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High-order above-threshold ionization beyond the first-order Born approximation
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In the improved strong-field approximation, which describes high-order above-threshold ionization (HATI),
the rescattering of the ionized electron on the parent ion is described within the first-order Born approximation.
The low-frequency approximation for laser-assisted scattering goes beyond the first Born approximation. In the
present paper, we derive the low-frequency approximation for HATI. The rescattering amplitude in the first
Born approximation is replaced by the exact scattering amplitude calculated on the energy shell. Our numerical
results for the angle-resolved HATI energy spectra show that the difference between the improved strong-field
approximation and the low-frequency approximation is significant for scattering away from the laser polariza-
tion axis. In the context of quantum-orbit theory and the uniform approximation, we also show that on the
back-rescattering ridge, the rescattering 7-matrix element can be factorized into the product of the incoming
flux and the elastic-scattering cross section so that the latter can be extracted from the angle- and energy-

resolved HATT spectra.
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I. INTRODUCTION

High-order above-threshold ionization (HATI) of atoms
and molecules by an intense laser field is a nonperturbative
quantum-mechanical phenomenon where the ionized elec-
tron absorbs many more photons than the minimum number
necessary for ionization. The electron energy spectra of this
process are characterized by three regions. The low-energy
part of the spectra extends up to (3-4)U,, with U, the elec-
tron’s ponderomotive energy in the laser field, and decreases
exponentially with increasing energy. It is followed by a pla-
teau where the ionization yield is almost independent of the
electron energy. The plateau finishes with a cutoft at 10U,
The low-energy electrons are called the direct electrons since
after ionization they are not affected anymore by the atomic
binding potential and go directly to the detector. In the
present paper we will be interested in the high-energy elec-
trons, which acquire their high energy from the laser field
after they have been rescattered off the binding potential. To
be specific, the ionized electron is accelerated by the laser
field and may revisit its parent ion, having a kinetic energy of
up to 3.17U,,. This electron may backscatter off the ion and
again be accelerated by the laser field reaching a kinetic en-
ergy of up to 10U, (this explains the 10U, cutoff law). The
rescattered electrons form the above-mentioned plateau
whose yield is lower by several orders of magnitude than the
yield of direct electrons. The number of publications devoted
to the HATI process is large. We will be contented with
mentioning the review articles [1-4].

Recently, with the development of attosecond science
[4-7], the HATI process has attracted more attention.
Namely, HATI induced by femtosecond infrared lasers un-
folds on the subfemtosecond time scale. Furthermore, the
effective current density of the returning electrons is much
higher than that of electron beams from conventional labo-
ratory electron sources [7,8]. Therefore, the HATI electrons
can be used to study atomic and molecular structures as well
as to follow and control chemical and biological reactions
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which develop on this time scale. The possibility to use laser-
induced electron-diffraction spectra for imaging molecules
was suggested in [9] (see also [10-12] and the recent review
[13]).

Present computer facilities allow one to study ab initio
only the very simplest systems such as He and H,". HATI of
more complex atomic and molecular systems is studied by
solving the time-dependent Schrodinger equation within the
single-active electron approximation using carefully chosen
effective potentials. Even these calculations are time con-
suming and not adequate for the simulation of real experi-
ments. Models, such as the above-mentioned three-step
model, and approximate theories are more suitable for this
purpose. Furthermore, from such theories the physics of
atomic and molecular processes in strong fields can be better
understood. Arguably, the strong-field approximation (SFA)
is the most successful theory of this kind. It was originally
formulated for the direct electrons [14]. Once the electron
has entered the continuum it is assumed only to feel the laser
field and not the atomic or molecular binding potential. It is
then described by the so-called Volkov state (the state of a
free electron in the laser field which is known in analytical
form). Later on, the SFA theory was generalized to approxi-
mately include the interaction with the binding potential.
This has been done in the fashion of a Born series whose
zeroth-order term yields the direct above-threshold ioniza-
tion, while the terms of the first order in the binding potential
enable rescattering. This is the so-called improved SFA
(ISFA). Its various versions were presented in [15-19] (see
also the review articles [2—-4] and the more recent Refs.
[20-23]; the name SFA2 was suggested in [24]). The ISFA
for molecular systems was recently introduced in [11].

It is clear that the ISFA can only be trusted to the extent
that the first-order Born approximation (1BA), on which it is
built, is reliable. This depends on the energy of the rescatter-
ing electron and the shape of the scattering potential. The
1BA is exact for a Coulomb potential but not in general.
Especially, it is not exact if the potential includes a short-
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range contribution, as is the case for optimized effective one-
electron potentials. Hence, if we want to “improve” the ISFA
we have to go beyond the first Born approximation for the
laser-assisted rescattering in the third step of HATI. Such a
procedure was suggested by Lin and co-workers [25,26].
They introduced the concept of the back-rescattering ridge
(BRR; see also [24]) in the momentum spectrum. The BRR
is formed by those electrons that return to their parent ion
with close to maximal kinetic energy (approximately 3.17U,)
and are rescattered into the backward cone. By comparison
to numerical solutions of the time-dependent Schrodinger
equation, Lin and co-workers [25,26] showed that the yield
of photoelectrons with momentum p can be represented as
the product of the elastic differential cross section o(p,,6,)
for scattering of a free electron with energy pf/ 2 by the
scattering angle 6,, and the factor F(p,) which describes the
flux of the returning electron wave packet with momentum
near p, (it was shown that it does not depend on 6, for 6,
> 120°),

R(P)=F(Pr)0'(17r,9r)- (l)

Here p=p,—A, is the momentum at the detector, with A,
= A(z,) the vector potential of the laser field at the time of
rescattering, and p,=v3.17/2A,,x=1.26A,,,x, Where A, is
the amplitude of the vector potential. In Refs. [25,26], the
factorization property (1) was presented as a plausible con-
jecture and no theoretical derivation from the HATTI transi-
tion amplitude was given. Nevertheless, this approach was
successfully used to extract the differential cross section for
elastic electron scattering off positive ions of inert gases
from the experimental HATT data in Refs. [27,28].

