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We investigate the connection of recently identified fine-scale oscillations in the dependence of the yield of
the high-order harmonic generation �HHG� on wavelength � of a few-cycle laser pulse �K. Schiessl et al.,
Phys. Rev. Lett. 99, 253903 �2007�� to the well-known channel-closing �CC� effect. Using the Lewenstein
model of HHG, we identify the origin of the oscillations as quantum interference of many rescattering trajec-
tories. By studying the simultaneous variations with intensity and wavelength, different models for the inter-
ference of channel-closing peaks can be tested. Contrary to theoretical predictions for short-range potentials,
the peaks are located neither at nor just below the CC condition, but a significant shift is observed. The long
Coulomb tail of the atomic potential is identified as the origin of the shift.
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I. INTRODUCTION

High-order harmonic generation �HHG� represents a ver-
satile and highly successful avenue toward an ultrashort co-
herent light source covering a wavelength range from the
vacuum ultraviolet to the soft x-ray region �1�. This devel-
opment has opened new research areas such as attosecond
science �2,3� and nonlinear optics in the extreme ultraviolet
region �4,5�. The fundamental wavelength � used in most
HHG experiments to date is in the near-visible range �
�800 nm�. The cutoff law for the harmonic spectrum Ec
= Ip+3.17Up, where Ip denotes the binding energy of the tar-
get atom and Up=F0

2 /4�2=F0
2�2 /16�2c2 is the ponderomo-

tive energy �F0: laser electric field strength�, suggests that a
longer fundamental wavelength would be advantageous to
extend the cutoff to higher photon energies since Up in-
creases quadratically with �. This has stimulated an increas-
ing interest in the development of high-power midinfrared �
�2 �m� laser systems, e.g., based on optical parametric
chirped pulse amplification. The first generation of water-
window harmonics with clear plateau and cutoff structures
has recently been reported �6�. Along those lines the depen-
dence of the HHG yield on � has become an issue of major
interest �7–11�. It had long been believed that the spreading
of the returning wave packet would result in a �−3 depen-
dence of the HHG efficiency �12� as long as ground-state
depletion can be neglected �13�. Experimental findings �14�
provided partial support. Recently, however, Tate et al. �11�
reported a different wavelength scaling of HHG between 800
nm and 2 �m calculated with the time-dependent
Schrödinger equation �TDSE� for Ar and a strong-field ap-
proximation �SFA� for He. They found the yield to be de-
scribed by a power law ��−x, with 5�x�6. Investigating
the � dependence on the level of single-atom response for H

and Ar by numerically solving the time-dependent
Schrödinger equation, we could confirm the overall scaling
with an inverse power law exceeding 5 �7�. The harmonic
yield was found not to depend smoothly on the fundamental
wavelength, but to exhibit surprisingly rapid oscillations
with a period of 6–20 nm depending on the wavelength re-
gion. A semiclassical analysis based on the SFA has revealed
that the rapid oscillations are due to the interference of five
to ten different rescattering trajectories �7�. Moreover, we
found the oscillations to be stable with respect to variations
in the pulse envelope as long as the effective pulse length
and thus the number of relevant trajectories remain equal,
while the amplitude of the oscillations decreases with de-
creasing pulse length �9�. These observations underscored
the view that the oscillations are due to the interference of
quantum paths.

Oscillations of the HHG yield have previously been re-
ported in terms of the dependence on the intensity of the
driving laser, I0�F0

2, both experimentally �15,16� and theo-
retically �17,18�. Borca et al. �17� and Milošević and Becker
�18� showed that HHG is enhanced at channel closings
�CCs�, i.e., when

R =
Ip + Up

��
�1�

is an integer. Channel closing in this context refers to the
threshold for multiphoton ionization in a laser field. Most of
these theoretical studies employed zero-range potentials or
the SFA which both neglect the influence of the long-range
potential on the ionized electron.

