers. In particular, the disso-
ciation probabilities for states »=10 and v=14 increase very
slightly. However, for the states v=11 and v=13, not in-
volved in the resonance-assisted tunneling process, one ob-
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serves substantially reduced dissociation despite being lo-
cated far above the local barriers. We suspect that this is due
to the increased stickiness around the 2:1 resonance region
observed in the controlled phase spaces shown in Figs. 5(c)
and 5(d). Note that this is corroborated by the observation
that the concerned states also exhibit reduced classical dis-
sociation as seen in Figs. 7(c) and 7(d). Further confirmation
comes from our calculations which show an opposite quan-
tum trend to that of Fig. 7(d) upon inclusion of the (4,-2)
Fourier mode as well resulting in the phase space shown in
Fig. 6(c). It is possible to implicate, albeit indirectly, the
local barriers with the observed suppression since creating
the barriers leads to a more regular phase space, slightly
increased size of the 2:1 resonance region, and therefore in-
creased stickiness. Nevertheless, comparing the off-resonant
and on-resonant cases shown in Fig. 7, it is evident that the
effects of creating local phase space barriers can be far more
subtle to interpret in the latter case.

VI. CONCLUSIONS

To summarize, this work demonstrates that it is possible
to control the dissociation dynamics of a driven Morse oscil-
lator by creating local phase space barriers. A clear under-
standing of the effect of cantori on both classical and quan-
tum dissociation dynamics is obtained [see inset in Fig. 2(a)
for example]. This work also highlights the essential differ-
ence between off-resonant and on-resonant dynamics with
resonance-assisted tunneling playing a prime role in the lat-
ter case. Although local phase space barriers are very effi-
cient in reducing the dissociation in the off-resonant case, the
results in Figs. 5 and 6 suggest that controlling the quantum
dissociation in the on-resonant regime can be achieved by
using control fields which selectively perturb the appropriate
nonlinear field-matter resonance. Similar observations have
been made earlier in a different context [58] and further stud-
ies are required to establish a general criteria for controlling
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the multiphoton processes from the viewpoint of local modi-
fication of the phase space structures.

Several questions, however, remain to be addressed and
we mention a few important ones. First, there is the issue of
the effectiveness of the local barriers in systems with more
than 2 degrees of freedom since the invariant tori do not have
the correct dimensionality to partition the phase space. How-
ever, there are reasons to hope that even for systems with
higher degrees of freedom the rebuilt tori can act as barriers
for short times [66]. A careful study of the classical and
quantum transport with and without the control fields is re-
quired in this instance. Apart from polyatomic molecules,
this is also important while considering the infrared multi-
photon dissociation dynamics of a Morse oscillator by ex-
plicitly taking into account the rotations [67,68]. Second, one
would like to extend the approach to systems under the in-
fluence of more general time-dependent fields, e.g., chirped
fields. For slow chirping this should be feasible as one can
then utilize the concept of adiabatic Floquet theory [69]. In
case of arbitrary time-dependent fields the correct approach
is not clear at the present moment. Third, the method used in
the present and earlier works is dependent on our ability to
express the Hamiltonian in terms of appropriate action-angle
variables. This might pose some limitations which, as seen in
the present work, can be more severe in terms of implement-
ing the control into the quantum dynamics. Finally, for sys-
tems with small effective 7, the resonance-assisted tunneling
mechanism will be replaced by chaos-assisted tunneling [70]
and it would be interesting to study the influence of the can-
tori barriers in this context. These issues are the focus of
ongoing work in our group.
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