In the present paper we will derive a SFA-type theory that
goes beyond the ISFA. Laser-assisted potential scattering
was treated within the 1BA in Ref. [29]. A step further is to
treat the laser-assisted scattering using the so-called low-
frequency approximation (LFA) which includes the 1BA as a
special case. The LFA for laser-assisted electron-atom scat-
tering was introduced by Kroll and Watson [30]. More de-
tails can be found in the book [31] and in the review article
[32]. We will use the so-called off-shell LFA [33,34], which
can be approximated by the on-shell LFA [35,36].

We introduce our theory in Sec. II. We first review the
improved SFA theory in order to introduce the notation. Our
low-frequency approximation for HATI is given in Sec. II B
(details of the derivation are relegated to Appendix A). In
Sec. I C we will derive, using the LFA and quantum-orbit
theory, the factorization property (1) for the rescattering ma-
trix element along the BRR. In Sec. IID we present the
details of the (re)scattering geometry and estimate the maxi-
mal electron momenta and energies. Section III contains our
numerical results. Finally, our conclusions are given in Sec.
IV. We will use the atomic system of units (A=e=m=4mg,

=1).
II. THEORY

A. Improved strong-field approximation

Our starting point is the transition matrix element from
the initial bound state |¢4,(1')) to the final state [1),(r)) of the
electron having the asymptotic momentum p
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Myi(t.1") =Y (D)|U(t.1")|4s(1")) . (2)

The total time-evolution operator U(z,t") of the Hamiltonian
H()=Hy+V,;()+V(r), Hy=-V?/2, V=4/dr, satisfies the
Dyson equations

t

U(t,t’)=Uv(t,t')—if dtU(t, DV, (nU/7t"), (3)

'

Ut,7)=U(t,7) - iJ d7U(t, 7 )V(r)U (7, 7). (4)

The evolution operator Uy (U;) corresponds to the Hamil-
tonian Hy=Hy+V (H,=H,+V;), where V,(¢) is the laser-
field—electron interaction, while V(r)=Vq(r)+Vy(r), where
Ve(r)==Z/r is the Coulomb interaction and V¢(r) is a short-
range interaction. If the laser-field—electron interaction is
chosen in length gauge and dipole approximation, V,(r)
=r-E(z), with E(t)=—dA(t)/dt the electric field vector, then
the Volkov time-evolution operator is given by

Upe.t') = f )
X)) = [k + A())exp[- S (1], (6)
dsi(n) _1 ,
P Slk+AQF, (7)
where |q) denotes a plane-wave state (r|q)

=(2m) ¥ 2exp(iq-r).

We consider an ionization process in which the interaction
with the laser field is turned off at the times ¢ and ¢’ so that
the states |;(1'))=| e E" and (1) =|thp)e™Ev" are mutu-
ally orthogonal eigenstates of the Hamiltonian Hy with the
eigenenergies E;<<0 (atomic binding energy) and E,= p?/2,
respectively. Introducing Eq. (3) into Eq. (2) and replacing in
the resulting equation the operator U(z,7) with Eq. (4), we
get

Myi(t.1") =M (t.1") + MG (1.1), (8)

My (1) = =i j ARG O|ULEDVD(D), )

M)(,t') = (- i)? f dr f d7 (g (0| U1, ")

X V@)U, )VL(D|h(7). (10)

By now no approximation has been made. If in Eq. (9) we
approximate (;,(1)|U,(, 7) with (x,,
state that corresponds to the electron having the asymptotic
momentum p outside the laser field, we obtain the standard
direct SFA in its length gauge version [14]

My = My (e, — ), (11)
MO (1.1') = f dTM(7), (12)
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MEO(7) = = ixp(D)]r - E(0)] (7). (13)

Using this notation and Eq. (5) we can write
M1 = f dr f PRMI (DM (t,7),  (14)
with
1
Mpk(t,r)z—if dT’(z//p(t)|U(t,T’)V(r)|)(k(7")>. (15)

If we replace in Eq. (15) (¥,
obtain the ISFA mentioned in Sec. I

MR = MO 4 M3 (o0, o), (16)
with
1
M (11') = f dff FRM(7) f dr MR(7),
t!
(17)
where
MWQUT) == ilxp(T)IVE) (7)) (18)

is the amplitude for the laser-assisted scattering in the first
Born approximation [29]. The term MIS)IF A (£,1") is the res-
cattering amplitude, which is responsible for the high-energy
plateau in the electron energy spectrum. This amplitude in-
corporates the three-step model of HATT: the electron is ion-
ized at the time 7, accelerates under the influence of only the
laser field until the time 7', when the electron, being in the
Volkov state with the momentum K, (re)scatters elastically
off the potential V(r), and reaches the detector having the
final momentum p outside the laser field.

B. Low-frequency approximation

In the present paper we want to go one step further and to
include the rescattering effects beyond the 1BA (18). To this
end, it is suggestive to make the replacement

(0)( ) LFA(T ) -~ l<Xp(T )|TV(Ep+A(T )|Xk(7 )>
(19)
Here,
T\(E)=V+VGWE)V (20)

is the exact 7 matrix for elastic scattering at the energy E off
the potential V(r), and

GWE)=(E+ies—Hy))™"', £—0" (21)

is the stationary Green’s operator in the absence of the laser
field.