Frolov et al. �8� recently analyzed the wavelength depen-
dence of HHG in terms of channel closings �or threshold
phenomena�. They calculated the harmonic yield using the
time-dependent effective-range theory, and showed that the
peaks of the yield oscillation around �=1 �m coincide with

integer values of R if an effective ionization potential Ĩp �e.g.,*ishiken@riken.jp
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10.5 eV for H� is used in place of Ip in Eq. �1�. This method
is, however, strictly applicable only for short-range potentials
and also neglects the excited atomic states. On the other
hand, we have recently found �9� channel-closing peaks in
the TDSE-calculated HHG yields around 1 and 2 �m wave-
lengths which are characterized by a spacing of �R=1, as
expected from the CC picture, when the true ionization po-
tential Ip is used.

In the present paper, we study the connection between the
oscillation in the wavelength dependence of the HHG yield
and the channel closing in more detail. We study the har-
monic spectrum in the two-dimensional parameter space of
intensity I0 and driver wavelength �c. We compare the results
of the full three-dimensional �3D� TDSE solution with the
strong-field approximation and a truncated Coulomb-
potential model in order to delineate underlying mechanisms.
We find that the correspondence of the modulation period to
�R=1 holds for a wide wavelength range between 800 nm
and 2 �m, and that the peak positions in terms of R are
almost independent of laser intensity. The systematic dis-
placement of the peak positions relative to integer values is
found to be consistent with the effect of the long-range Cou-
lomb tail on the returning electron.

The present paper is organized as follows. Section II sum-
marizes the two complementary integration schemes em-
ployed for a full numerical solution of the TDSE. In Sec. III
we discuss the overall wavelength dependence at a fixed
value of fundamental intensity all the way from �=800 nm
to 2 �m. We also analyze small-scale oscillations in terms
of quantum-path interference based on the saddle-point
analysis �SPA� �12,18�. In Sec. IV we investigate the varia-
tion in the � dependence of HHG with intensity and pulse
shape. In Sec. V we discuss the period of the oscillations in
terms of the channel-closing number R and investigate its
robustness against the variation in the wavelength region, the
driver intensity, and pulse shape. In Sec. VI we discuss the
origin of the peak shift from integer R values and clarify how
the Coulomb tail of the atomic potential affects the peak
position. Conclusions are given in Sec. VII. Atomic units are
used throughout the paper unless otherwise stated.

II. NUMERICAL METHODS

We solve the atomic TDSE in the length gauge for a lin-
early polarized laser field with the central wavelength �c
=2�c /�,

i
�

�t
	�r,t� = �−

1

2
�2 + Veff�r� + zF�t��	�r,t� , �2�

where F�t�=F0f�t�sin��t� denotes the laser electric field, f�t�
is the envelope function, and Veff�r� is the atomic potential.
For hydrogen �H�, Veff�r� is the bare Coulomb potential,
while for argon �Ar� we employ a model potential �19�
within the single–active electron approximation which repro-
duces the binding energy to an accuracy of typically �10−3.
We employ two complementary methods to solve Eq. �2� in
order to establish reliable and consistent results.

In the first method, Eq. �2� is numerically integrated using
the alternating direction implicit �Peaceman-Rachford �PR��

method �20� with a uniform grid spacing 
r being dependent
on the numerical problem in the range of 10−2�
r�6.25
�10−2 a.u. In general, a finer grid spacing is needed for a
longer wavelength, and also for Ar than for H. In order to
reduce the difference between the discretized and analytical
wave functions, we scale the Coulomb potential by a few
percent at the first grid point �21�. The time step 
t is typi-
cally 1 /16 000 of an optical cycle for 800 nm wavelength,
i.e., 6.895�10−3 a.u. This algorithm is accurate to the order
of O�
t3�. In the second method, the TDSE is integrated on
a finite grid by means of the pseudospectral �PS� method
�22� which is also accurate to the order of O�
t3�. It allows
for larger time steps on the order of 0.1 a.u. The r coordinate
is discretized within the interval �0,rmax� with a nonuniform
mesh point distribution. The innermost grid point is typically
as small as 2.5�10−4 a.u., enabling an accurate description
near the nucleus. A smooth cutoff function is multiplied at
each time step to avoid spurious reflections at the border
rmax, while another cutoff function prevents reflections at the
largest resolved energy Emax. For Ar the occupied states sup-
ported by the model potential are dynamically blocked dur-
ing the time evolution by assigning a phase corresponding to
an unphysically large and positive-energy eigenvalue �23�.
We calculate the dipole acceleration d̈�t�=−�t

