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Analytic formulas for above-threshold ionization or detachment plateau spectra
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Closed-form analytic formulas are derived in the tunneling limit for both above-threshold detachment (ATD)
of negative ions and above-threshold ionization (ATI) of neutral atoms. These formulas are shown to give
precise agreement with essentially exact single-active-electron numerical results for detached or ionized elec-
tron energies corresponding to the high-energy end of the ATD and ATI plateaus (with only a small constant
shift of electron energies being required in the case of ATI). These formulas for ATI and ATD rates thus provide
an analytic explanation for the well-known oscillatory patterns of ATI and ATD rates as functions of electron
energy and of the parameters of the laser field. They also provide an analytic explanation for the dependence
of these rates on the initial orbital angular momentum of the active electron. Most significantly, these formulas
provide a fully quantum justification of the well-known classical three-step scenario for strong-field ionization
and detachment spectra in the high-energy region of the ATI or ATD plateau.
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I. INTRODUCTION

One of the most important phenomena in intense laser-
atom physics is above-threshold ionization (ATI), i.e., the
ionization of an atom with absorption of a larger number (n)
of laser field photons than the minimum necessary for ion-
ization. Besides its intrinsic interest as a source of high-
energy electrons in laser-atom interactions, ATI plays a key
role in other laser-atom phenomena, such as high-order har-
monic generation. For this reason it has continued to be ac-
tively investigated now for more than two decades (see, e.g.,
Refs. [1,2]).

The energy spectra of ATI electrons may be divided into
distinct regions depending on the relation between the ion-
ized electron’s energy E and the ponderomotive energy, u,
=e’F?/(4mw?) [i.e., the average energy of free-electron os-
cillations in a laser electric field, F(f)=e_.F cos wt, where F
and o are the field amplitude and frequency]. The two most
important spectral regions are the low-energy (or Keldysh)
part and the high-energy (plateau or rescattering) part. The
first one is well described by the Keldysh theory of tunneling
ionization [3]. For low frequencies (iw <<|E;|, where |E| is
the energy of the bound electron) it extends in energy up to
2u,, [which corresponds to the maximum instantaneous en-
ergy of free-electron oscillations in the field F(z)]. The high-
energy part extends up to ~10u, and the magnitudes of the
high-energy ATI rates are several orders of magnitude less
than those in the Keldysh part. This difference in the magni-
tudes of ATT rates for these two regions originates from the
fact that tunneling ionization requires only a minimal ac-
count of the electron-atom interaction (i.e., only on the level
of the initial bound-state wave function), while the descrip-
tion of the high-energy ATI spectrum requires a more com-
plete account of this interaction. The most spectacular fea-
ture of the high-energy ATI spectrum is that ATI electron
peaks corresponding to absorption of different numbers of
photons have nearly equal magnitude, producing thus the
so-called ATI plateau. The interpretation of this plateau
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structure in the ATI process is given by the well-known
three-step (rescattering) scenario [2], in which an electron (i)
tunnels to the continuum under the influence of an oscillating
laser field, (ii) is accelerated away from the atom by the laser
field (acquiring a kinematic momentum along the direction
of laser polarization), and (iii) after the field changes sign, is
accelerated back to the atomic core, from which it scatters,
changing the direction of its momentum and producing the
observed angular distribution of ATT electrons.

Although plateau structures in ATI spectra are well estab-
lished both experimentally and theoretically [by means of
numerical solutions of the time-dependent Schrodinger equa-
tion (TDSE)], there does not yet exist a closed-form analytic
formula describing such plateau structures that is similar to
the Keldysh formula for tunneling ionization [3]. Semiana-
lytical quantum analyses of the ATT process that confirm the
rescattering scenario are based primarily on two alternative
approaches: (i) the use of various modifications of the
strong-field (or Keldysh) approximation, or (ii) the use of
some exactly solvable quantum model for above-threshold
detachment (ATD) of an electron bound in a short-range po-
tential, i.e., neglecting the long-range (Coulomb) tail of the
atomic core potential.

Different modifications of the strong-field approximation
have been suggested [4-7]. All of them are based on a per-
turbativelike account of the atomic potential beyond the
Keldysh approach. Additionally, estimations of the multidi-
mensional (up to five) integrals for the ATT amplitudes that
occur within these modifications employ either saddle-point
methods [including quasiclassical analyses in terms of elec-
tron trajectories (cf. Ref. [2] for a review)] or more subtle
methods for estimating integrals involving oscillating func-
tions, such as the uniform approximation [8] (cf. also Ref.
[9D).

Among the exactly solvable models is one (cf. Refs.
[10,11]) that is based on the exact solution of the TDSE for
an electron in both a zero-range potential and a strong laser
field [12]. Another more general model [13,14] is based on
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the time-dependent effective range (TDER) theory, within
which the zero-range potential model is a special case (for
bound s states and an effective range parameter of zero). The
great advantage of exactly solvable models is the possibility
to check the accuracy of different approximate theories, by
means of self-consistent comparison of approximate and ex-
act results within the framework of the same approach. Al-
though Coulomb effects are usually neglected in semianalyti-
cal analyses, results of such short-range potential models
exhibit in many instances good qualitative agreement with
numerical results for neutral atoms [2]. However, most such
semianalytic ATI or ATD theories require in a final step the
numerical evaluation of one or more complicated temporal
integrals. A closed analytic formula for ATI angular distribu-
tions in the tunneling limit was obtained (as far as we are
aware) only in Ref. [9]. However, its accuracy and condi-
tions of applicability are not as yet established.