The new expression (19) describes scattering of a Volkov
electron incident with drift momentum Kk [velocity v(7')
=k+A(7') at the time of collision] into a final Volkov state
with drift momentum p. Therein, the interactions of the elec-
tron with the scattering potential and with the laser field are
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well separated. First, the electron interacts with the laser field
but not the potential, then the laser field is turned off while
the electron interacts with the potential and changes its drift
momentum from k to p, and finally again the electron propa-
gates in the presence of just the laser field. This approxima-
tion to the full time-dependent dynamics should be justified
if the laser-driven velocity changes only little while the elec-
tron passes over a distance of the order of the range of the
potential. This is particularly well satisfied for comparably
high energy and long laser wavelength. The right-hand side
of Eq. (19) can be re-expressed in terms of the stationary
solution |¢p+A(Tr)> of the Hamiltonian Hy so that

Ko TUEpea ) xac(7)) = €50y (o) [ VO xi(7)).
(22)

A more rigorous derivation of Egs. (19) and (22) can be
found in Appendix A.

For a periodic laser field with the period T=2m/w, the
transition amplitude can be decomposed in the form [3,21]

Mls)fA(i) —_ - nw) T‘]S)fA(/)(n) ,

2mi Y, JE,~Ei+ U,

n

(23)

where T‘ls)l}-:Ao)(n), j=0,1, is the corresponding T-matrix ele-
ment of the above-threshold ionization process. The argu-
ment of the & function displays energy conservation and U,
is the ponderomotive energy defined by the nonperiodic part
of %f’dt’Az(t’)=L{1(t)+Upt, with U,(t+T)=U,(r). For more
details and the choice of the ground-state wave function ;
for the inert gases He, Ne, Ar, Kr, and Xe, and the negative
ions H™, F~, CI", Br", and I", see Refs. [20,19], respectively.
A similar expression can be obtained for the off-shell LFA
transition amplitudes. In this case, the corresponding
T-matrix element is given by

T M) =i f f d3kJ 7 MMM (7).
(24)

Finally, the differential ionization rate with absorption of n
photons in the LFA is given by

WHA ) = 2p| TSFAO () + A2, (25)

The five-dimensional integral over 7, 7, and k in Eq. (24)
can be solved numerically. This gives our off-shell LFA, or
shortly LFA, for the rescattering matrix element. However,
we will normally use the saddle-point approximation for the
evaluation of the five-dimensional integral. The terms in the
exponent in the T-matrix element (24) can be combined into
the action

S(7,7,k) =Sp(7') = Sp(7') + Si(7) - E;7, (26)

with the partial actions defined in Eq. (7). The integral over
time 7’ in Eq. (15) gives the largest contribution if the action
is stationary, i.e., if d5/d7' =0. This stationarity condition
leads to the following equation for the rescattering time 7':
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Jp+ AG)P= STk + AT @)

This means that (re)scattering at the time 7' is elastic: the
electron energy in the laser field at the time 7’ is equal before
and after scattering. Equation (A6) with the condition (27) is
the analog of the on-shell LFA in laser-assisted potential
scattering [33-36]. The corresponding on-shell LFA for
HATT is obtained by solving the integral over the rescattering
time 7' using the saddle-point method. The result is

TLFAD) () =-ifT d—TJ FKS | —T
o 7] N Uy B

X (Yoo | V) [k + A7)

X(k +A(De - E(D)|yp)e’Sm0 (28)

where the saddle-point solutions for the time of rescattering
7. satisfy Eq. (27). The result (28) is our on-shell LFA for the
rescattering 7-matrix element.

The off-shell and on-shell LFAs for electron-atom scatter-
ing were considered in Ref. [33] using the [1,1] Padé ap-
proximation, for which the matrix elements are given in ana-
Iytical form. For the on-shell LFA, one can also use
numerical solutions for the elastic-scattering amplitude, tak-
ing into account that ¢, is the solution of the stationary
Schrodinger equation Hy i, =E},¢,. As we have mentioned, a
similar procedure was realized in Refs. [25,26]. In Appendix
B, we present a method for the calculation of the scattering
amplitude.

C. Saddle-point method and the factorization formula for the
rescattering matrix element along the BRR

Application of the saddle-point method to the five-
dimensional integral in Eq. (24) (see the review articles [2,4]
for its standard [2] and modified [4] versions) yields

Tyisom(n) = 2 (Ypeai| VD[, + A (7))

X A7, 7 K,)e Sk (29)

where we have explicitly separated the rescattering part of
the amplitude, denoting the remaining part by A(7,, 7. k).
The saddle-point solutions, labeled by the index s, are simul-
taneous solutions of the system of equations dS/d7=0,
dS/d7' =0, and dS/dk=0. The classification of these solu-
tions, in the context of quantum-orbit theory, is given in
Ref. [21] by the multi-index s={aBm}, a=*1, B==*1,
m=0,1,2,.... For each electron emission angle 6, near the
cutoff energy two solutions of one pair @=*1 approach
each other very closely. The highest cutoff energy corre-
sponds to B=-1 and m=0 and is well separated from the
closest Bm=-—11 cutoff. This is valid for all scattering
angles 0 (see Fig. 4 in [21]). For example, for Xe atoms
(E;==12.13 eV) at the laser intensity 1.5X 10'* W/cm? and
wavelength 760 nm, we have E, ,(60=0;Bm=-10)
=10.76U,, while Ej, ,,x(6=0;Bm=-11)=9.03U,,. For 6=0,
all solutions with B=+1 have their cutoff energies below
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8U,, while the other solutions for B=-1 have their cutoff
between 8U,, and 9.03U,,. For the cutoff at #=0 the approxi-
mate semiclassical analytical formula [37] E, .x(6=0)
=10.007U,-0.538E; is valid. For the above Xe example we
obtain E, ,,«(6=0)=10.81U, which is very close to the
value of 10.76U, obtained numerically.