2	z�t�
, employ-

ing the Ehrenfest theorem through the relation d̈�t�
= 		�r , t��cos � /r2−F�t��	�r , t�
 �22�, where the second term
can be dropped as it does not contribute to the HHG spec-
trum.

For the wavelength dependence of the harmonic yield, in
particular the global scaling, it is important to specify the
definition of the integral yield. One can focus on a given
number of harmonic orders, on a fixed energy interval, or on
the entire spectrum. Following Refs. �7–9,11�, we consider in
this work the HHG yield defined as energy radiated from the
target atom �single-atom response� per unit time �24� inte-
grated for a fixed photon energy range, specifically from 20
to 50 eV,


Y =
1

3c3T
�

20 eV

50 eV

�a����2d� , �3�

where T denotes the pulse duration. Note that the energy
window 
E of the output radiation �here 20–50 eV� is kept
constant when analyzing 
Y as a function of �. Clearly, both
the number and order of the harmonic peaks lying in the
fixed energy interval change as �c is varied.

III. WAVELENGTH DEPENDENCE

We adopt the laser parameters of Ref. �11�, with a fixed
peak intensity of 1.6�1014 W /cm2, a variation in � be-
tween 800 nm and 2 �m, and an envelope function f�t�
corresponding to an eight-cycle flattop sine pulse with a half-
cycle turn on and turn off.

Figure 1 displays the HHG yield for atomic hydrogen
calculated on a fine mesh in � with a spacing of 1 nm. Su-
perimposed on a global power-law dependence 
Y ��−x �x
�5� �7–9,11�, we find remarkably strong and rapid fluctua-
tions through the entire � range. The origin of this oscillation
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can be identified as the quantum interference of up to ten
rescattering trajectories, based on the SFA analysis �7,9�.

The effect of the interference of multiple quantum paths
was previously studied in the context of the intensity depen-
dence of HHG and above-threshold ionization �ATI�
�16–18�. Using the quasistationary quasienergy state theory
for a zero-range potential and the strong-field approximation,
Borca et al. �17� and Milošević and Becker �18� showed that
HHG exhibits resonancelike enhancement when N-photon
ionization channel is closed with increasing intensity; i.e.,
the parameter R �Eq. �1�� becomes an integer. Zaïr et al. �16�
very recently reported experimental observation of the oscil-
lation in the intensity dependence of the HHG yield as evi-
dence of the interference between the short and long paths.
The analysis in Ref. �18� may be applied to the wavelength
dependence as well, suggesting to look at our results in terms
of R. Data of Fig. 1�a� are replotted in terms of R in Fig.
1�b�, which permits a detailed analysis of the channel-closing
behavior �see below�.

In Figs. 2 and 3 we reexamine the role of quantum paths
in the oscillations of the wavelength dependence of the har-
monic yield as a function of R on a finer R scale. We com-
pare full TDSE solutions with approximations based on the
SFA �12,25�. We first apply the Gaussian model �12�, in
which the ground-state wave function has the form

	�r� = 



�
�3/4

e−
r2/2, �4�

where 
 is chosen to reproduce Ip. An appealing point of the
Gaussian model is that the dipole transition matrix element
also takes a Gaussian form �12�,

d�p� = i
 1

�

�3/4 p



e−p2/2
, �5�

and that one can evaluate the integral with respect to mo-
mentum in the formula for the dipole moment �Eq. �8� of
Ref. �12�� analytically, without explicitly invoking the notion
of quantum paths. Unphysically rapid decrease for p2 /2