An important recent extension of the rescattering scenario
for ATT consists of the ad hoc factorization of the angular
distribution of ATT electrons near the ATI plateau cutoff as a
product of the elastic-scattering cross section of the active
electron from the positive ion (in the case of ATI) [15,16] or
the neutral atom (in the case of ATD) [17] and an “electron
wave packet,” W(E), originating from the first two steps of
the three-step ATI or ATD scenario (i.e., the tunneling ion-
ization and subsequent laser acceleration steps). This param-
etrization has been the subject of recent experimental studies
[18,19]. Although the results in Refs. [15-19] support this
parametrization and show that the energy dependence of the
electron wave packet W(E) is largely independent of the tar-
get atom (based on both the experimental measurements and
corresponding numerical solutions of the TDSE for a single
active electron), the analytic structure of the function W(E)
remains a “black box.” Hence an analytic justification for
this parametrization as well as an explicit form for W(E) is
very desirable, even for an atomic system that may be re-
garded as a special case [owing to the demonstrated insensi-
tivity of W(E) to the particular system].

In this paper we derive simple analytic formulas (involv-
ing a single Airy function) for the amplitudes and electron
angular distributions for ATD of an electron bound in a
short-range potential. These formulas are shown to provide
excellent agreement with exact numerical results of the
TDER theory over the high-energy part of the ATD plateau
(and beyond). Moreover, these results provide a quantum
justification for the classical three-step rescattering scenario
as well as a correction to the well-known classical (~10up)
law for the energy position of the ATI or ATD plateau cutoff.
They also confirm the above-discussed two-term parametri-
zation of the electron angular distribution and provide an
explicit formula for W(E) that shows its insensitivity to the
orbital symmetry (i.e., the angular momentum) of the bound-
electron wave function. Finally, these formulas provide clear
explanations for various qualitative features of ATD spectra,
such as: (i) the dependence of the oscillatory patterns of ATD
rates in the plateau region on the electron momentum, (ii) the
dependence of the oscillatory patterns of the n-photon ATD
rate on the laser parameters, and (iii) the dependence of the
ATD rates on the orbital angular momentum [ of the bound
electron. The simplicity and transparent physical meaning of
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these analytic formulas for ATD rates allow one to generalize
them to the case of neutral atoms. As we show, the resulting
Coulomb-modified formulas give results that agree very well
with results for the shapes of electron angular distributions in
the high-energy region of the ATI plateau that are obtained
numerically by solving the TDSE for the case of the hydro-
gen atom.

The paper is organized as follows. In Sec. II we give an
alternate expression for the exact ATD amplitude in the
TDER theory from that in Refs. [13,14]. This form of the
exact ATD amplitude is then used in Sec. III to obtain an
analytic formula for the ATD amplitude within the quasiclas-
sical (tunneling) limit. In Sec. IV we discuss this analytic
three-step result for the ATD amplitude and demonstrate (by
comparison with exact TDER results) the accuracy of its
description of the high-energy part of the ATD plateau. The
generalization our analytic result for ATD rates to the case of
neutral atoms is presented in Sec. V. Appendixes A—C pro-
vide mathematical derivations of some of the more detailed
intermediate results needed to obtain the analytical formulas
for the ATD amplitude and rate in Secs. II-IV.

II. INTEGRAL REPRESENTATION FOR THE EXACT ATD
AMPLITUDE IN TDER THEORY

We consider a single active electron in a bound state,
Yan(®)=R ()Y, (F), of the potential U(r), with angular
momentum [ and energy E,=-(f«)?/(2m), that interacts
with a monochromatic laser electric field F(z). Within the
complex quasienergy (or Floquet) approach, the bound state
Yam(r), when subjected to a monochromatic laser field,
evolves to the quasistationary quasienergy state (QQES)
@ (r,7). The complex quasienergy e describes the position
(Re €) and the total decay rate (I'=-2 Im €/7%) of the laser-
dressed state i,,,(r), while the asymptotic form of the peri-
odic (in time) QQES wave function ® (r,7) at large r pro-
vides an accurate ab initio definition for the n-photon ATI
(ATD) amplitude A, (p,) in terms of the Fourier coefficients
of ® (r,7). The momentum p,,= \f'2m(Eo+nﬁw—up) is that of
the ionized (detached) electron. For details, see, e.g., the re-
views in [20,21].