The above result is important in the context of the BRR.
Namely, for E,(60)> Ep 4x(60; Bm=~11) only the two solu-
tions s;={+1-10} and s,={-1-10} contribute to the sum in
(29). Near the cutoff, the shorter-orbit (a=+1) and the
longer-orbit (a=-1) solutions merge into one (described by
the uniform approximation in [21]). Therefore, for high-
energy electrons along the BRR the rescattering matrix ele-
ment can be factorized as

TER(n) = - (2m) 2 f(p,, ) AW, (30)

ASEA(Tst,’ks)s d).vESky(Tv)_EiTv_Eks(wT;
—tan 7))/ ®, @,(7,)=Ey(w7,—tan o)/ w, s=s(Bm=-10),
and f(p,, 6,) is the scattering amplitude for elastic scattering
of a free electron with energy p?/2=(p+A,)%/2
=(k,+A,)?/2 into the scattering angle 6, by the ion de-
scribed by the potential V(r) (see Appendix B). Here A;
=A(7]) is the vector potential at the time 7, where the two
solutions s; and s, merge. This time, together with the cor-
responding value of E, ,,.(8; Bm=~10), can be determined
using the method described in Ref. [21]. In Eq. (30) we have
explicitly separated the phase ¢,(7,) (note that its imaginary
part is small since Im 7, <Re 7/), which changes quickly
with the momentum p since E,/  is large. The amplitude A,
and the remaining phase ¢, depend only slowly on the mo-
mentum p and the angle 6, since the saddle-point solutions
change only slightly near the corresponding cutoff. From
Egs. (29) and (30) it follows that the rescattering differential
ionization rate takes the form

where

p
@2m)’

BRR —

(A Po(p,. 6), (31)

where

a(py.0) = [f(pys 0)]* = Q) |y V(D) ks + A
(32)

is the differential cross section which corresponds to the am-
plitude f(p,, 6,). Equation (32) allows us to extract the dif-
ferential cross section from the observed HATI spectrum (see
the examples in Sec. III). Furthermore, using Eq. (30) for the
phase of the scattering amplitude we obtain

TorR(n) - @,(7). (33)

where we have neglected the phase of A,e'?s since it contrib-
utes only as a constant. Therefore, knowing the saddle-point
solutions along the BRR we can also determine the phase of
the elastic-scattering amplitude provided we know the phase
of the rescattering 7T-matrix element. Unfortunately, the latter
cannot be retrieved from experimental HATI data. Hence, we
will only use the phase relation (33) as a consistency check.
This will also be illustrated in Sec. III.

arg f(p,, 6;) = arg
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FIG. 1. (Color online) Two possible geometries of the (re)scat-
tering event. For negative values of k,+A, (upper panel) the scat-
tering and laboratory systems have opposite z axis so that 6,=¢
—r. For the lower panel these systems overlap so that 6,=¢.

D. Geometry of (re)scattering and estimate of the maximal
electron momenta

We suppose that the laser polarization is along the z axis,
é,=2, and that the rescattering takes place in the zx plane.
The final (drift) electron momentum at the detector is p
=(p.,p)=(p cos 0,p sin 6), while the electron momentum
immediately after the rescattering is p,=(p, cos @, p, sin ¢).
The ratio of the z component and the x component of the
relation p=p,—A; yields the following connection between
the scattering angle ¢ at the instant of rescattering and the
observed scattering angle 6:

4 . (34)

t f=cot p— ————
corv=cote |k, + A,|sin ¢

Analogously, we can express the angle ¢ through the angle 6
by the relation

tan @ = Lﬂe (35)

pcos O+A;

Both the angle 6 and the angle ¢ are defined in the laboratory
system. However, the scattering angle 6, in Egs. (31) and
(32) is defined in the scattering system whose z axis is de-
fined by the vector k+A,, which can be in the direction of
the polarization axis of the laser field (in this case we have
ks+A,>0 and 6,=¢) or in the opposite direction (k,+A;
<0 and 6;=¢—m; we consider the angles in the counter-
clockwise direction as positive—see Fig. 1).

The incident electron momentum in the laser field just
before the elastic rescattering at the time 7,=Re 7, =Re 7
is k,+A, and the corresponding electron kinetic energy is
E,=(k+A,)%/2=p?/2. In Refs. [24-27] it was estimated
that p,=1.26A, using the classical result that the maximal
energy of the returning electron is 3.17U,, ([38—40]; see also
Sec. I1I in the review article [2]; for the few -cycle laser-pulse
case, see [4]). Also, it was supposed that E,=3. 17Ue” with
Ueff Az/ 4. Having developed our quantum- orblt theory, we
are able to give a better estimate of this energy. In principle,

PHYSICAL REVIEW A 79, 033413 (2009)

0.5

0 (degrees)

FIG. 2. (Color online) Maximal electron kinetic energy E; at the
time of rescattering (left ordinate—black solid line) and the corre-
sponding rescattering time 7, (right-hand ordinate—red dashed
line) as functions of the scattering angle 6. HATI of Xe atoms by
the laser field having the intensity 1.5 X 10'* W/cm? and the wave-
length 760 nm is considered.

the energy E, and the vector potential A,=A(7,) depend on
the scattering angle 6. This is shown in Fig. 2 for the param-
eters of the above-mentioned Xe example. The maximum
energy slowly increases from 3.48U, for 6=0° up to a maxi-
mum 3.68U, for §=68° and then decreases to 3.43U, at 6
=90° (for an infinitely long pulse the symmetry upon
60— 180° = @ is valid, so that we present only the results for
0°=6=90°) [41]. The rescattering time starts slightly be-
low T/2 (T is the period of the laser field) and slowly de-
creases with the increase of 6.

Let us denote A,=A (#=0) and draw a semicircle in the
(p..py) plane with radius p,=|pn.(6=0)+A,| and center lo-
cated at —A,. The angle 6, changes from —180° to 0° (this
case corresponds to the upper panel of Fig. 1). From Fig. 3
we see that this semicircle for large scattering angles agrees
very well with the blue (solid) curve (pp.(6)cos 6,
Pmax(0)sin 6), where pl. (0)/2=E, ,(0; fm=-10) is ob-
tained solving the system of the saddle-point equations. In
this context, the simple analytical formula [37]

Ep max(0=0) = 10.007U,, - 0.538E,
and
AJAg=cos o7, =~ -1 (36)

can be used as a good approximation.