�1 limits the application of Eq. �5� to harmonic orders with
momenta of the returning electron not substantially exceed-
ing p2 /2
�1. We have confirmed that the resulting har-
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FIG. 1. �Color online� Wavelength dependence of the integrated
harmonic yield 
Y between 20 and 50 eV as a function of �a�
wavelength � and �b� channel-closing number R. �: TDSE results
obtained by the pseudospectral method. In addition, results on a fine
scale �solid line� are presented. Dashed line: fit 
Y ��−5.3.
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FIG. 2. �Color online� Variations in the integrated harmonic
yield between 20 and 50 eV in a narrow range of �
=1000–1100 nm, as a function of R, for H. �a� Comparison be-
tween the TDSE solutions with the Peaceman-Rutherford �PR� and
the pseudospectral �PS� methods. �b� The results of the Gaussian
model with 
=1 a.u. �solid line� and 2 a.u. �dotted line�. �c�
Buildup of the interference pattern with increasing number of quan-
tum trajectories within the SPA. In �b� and �c� the vertical axis is in
arbitrary units.
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monic spectra have an adequate plateau and cutoff structure
for the value of 
 �1 and 2 a.u.� used in the present study.
The obtained wavelength dependence of the HHG yield, ex-
pressed in terms of R �Fig. 2�b��, exhibits oscillations similar
to that in the TDSE result �Fig. 2�a��, although peaks are
found—contrary to TDSE results—near integer values of R.
In addition we employ complex solutions of the SPA �18�,
while we have previously obtained similar results by em-
ploying classical trajectories �7,9�. Up to 16 possible trajec-
tories for each individual photon energy are considered.
When including up to 10 and 12 returning paths for the cases
of H and Ar, respectively, the SPA can reproduce the modu-
lation depth and frequency of the � oscillations of the TDSE
and the Gaussian model reasonably well, thus strongly sup-
porting the quantum-path interference as the origin of the
fluctuations. The SPA result for Ar with 12 trajectories �Fig.
3�b�� reproduces even the small peaks between the main
peaks.

We emphasize the remarkable variation on a fine � scale.
One might suspect that the oscillation as in Figs. 1–3 would
be specific to monochromatic driver pulses and smeared out
for the case of ultrashort broadband pulses. The pulse shape
used in this study is, however, not monochromatic but its
spectral width 
� is �10% of �c. The rapid variations in the
harmonic yield occur on a scale �� much smaller than this
width. This finding, at a first glance surprising, is a direct
consequence of the quantum-path interference. It follows
from the existence and the fixed spacing in between discrete
points in time—controlled by �c—at which electronic trajec-
tories are launched. As long as the few-cycle pulse permits
the generation of a set of a few quantum paths in subsequent
half cycles, the overall temporal characteristics of the driver
pulse is of minor importance. We have also checked that the
fluctuations in the harmonic yield are not an artifact of our

particular choice of f�t�. They can be observed also for
“smoother” pulse shape such as sin2 and Gaussian pulses as
well as shorter pulses, provided that the pulse can support
multiple returning trajectories �Fig. 4�. The temporal profile
of the pulse influences the detailed shape of the interference
pattern; in particular the amplitude of the oscillations de-
creases with decreasing pulse length due to the reduction of
the effective number of returning electron trajectories.

IV. INTENSITY DEPENDENCE

Previous work �16–18� studied the intensity dependence
of the HHG yield at a fixed value of fundamental wavelength
�c. On the other hand, we have so far focused on the wave-
length dependence at a fixed value of intensity �1.6
�1014 W /cm2�. We extend now this analysis to the two-
dimensional parameter plane ��c , I0� in order to explore the
underlying mechanisms in more detail. An example for hy-
drogen �Fig. 5� for a narrow interval of wavelength �1 �m
��c�1.1 �m� and intensity �1.3�1014 W /cm2� I0�1.6
�1014 W /cm2� displays regularly shaped ridges each of
which can be mapped onto a fixed channel-closing number
R. This regularity is also reflected in the cuts through these
two-dimensional data for different fixed intensities for both
hydrogen �Fig. 6�a�� and argon �Fig. 6�b��.