FIG. 3. (Color online) Maximal photoelectron momenta pre-
sented in the (p,,p,) plane. Blue (solid) line: results for the drift
momentum p obtained using the saddle-point method. Green line:
vector potential A, at the rescattering time which corresponds to the
maximal drift electron energy for scattering angle 6=0. Red dashed
line (semicircle) is determined by the vector p,, defined in the text.
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FIG. 4. (Color online) Ionization rates of Ar presented in false
colors in the (p,,p,) momentum plane. The laser intensity and
wavelength are 2.3 X 10'* W/cm? and 800 nm, respectively. The
upper (lower) four panels are obtained using the first Born approxi-
mation (low-frequency approximation) for the rescattering matrix
element. Each panel is denoted by the maximum number SBm used
in the sum over the saddle-point solutions in the uniform
approximation.

It is well known that many more saddle-point solutions
contribute and that their interference gives complicated spec-
tra ([20,23] and references therein) and, for long pulses,
leads to resonantlike enhancements [21,22]. Even in the cut-
off region two solutions contribute. Nevertheless, as we have
mentioned in Sec. I, the simple factorization formula (31)
works well and is in accordance with the experiments
[27,28]. 1t should also be mentioned that our definition of the
cutoff as the approaching point of the solutions s, and s, is
slightly beyond the point of the maximal yield. This means
that our cutoff corresponds to the outer semicircle of the
BRR.

III. NUMERICAL RESULTS

We calculate the ionization rates using the uniform
approximation as described in Sec. IID of Ref. [21]. In
Figs. 4 and 5 the ionization rates (in atomic units) of Ar
(E;=-15.76 eV) by a laser field having the wavelength 800
nm and the intensity 2.3X10'* W/cm? are presented in
false colors in the (p,p,) plane or in the (6,E,) plane. The
scale is log,o and the color bar (not shown) covers the range
from —4 to -2, i.e., 2 orders of magnitude. All values below
and above this range are set equal to the limits —4 and -2,
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1BA LFA

E U

0 (degrees)
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FIG. 5. (Color online) Ionization rates of Ar presented in false
colors in the electron emission angle-energy plane. The final elec-
tron energy is in units of the ponderomotive energy U,. The laser
parameters are as in Fig. 4. Ten pairs of quantum orbits are taken
into account. The left (right) panel corresponds to the results ob-
tained using the first Born approximation (low-frequency approxi-
mation) for the rescattering matrix element.

respectively. The angle 6 changes from 0° to 50°. The energy
starts slightly above the ionization energy —E; and goes be-
yond the cutoff for the corresponding angle 6. In the uniform
approximation the pairs of orbits having a=-1 and a=+1
are unified. Figure 4 shows the rates in the momentum plane.
The upper left panel presents the rates obtained using only
the pair a=* 1 with B=—1 and m=0 (see Fig. 1 in [21] for
the classification of orbits). This is the pair of orbits with the
shortest “travel time,” which is the time between ionization
and rescattering. This result is labeled by Sm=-10. The up-
per right panel in addition includes the contribution of the
pair (a= = 1) of the two next-to-shortest orbits, which in our
nomenclature are labeled by Bm=11. Note that the contribu-
tions of the pair Sm=11 are not displayed separately but
added with their proper phases as demanded by Eq. (29) to
those of the shortest pair Sm=—-10. This panel is labeled by
11. The next panel in row, identified by Sm=12, includes the
contributions of the four pairs: Bm={-10,11,-11,12}. Fi-
nally, the panel labeled Sm=15 includes the ten pairs that are
listed in Table I whose last member is 15. The results pre-
sented in Fig. 5 in the angle-energy plane include contribu-
tions of these ten pairs. The upper four panels of Fig. 4 are
obtained using the 1BA for the rescattering matrix element,
while the lower four panels are based on the LFA, which
takes into account the exact elastic rescattering amplitude.
Figure 5 presents the same data in the angle-energy plane,
but only the results corresponding to the panels 15 of Fig. 4
are shown.

Comparison of the upper and the lower panels of Fig. 4
shows that the 1BA can be used only for small angles (say
below 10°), while for larger angles the results are qualita-
tively different due to the different behavior (the appearance
of minima) of the differential cross section of the particular
inert gas (argon in our case).

In Refs. [27,28] the differential cross section for electron-
ion scattering was extracted from the BRR observed in the
HATT spectra. Our concept of quantum orbits allows us, in
principle, to extract such data not only for the electron en-
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TABLE L. Cutoff energies in units of the ponderomotive energy U,=13.74 €V for the angle §=0 and for pairs of quantum orbits having
the denoted values of the numbers Bm. The fourth line gives the cutoff momentum along the laser polarization direction in atomic units for
U,=13.74 eV for comparison to Fig. 4. The laser and atomic parameters are as in Fig. 4.

pm -10 11 -11 12 -12 13 -13 14 -14 15
E,/U, 3.48 1.42 2.51 1.66 231 1.76 222 1.82 2.17 1.85
Ey/U, 10.60 6.79 8.97 7.31 8.60 7.52 8.44 7.63 8.34 7.70
p-(aun.) 3.27 2.62 3.01 2.72 2.95 2.76 2.92 2.78 2.90 2.79

ergy which corresponds to the cutoff of the whole spectrum
but also for the various lower energies that correspond to the
cutoffs of particular pairs of quantum orbits. Namely, the
second line of Table I shows that the cutoffs of the energy of
the rescattering electron come to lie in the range 1.42U,
=FE,=3.48U, and accumulate around 2U,,. Unfortunately, in
momentum space this energy range is mapped on the narrow
interval 2.62 <p_(a.u.) =3.27 for the intensity corresponding
to U,=13.74 eV (cf. the fourth line of Table I). Hence, the
analysis of the data will better be carried out in the energy-
angle presentation (cf. Fig. 5). However, there is a principal
obstacle that impedes the extraction of cross sections from
the observed HATI data: all rescattering ridges below the
BRR receive contributions from several pairs of orbits, not
just the one pair Sm=-10 with the shortest travel times,
which contributes along the BRR. Table I shows that this is
the case for rescattering energies below E,~9U,,. This spoils
the factorization property (1) or (31) on which the simple
extraction of the elastic cross section relies. If, however, for
whatever reason one pair of orbits should still dominate the
rescattering rate, then the factorization (31) will hold again
approximately for the corresponding pair of solutions [de-
noted by s in Eq. (31)]. Inspection of Fig. 4 suggests that this
might be the case near the cutoff of the pair +11 of the
next-to-shortest orbits and possibly also for the pair —11.
Figure 6 exhibits the results of such an analysis for the
extraction of the electron-ion cross section and a comparison
to a theoretical calculation. Here, for U, = 13.74 eV, the LFA
results obtained from the shortest ten pairs of orbits as pre-
sented in the lowest right panel (15) of Fig. 4 were used to
substitute an experimentally measured ionization rate
(dashed red lines). The exact theoretical cross section was
calculated using the method described in Appendix B (solid
black lines). For the electron energies E; at the detector that
correspond to the cutoffs of the various pairs (cf. Fig. 4 and
Table I) the factorization property (31) was assumed to hold,
with the saddle-point solution s corresponding to the respec-
tive pair of orbits. We notice that as expected the agreement
between the “experiment” and the exact theoretical calcula-
tion is very good for the highest cutoff energy of 47.8 eV,
which is generated by the pair —10. This is because at the
cutoff energy there is no competing pair that contributes so
that the factorization property (31) holds almost exactly. For
the cutoff energies of the two next-to-shortest pairs (19.5 eV
for the pair +11 and 34.5 eV for the pair —11) the agreement
is still reasonable for angles not too far away from the po-
larization axis. The contributions of longer and longer pairs
of orbits accumulate near the energy of =27.5 eV. It is
therefore not surprising that in this region the approximation

by one single pair fares most poorly. This is, in fact, borne
out by the remaining panels of Fig. 6.

The reliability of this method of extraction is likely also to
depend on the laser intensity. Therefore, in Fig. 7 we present
the results of the same analysis for several different laser
intensities, this time only for the three pairs of shortest orbits
—10, +11, and —11. Again, for all four intensities considered,
1=[1,1.5,3,3.5] X 10" W/cm?, the agreement between the
extracted cross section and its theoretical calculation along
the lines of Appendix B is excellent at the cutoff energy of
the BRR where the pair of orbits Sm=-10 is the only one to
contribute. It becomes worse for subsequent cutoff energies
corresponding to the pairs Bm=+11 and Sm=-11.

The problem that stands in the way of extracting cross
sections for various energies of the incident electron out of
HATT data at one fixed intensity is the fact that more than
one pair of quantum orbits contributes to the angle-resolved
spectrum, with the sole exception of the spectrum along and
beyond the BRR where only the shortest pair of orbits plays
a role. However, as a theoretical consistency check of our
formalism, we may suppress the contributions of all pairs of
orbits from the rate (29) but for the one that has its cutoff at

Ber

Differential cross section (a.u.

L1 T I N
—q80 -160 -140 -120 -180 -160 -140 -120 -100
0 (degrees) 0 (degrees)

FIG. 6. (Color online) Angular distributions of the differential
cross sections for elastic scattering of electrons on Ar ions (black
solid curves). The electron kinetic energies given in the various
panels correspond to the incident energies E; which, after the elec-
tron rescattering and propagation in the laser field, lead to the final
electron energy at the detector equal to the cutoff energy of the
corresponding pair Bm of quantum orbits. Red dashed curves cor-
respond to the results extracted from the HATI spectra of Fig. 4
(lowest right panel, LFA with ten pairs of orbits) for the same laser
parameters as in Fig. 4.
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FIG. 7. (Color online) Angular distributions of the differential
cross sections for elastic scattering of electrons on Ar ions (black
solid curves). The electron kinetic energies used in the various pan-
els correspond to the incident energies E; which, after the electron
rescattering and propagation in the laser field, lead to the final elec-
tron energy at the detector equal to the cutoff energy of the denoted
pair Bm of quantum orbits. Red dashed curves correspond to the
results extracted from the HATI spectra obtained using LFA with
nine pairs of orbits. The laser wavelength is 800 nm and the inten-
sity I is 1, 1.5, 3, and 3.5 in units of 10'* W/cm?, as denoted in
each panel.

the energy in question and employ the results as a new “ex-
periment.” Such an example is presented in Fig. 8 for the
same Ar example as in Figs. 4 and 5. Each panel of Fig. 8
corresponds to specific values of the quantum-orbit numbers
Bm and of the incident electron energy just before rescatter-
ing. The corresponding cutoff energies are tabulated in Table
I. The theoretical results (black solid lines) are the same as in

B=-1 B=+1

= p

S

= 22.9eV

S ‘ ‘ m=2
3 OF \ \ T \ \ =
23 31.8eV L 243eV

St m=2 m=3
B0t — =
= r Pl 7
53k 2

8L 30.6eV 7 25.0eV

E 5 m=3 L m=4

‘ m=4 | ‘ ‘ m=5
-120 -180 -160 -140 -120 -100
9‘, (degrees)

L1 f
-q 80 -160 -140
6}\, (degrees)

FIG. 8. (Color online) Same as in Fig. 6 except that the HATI
spectra, from which the data presented by the red dashed curve
were extracted, were calculated taking into account only the pair
Bm of quantum orbits, as explained in the text.
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G (arb. units), arg f (rad)

R R S R T R
9A (degrees)

FIG. 9. (Color online) Angular distributions of the differential
cross section [black solid curve a(py, 6,)] and the phase of the scat-
tering amplitude [blue solid curve arg f(p,, 6,)] for elastic scattering
of electrons on Ar ions. Red dashed curve and green dot-dashed
curve correspond to the cross section and the phase extracted from
the HATT spectra along the BRR for the same laser parameters as in
Fig. 4.