Not only the peak positions but also detailed structures of
the dependence on �c are quite robust against the variation in
I0, when expressed in terms of R. For later reference we
stress that these remarkable observations hold true only
when the CC number R is determined with the true ioniza-
tion potential �Eq. �1��. The use of any other value of effec-
tive ionization potential would shift each peak and conse-
quently each curve in Fig. 6 by a different amount. This can
also be understood from the fact that lines of constant values

of �Up+ Ĩp� /�� �with, e.g., Ĩp=10.5 eV� in Fig. 5�b� deviate
from the ridges which manifest as peaks along lines of con-
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stant I0 �Fig. 6�a��. Results for argon �Fig. 6�b�� show a simi-
lar behavior, indicating the applicability of the parameter R
independent of the atomic species.

V. MODULATION PERIOD

The modulation period �� of the harmonic yield is a func-
tion of the central wavelength �c itself. With increasing �c,
�� decreases from about 30 nm near 800 nm wavelength to
�6 nm near a wavelength of 2 �m �Fig. 7�. However, ex-
pressed in terms of the channel-closing number R, the sepa-
ration of the principal peaks is given by �R=1 for both the
TDSE and the SPA results �see Figs. 2 and 3�. Interference
peaks appear with this spacing regardless of intensity �Fig.
6�. The peaks in the TDSE results are, however, not located
at integer values of R, as opposed to the SPA results as well
as previous theoretical work �17,18�. This problem was pre-
viously encountered in the intensity dependence of HHG and
ATI �26�. In order to recover integer values the use of an

effective ionization potential Ĩp in place of Ip in Eq. �1� was
proposed based on arguments that either the enhancement
was due to multiphoton resonances with ponderomotively

upshifted Rydberg states �27� �Ĩp corresponds to the excita-
tion energy of the resonant state� or that high-lying atomic
states are strongly distorted by an intense laser field to form
a quasicontinuum, effectively lowering the ionization poten-
tial �8�. As long as one considers only the intensity depen-

dence at a fixed wavelength, the difference 
Ĩp= Ĩp− Ip

causes a constant shift of R by 
Ĩp /�. Consequently, integer
values of R could be restored along this axis for a suitable

choice of Ĩp. However, considering now the wavelength de-

pendence at a fixed intensity, 
Ĩp /� itself would depend on
�. Therefore, if the modulation period �� corresponds to

�R=1 for the true Ip, any other choice of Ĩp different from Ip
cannot shift all the peaks uniformly to integer values of R.

In a further step, we enumerate all the principal peaks in
Fig. 1�b� from p=15 to 117, and plot the CC number Rp as
well as the mismatch to the nearest integer,


Rp � Rp − �Rp� , �6�

of each peak in Fig. 8. The slope of the line fitted to the data
calculated with true Ip �filled circles in Fig. 8�a�� is nearly

equal to unity ��1.00�, while those with Ĩp=10.5 eV �tri-
angles in Fig. 8�a�� have a slope smaller than unity. More-
over, although some fluctuation is seen, the values of 
Rp are
roughly constant, most of them being distributed between 0.3
and 0.6.

As can be seen from Figs. 2–6, the harmonic yields 
Y
are not only composed of peaks separated by �R=1, but also
often contain finer structures with subpeaks. This is even
more so for longer pulses. In order to extract the periodicity
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of these structures quantitatively we calculate the power
spectrum of 
Y�R���5.3 �Fig. 9�, where the multiplication
by �5.3 removes the smooth global decay �Fig. 1�b��. We can
clearly identify the sharp dominant frequency component
precisely at �=1, corresponding to �R=1. A beatlike struc-

ture of a period of �20 seen in Fig. 1�b� gives rise to an
additional small sideband.

The Fourier spectrum clearly underscores that the peak
separation corresponds to �R=1 throughout the entire wave-
length range between 800 nm and 2 �m. This spacing is
closely related to the spacing �� in the wavelength depen-
dence of the peak positions. Hence, we can derive the scaling
of �� with � to obtain

�� =
const

Ip + 3Up
=

1240

Ip�eV� + 2.8 � 10−19I�W/cm2��2�nm�
nm.

�7�

Equation �7� reproduces the TDSE-calculated � dependence
of �� quite well �Fig. 7�.

The present results as well as those in Sec. IV strongly
indicate that the wavelength and intensity dependence of the
HHG yield calls for an explanation in terms of R calculated
from the true Ip in spite of the pronounced shift of the peak
position from integer R values.

VI. PEAK SHIFT FROM INTEGER R VALUES

While the peak separation is given by �R=1, enhance-
ments do not appear at R=N, with N being an integer but
shifted by an amount ranging from 0.3 to 0.6 �see Fig. 8�b��.
This is in clear contrast to the SFA prediction for the CC
peaks in the literature �18� as well as to our present SFA
results in Figs. 2�b�, 2�c�, and 3�b�. The fundamental differ-
ence between the SFA and the full solution of the TDSE
is—apart from numerical or analytical solution strategies—
that in the former one neglects the excited states and the
effect of the atomic potential to continuum electrons, which
may be a serious deficiency for long-range potentials such as
the Coulomb potential. Recent studies on ionization dynam-
ics and doubly differential photoelectron momentum distri-
butions of hydrogen have shown the significance of the long-
ranged Coulomb potential in laser-atom interaction and have
illustrated the failure of the SFA near the threshold �28,29�.
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FIG. 7. �Color online� Variation in the modulation period ��
with the driver central wavelength �c for atomic hydrogen. �:
TDSE; dashed line: �R=1 �Eq. �7��.
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A. Truncated Coulomb potential

In order to explore the significance of the long tail of the
Coulomb potential for the present case of interferences in the
HHG yield, we perform calculations with a truncated Cou-
lomb potential, given by

Veff�r,rc� = �−
1

r
�r � rc�

−
e−�r−rc�/rd

r
�r � rc� ,� �8�

where the effective range of the truncated Coulomb potential
rc is varied between rc=10 a.u. and rc=70 a.u. and the
width of the crossover region rd is chosen to be rd=10 a.u.
For these parameter values, the ionization potential and the
first excitation energy remain unchanged to accuracies of
�10−9 and �10−3, respectively. It should be noted that the
classical electron quiver motion amplitude is 
q=26.3 a.u.
for I=1.6�1014 W /cm2 and �c=900 nm, and 
q
=39.3 a.u. for �c=1100 nm.

We thus explore the entire range from rc /
q�0.3 to
rc /
q�2.3. Convergence to the solution employing the full
Coulomb potential is reached only for rc as large as 70 a.u.
�see Figs. 10 and 11�. Most important in the present context
is a systematic, almost rigid shift of the peaks as a function
of rc. Only for small rc ��10 a.u.�, the maxima are found
near channel closings �near R equal to an integer�, in agree-
ment with the SFA results �18�. This observation indicates
that the Coulomb potential is indeed responsible for—to first
approximation—a monotonic and nearly uniform shift of the
peaks. It should be noted that the long-ranged Coulomb po-
tential manifests itself in two seemingly different effects.
First, it supports high-lying Rydberg states which converge
to the continuum at threshold. Furthermore, Coulomb scat-

tering and deflection influences the motion of the returning
electron, even at large distances from the core.

B. Effective ionization potential

The influence of the potential form on the position of the
CC was previously identified within the framework of a one-
dimensional �1D� TDSE model �30,31�. It was suggested to

use an “effective” ionization potential Ĩp in Eq. �1� when
comparing TDSE calculation with models employing zero-
range potentials to account for high-order ATI spectra at R

�N �26�. Employing an effective ionization potential Ĩp in
an SFA model roughly leads to a rigid horizontal shift of the
interference structure of the HHG yield, in accordance with
our observations in Figs. 10 and 11.