Fig. 6. Now the agreement between the cross section ex-
tracted from the “experiment” and the theoretical calculation
is excellent, but we remind the reader that this was a consis-
tency check only and not a viable method of how to obtain
electron-ion cross sections at various energies from experi-
mental HATT spectra at one fixed laser intensity.

As a final consistency check, we will also scrutinize the
phase relation (33). Like before, this does not allow one to
extract the phase of the scattering amplitude from experi-
mental data, since the phase arg Tg,RR(n) is not experimen-
tally accessible. We restrict ourselves to the BRR. For the
laser parameters as in Fig. 4, the maximal electron kinetic
energy pf/2 at the time of rescattering continuously in-
creases from 47.8 eV for 6,=—180° (6=0°) to 48.6 eV for
6,=—100° and then decreases to 47.8 eV for §,=—80°. Like
the corresponding exact scattering cross section, the phase of
the scattering amplitude is calculated using the results of
Appendix B (solid lines). In Fig. 9 we compare this phase to
the results extracted from the HATI spectra along the BRR.
The agreement is very good. We notice that the phase of the
scattering amplitude changes by 7 when the scattering angle
goes from below to above the zero of the scattering ampli-
tude, which is located at about —132°.

IV. CONCLUSIONS AND PERSPECTIVES

We have derived the low-frequency approximation for the
rescattering 7-matrix element which describes the high-order
above-threshold ionization process. This result goes beyond
the known improved strong-field approximation in the sense
that it replaces the first-order Born approximation for the
elastic rescattering amplitude with the exact scattering am-
plitude taken on the energy shell. Since the exact scattering
amplitude has minima for particular values of the scattering
angle, the difference between the angle-resolved ISFA and
LFA HATT spectra becomes especially noticeable for larger
angles (see Fig. 5).

Using our quantum-orbit theory and the uniform approxi-
mation we have derived a factorization formula for the res-
cattering matrix element. This formula enables us to deter-
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mine the angular dependence of the differential cross section
of the laser-free scattering amplitude from the angle-resolved
HATT spectra. It can be used in those regions of momentum
(or energy-angle) space where one pair of orbits dominates
the result. The highest cutoffs are along the BRR and they
are well separated from the cutoffs of other pairs so that the
influence and possible interference of longer-quantum-orbit
contributions are negligible and the angular dependence of
the corresponding laser-free elastic differential cross sections
can be extracted from the measured HATI spectra to excel-
lent accuracy [27,28]. We have shown in Figs. 6 and 7 that a
corresponding analysis can still be applied for energies near
the cutoffs of the next two pairs of orbits (ordered by in-
creasing length of the travel time), but the procedure be-
comes less accurate and only works sufficiently close to the
laser polarization axis.

It is known that a multiplateau structure in HATI spectra
develops for an elliptically polarized laser field [42-44]. The
cutoff regions of these plateaus each only receive contribu-
tions from one pair of orbits. Following the BRRs that cor-
respond to each of these plateaus one can therefore extract
the laser-free differential cross sections for each of these en-
ergies from just one measurement of the angle-resolved
HATI spectra (in analogy with Fig. 8). Unfortunately, the
phase of the scattering amplitude cannot be determined in
such a measurement. However, for few-cycle laser pulses,
recording the angle-resolved spectra for different carrier-
envelope phases, this may become possible. The situation is
further simplified by the fact that in this case a smaller num-
ber of quantum orbits contribute [45]. Another possibility is
to use a bichromatic laser field and to record data for differ-
ent values of the relative phase between the field components
[46].

The theory presented in this paper can be generalized to
molecular HATI. The improved SFA has already been devel-
oped for molecular HATI [11]. The first simulation of the
experiments using this theory was successful [47]. We expect
that the details of the angle-resolved spectra can be better
reproduced using the molecular LFA theory which we are
planning to develop.
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APPENDIX A: DERIVATION OF EQ. (19)

The total time-evolution operator U(z,7') in Eq. (15)
propagates the laser-field-free state i,(r) back to the state
¢p(7') in the presence of the field, which is the solution of
the Schrodinger equation with the total Hamiltonian H(7'). It
satisfies the Lippman—Schwinger equation

o

(1)) = [xp(1)) + J dt' G(t,")V(r)|x, (1)), (A1)

where G(¢,t') =G (t,t')=-iU(t,t') for 1>1', GP(r,1')=0
for t<<t', is the total retarded Green’s operator. This allows
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us to rewrite the scattering matrix element in Eq. (15) in the
form

My (t,7) =~ if dr’JT dt’ (x,(t")|[8(t" = ')

+ VGO, ) IVIxu(7)). (A2)

Next, we formally expand the Green’s operator in powers of
the stationary Green’s operator Gy(E)=(E+ie—H,)™!, de-
fined in Eq. (21), by adding and subtracting the ¢ number E
in the total Hamiltonian H(z),

G(t,t')= {i?

t

-1
H(t)] ot—1t')

-1
= {i%—HV—r~E(t)+E—E] ot—1")

={(E-Hy+ie){l1-(E-Hy+ig)!
X[r-E()+E—-id]}} ' o(r—1")

©

=> {GV(E){E+I' E(1) - i%]}nGV(E)é(t— 7).

n=0
(A3)
We will choose
1
= E[P + AN =Epaq- (A4)
Owing to the identity
9 =i, irAw s
i~ () =i (e p)expl- iSy(1])
=[r-E(0) + Epan]xp(0), (AS5)

this will allow us to drop all terms in the expansion (A3)
with n= 1. This yields the expression (19) in the main body
of the paper.