Different lines of arguments are invoked for employing Ĩp
rather than Ip. However, they all have in common that the
existence of a strongly distorted, continuumlike excited state
�n is considered responsible for an effectively lower ioniza-

tion threshold. For convenience, let us therefore define 
Ĩp

� Ĩp− Ip, which is expected to be a negative quantity �
Ĩp

�0�. Different choices of 
Ĩp are explored. Figueira de Mor-
rison Faria et al. �30� argued that �n should be given by the
condition that its radius rn�3n2 /2 for principal quantum
number n should match the quiver amplitude 
q=F0 /�2. To-
gether with the Rydberg energy �n�−Ip /n2 this would imply


Ĩp � −
3�2

2F0
Ip � I−1/2�−2. �9�

Accordingly, the change in the effective ionization potential,


Ĩp, becomes wavelength dependent. On the other hand, we
have found a fairly rigid equidistancy �R=1 as well as a
nearly constant shift 
R of the latter away from the integers

over a wide range of �c. Consequently, if we assume that 
Ĩp
compensates for 
Rp, these quantities must satisfy the rela-

tion 
Ĩp=−�
Rp+m���, with m being a possible integer off-

18.518.017.517.016.516.015.515.0
Channel-closing number (Up+Ip) / ω

11

13

10

12

14
15
16
17
18
19
20
25
30
40

70
FULL

H
H

G
yi

el
d

(a
rb

.u
ni

ts
)

rc
(a.u.)

FIG. 10. �Color online� Comparison of the wavelength depen-
dence 800 nm��c�900 nm of the harmonic yield 
Y for H, ex-
pressed in terms of R, calculated with the full Coulomb potential
�marked as “Full”� with the truncated Coulomb potentials for vary-
ing values of rc as indicated. The pulse has a 16-cycle flattop shape;
other pulse parameters are the same as in Fig. 1.
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set and 
Rp defined in Eq. �6�. Figures 10 and 11 clearly
show that the amount of the peak shift in R is smaller than
unity; hence m=0. This leads to


Ĩp = − 
Rp�� � �−1. �10�

Obviously, hypothesis �9� is not consistent with Eq. �10�. In

addition, no upper limit for 
Ĩp according to Eq. �9� was
discussed in literature. This may lead to the obviously incor-

rect conclusion that 
Ĩp→−3.4 eV as soon as in a low in-
tensity and low-wavelength limit the n=2 Rydberg state �or
even the ground state� would govern the effective threshold
invoked.

An alternative proposal put forward by Frolov et al. �8�
relates the energy �n to the formation of an effective con-
tinuum by broadening of the level with principal quantum
number n. Accordingly, �n is determined by the condition
�n=
�n, where the width �n �related to ionization rate�
approaches the level spacing 
�n. While in the limit
of quasistatic tunneling, the tunneling rate �n
�exp�−2�2��n��3/2 / �3F0�� strongly depends on the field
strength F0, but only very weakly on �. The resulting value

of 
Ĩp is estimated to be −3.1 eV for atomic hydrogen and
I=1.6�1014 W /cm2 in Ref. �8�. This does not meet condi-

tion �10�, according to which �
Ĩp� should be smaller than the
photon energy �� ��1.5 eV in the present parameter range�
of the driving laser pulse.

Moreover, with the help of Eq. �10� we can determine the

effective parameter dependence of 
Ĩp employing the nu-
merical values for 
R over a wide range of �c and F0

�Fig. 12�. Our results suggest a weak dependence of 
Ĩp on
both the wavelength and the intensity, the latter being
roughly proportional to I−0.3. This supports neither the expla-
nations of Frolov et al. �8� nor those of Faria Figueira de
Morrison et al. �30�.

C. Coulomb-corrected classical trajectory model

In addition to the ability to support �an infinite number of�
excited bound states, the Coulomb potential affects the
propagation of the rescattering electron which is neglected in
the SFA as well. As the quantum interference of electron
trajectories is responsible for the oscillation in the harmonic
yield, their distortion by the potential may be crucial.

In SFA, the time-dependent dipole moment d�t� can be
expressed as �25�

d�tf� = �
P�ti�

bion�ti�e−iSP�ti,tf,Ip�crec�tf� + c.c., �11�

i.e., a sum over paths P that start at the moment of tunnel
ionization ti with amplitude bion�ti�, evolve in the laser field,
acquire the phase e−iSP�ti,tf�, and recombine upon rescattering
at the core at time tf with the amplitude crec�tf�. The interfer-
ence oscillations in the HHG yield are controlled by the
semiclassical action SP of the path P, which reads

SP�ti,tf,Ip� = �
ti

tf �p + A�t���2

2
dt� + Ip�tf − ti� , �12�

where A�t� is the laser vector potential, and p is the classical
momentum of the returning trajectory. The effect of the Cou-
lomb potential can be incorporated into Eq. �12� with help of
an eikonal approximation as a correction to the �action�
phase with �25�,


SP�ti,tf� = �
ti

tf

VEI„r�t��…dt�. �13�

Clearly, the eikonal approximation would fail at small dis-
tances from the nucleus. This difficulty can by bypassed us-
ing the observation �Sec. VI A� that at a cutoff rc=10 a.u.
the SFA limit of channel closings at integer values of R is
reached. Consequently, we set
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Ĩp� I−0.3�.

ISHIKAWA et al. PHYSICAL REVIEW A 79, 033411 �2009�

033411-8



VEI�r� = Veff�r,rc = �� − Veff�r,rc = 10� �14�

when calculating the long-range phase correction.
We evaluate Eq. �13� along classical trajectories in the

laser electric field F�t�, confined along the z axis, starting and
ending at the “tunnel exit” z0= Ip /F0. Trajectory modifica-
tions due to the Coulomb potential are small and can be
neglected to first approximation �25�; i.e., we use the same
sets of �ti , tf� as in Eq. �12�.

It is now suggestive to express this additional phase in

terms of a change in the effective ionization potential Ĩp.
Accordingly,


Ĩp = 
SP�ti,tf�/�tf − ti� . �15�

Figure 13 shows Ĩp obtained by Eq. �15� for several �the
shortest� classical trajectories which contribute to the har-
monics near 33.6 eV �hence near the center of the HHG yield
range considered in this work�.

Remarkably, most trajectories �save the shortest one� be-
have qualitatively very similarly. In spite of its oversimplifi-
cation, this Coulomb-corrected model explains the behavior

of Ĩp even quantitatively well, which is a strong indication
that the effect of the Coulomb potential on the rescattering

electronic motion is key to the understanding of the apparent
peak shift in the wavelength dependence of the HHG yield.

VII. CONCLUSIONS

Using full numerical solutions of the time-dependent
Schrödinger equation, we have found that the fundamental
wavelength dependence of HHG with few-cycle pulses in the
single-atom response features surprisingly strong oscillations
on fine wavelength scales with modulation periods as small
as 6 nm in the midinfrared regime near �=2 �m. Thus, even
a slight change in fundamental wavelength leads to strong
variations in the HHG yield. This fine-scale rapid variation is
the consequence of the interference of several rescattering
trajectories with long excursion times, confirming the signifi-
cance of multiple returns of the electron wave packet �11�.

The present oscillations are closely related to similar
regular peaklike enhancements of harmonic yield as a func-
tion of intensity I0 �15–18�, previously discussed in connec-
tion with channel closings. Our analysis of the simultaneous
wavelength-intensity dependence has revealed that the spac-
ing between adjacent peaks �expressed in terms of the
channel-closing number R� is very accurately given by �R
=1 over a wide range of � and I0. This corresponds to the
spacing of adjacent channel closings as predicted by the
strong-field approximation �e.g., �18��. The condition �R=1
holds only if R is defined with the true ionization potential.
However, the peak positions are significantly shifted relative
to integer values. The parametric dependence of the peak
shift on the wavelength � and the intensity I0 has been in-
vestigated. Our analysis shows that this peak shift can be
accounted for by the effects of the Coulomb tail on the mo-
tion of the returning electron.
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