Such approximation was called the off-shell LFA in Refs.
[33,34] since, in general, [p+A(7')]?/2 #[k+A(7')]*/2 and
the T-matrix element (p+A(7)|Ty(Eyac)k+A(7)) is
taken off the energy shell. An explicit derivation and the
range of validity of the off-shell LFA for arbitrary gauge and
laser polarization were given in [34] (see also Appendix A in
[33]). Therefore, the amplitude for the laser-assisted scatter-
ing in the first Born approximation, Eq. (18), should be re-
placed by the off-shell LFA laser-assisted scattering ampli-
tude

MEA) = = o VIO + A (7))o,
(A6)

APPENDIX B: SCATTERING AMPLITUDE

In this appendix we describe our method of calculation of
the scattering amplitude in the absence of the laser field. We
want to calculate the matrix element (k|V|¢4”), i.e., the scat-

tering amplitude
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f==Q@mXie VI, (B1)

where V=V(r) is a spherically symmetric short-range poten-
tial, k) is the (plane wave corresponding to the final momen-
tum k, and | kj)) is the stationary scattering wave. Assuming
that the scattering is elastic (k,=k;=k) and using the method
of partial waves, we obtain the following expression for the
scattering amplitude [48]:

flk,6) = %E (21 + 1exp[i&(k)]sin &(k)P(cos 6),
=0

(B2)

where [ is the orbital angular-momentum quantum number,
&8)(k) are the phase shifts for the given values of the quantum
number / and the momentum k, 6 is the scattering angle, and
P, are the Legendre polynomials. In order to obtain the phase
shifts &, we solve the radial Schrodinger equation

> I(1+1)
o2 —2V(r) + K |u)(k,r) = 0. (B3)

The asymptotic behavior of the function u;(k,r) is given by

lim u(p) = Aji(p) = Bnp). (B4)
where j,(p) and n;(p) are regular and irregular Ricatti-Bessel
functions, respectively, and p=kr. We integrate the radial
Schrodinger equation (B3) from r=0 to r=a, where a is
chosen large enough for the asymptotic form (B4) to be
valid. The phase shifts are determined by the formula

kj; (ka) — a(k)j(ka)
kn| (ka) — e (k)n,(ka)’

where ]]’ (ka) = [djl(p)/dp]p=ka and n; (ka) = [dnl(P)/dP],ka
while the logarithmic derivative

tan (k) = (BS)

a,(k) = [u; (duydr)],—, (B6)

is obtained after a numerical integration of the radial
Schrodinger equation (B3) has yielded the wave function
u(k,r) and its first derivative at r=a.

We consider now the situation where the Coulomb inter-
action V is added to the short-range potential Vg, i.e.,

VO VS + V), V== (B

In this case, the scattering amplitude is

[k, 0) = f(k, 0) + f(k, 6), (BS)

where

exp{— iy log[sin*(6/2)T}
2k sin?(6/2)

felk,0) ==y exp(2ioy) (B9)

is the Coulomb scattering amplitude with y=-Z/k and o
=arg ['(1+i7y), while
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FIG. 10. (Color online) Angular distributions of differential
cross sections for elastic scattering of electrons on Ne, Ar, and Xe
ions. The electron kinetic energies are 39, 23, and 16.5 eV for Ne,
Ar, and Xe ions, respectively.

. 1< .
flk,0) = ;E (21 + D)exp[2io(k) Jexp[i 5(k)]
=0

X sin &,(k)P,(cos 6) (B10)

is the additional scattering amplitude due to the existence of
the short-range potential Vs in the presence of the Coulomb
field V. In the above equation, (k) are the Coulomb phase

shifts and (AS,(k) are the additional phase shifts due to the
existence of the short-range potential Vg in the presence of

the Coulomb field V. Note that the phase shifts (k) are not
the same as the phase shifts &(k) which would be obtained
from Vj alone. The Coulomb phase shifts (k) are given by

ofk)y=arg '+ 1 +iv), (B11)

while the phase shifts 8)(k) can be calculated solving the
radial Schrodinger equation (B3) with V(r)=Vg(r)+V(r).
The asymptotic form of the solution of this equation and the
expression for tan 3,(1{) are analogous to those given by Eqgs.
(B4)—(B6) but with the functions j; and n; replaced by the
regular and irregular spherical Coulomb functions F; and G;
[48,49].
In the case of electron-atom or electron-ion scattering, a
possible form of the scattering potential is [50]
Vi) = — Z+a e +azre” ™ + ase_%”

r

(B12)

where Z is the charge seen by the incoming electron asymp-
totically. The first term in Eq. (B12) is the Coulomb potential
V(r)==Z/r. As the Coulomb field has an infinite range, we
may replace it with a “screened” Coulomb potential. A pos-
sible choice is the potential [48] V. (r)=V(r)exp(-r/R,),
where R, is the screening distance. Another choice is [51]

1% 1 Veln), r<k
wel7) = Velr) = Ve(r)tanh[(r = R))/10], r=R,.
(B13)
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The detachment of electrons from negative ions can
also be considered using our method. In this case, the form
of the electron-atom scattering potential is given in
[19,26].

Finally, we present an example of our calculation of the

PHYSICAL REVIEW A 79, 033413 (2009)

differential cross section for elastic electron-ion scattering. In
Fig. 10 we show the angular distributions of the differential
cross sections for elastic scattering of electrons on Ne, Ar,
and Xe positive ions. Our results agree very well with those
presented in Fig. 3 in Ref. [27].
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