To simplify the solution of the four-dimensional (i.e.,
based on the TDSE) eigenvalue problem for obtaining
@ (r,7) and e for the case of a general potential U(r), we
assume U(r) to be of short range (of radius r=r,) and to
support only a single weakly bound (negative-ion) state
Yan(®) (., k'>r.) dynamically interacting with the
l-wave component of the three-dimensional continuum. The
TDER theory extends effective range theory [22] for low-
energy elastic electron scattering from a short-range potential
U(r) to the case of a QQES. Within TDER theory, the wave
function ® (r,r) outside the potential well U(r) (i.e., for r
=r,) has an analytic form in terms of the retarded Green’s
function for a free electron in the field F(z), G(r,t;r’,t'),
and a periodic function, (7). The latter function enters the
boundary condition for ® (r,) inside the potential well U(r)
(i.e., for r=r,) and satisfies the one-dimensional integro-
differential eigenvalue equation for the complex quasienergy
€ (see Refs. [13,23] for details). Thus the TDER theory pro-
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vides an exactly solvable model for the multichannel ATD
problem, treating electron-laser interactions exactly and
electron-atom interactions as in effective range theory [22]
(i.e., in terms of the scattering length a; and the effective
range r)).

Exact TDER results for the amplitude A, (p,) and the cor-
responding differential ATD rates,

aw,(p,)

dQ,

2, (1)

1 —
=T,(p,) = —\Np,A.(p,)
m

have been derived in Refs. [13,14] as expansions in general—
ized Bessel functions and the Fourier coefficients, f(z,(, of
f9(z). However, in order to derive a closed-form analytic
formula for the ATD amplitude 4,(p,), an alternative inte-
gral representation is more convenient and is the goal of this
section. In carrying out these derivations, it is useful to note
two important conclusions of our prior analysis [13,14]: (i)
the partial ATD rate with zero projection m of the angular
momentum on the direction of linear laser polarization gives
the dominant contribution to I',,(p,,); and (ii) for low frequen-

ment with those in the quasiclassical approximation.

For s (1=0) and p (I=1, m=0) states #,,(r), the TDER
result for the QQES wave function @ (r,7) has the following
form in the region r=r, [13,23]:

@r.0) = 5T lim ;I,Ix(rr D @

r'—0

where
2

wh? (! o
J G(I‘,l‘;l‘l,l')f(l)(l,)elé(r_t )/hdl‘/,
3)

and C,, is the coefficient in the asymptotic form of i,,,,(r) at
large distances,

x(r.r';0) =—

—Kr

lpklm(r)|r>x‘] = Kl Ylm(r) (4)

Using the spectral expansion of the Green’s function in
Eq. (3) (instead of the Feynman form in terms of the classi-
cal action, as used in Refs. [13,14,23]), the function
x(r,r’;¢) has the form (cf. Appendix A)

zS,(r,t;r’,z’)/hf{l)(t/)
x(r,r',1) = 2 f |

R - R0

(5)

where T=27/ w, p?/(Zm)=e+sﬁw—up,
- "l mRA(7)
S,(r,t;r' 1) =— _—

t' 2
+py|R(r,0) = R(r’,1")|

—u,+ sﬁw]dT

+mr-R(r)-r' - R(t")],

R()= ezg—cmos wt, R(r,5)=r-R(). (6)
mw
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The asymptotic form of x(r,r’,7) at large r is

X(l', r’ , [) ~ eizp(r,t)/ﬁz

T .
X % J exp{ ;—i[S(pS,t’) —r' -Ps(t’)]} 1Ot

0
(7)

eipS\R(r,t)|/ﬁ—iswt

r

where P, (1")=p,+mR(’),

. | mRA(1)
o(r,))=mr - R(1) - f S T |drs

t - 2
S(pt) = f [—[p”mn(’)] —e:|dt.

2m

After substituting Eq. (7) into Eq. (2) and differentiating over
7', the asymptotic behavior of ® (r,?) at r—oo is

eipS|R(r,t)|/h—iswt

O fr,0) = (= e Y AV (p)—————, (8

where the n-photon ATD amplitude is expressed in the de-
sired integral form:

. !
20411 (T e, [p +m’R(t)]]
() _ -/ &m0V
‘An (pn) - CKl 477 TJ;) |: ﬁK

X fD(1)eS PtV gy, 9)

Note that by expanding f(¢) in Fourier series,
[0 =2 fe*, (10)
k

the integral over 7 in Eq. (9) may be evaluated analytically in
terms of generalized Bessel functions and the result for
AE,])(p,,) coincides with those in Refs. [13,14].

To simplify the notation, in what follows through the end
of Sec. IIT we use scaled units (s.u.), in which energies, w,

\2m|E0| =hK, respectlvely, and laser field amphtudes F are
at/z)(2|E0|/Eat)3/2
where E,=m e4/ﬁ2~27 21 ev, and Fat—mzes/ﬁ“”*S 14
X 10° V/cm. In these units, amplitude (9) becomes

/ 20+ 11 !
AVp,)=Cy * f ( - —sm wt)
X ﬂl)(t)e’s(""”)dt, (11)
13 F 2
S(p,.1) =f [(p” — —sin wt) - e]dt, (12)
w

where F=e_ F.

The simplest way to solve the integro-differential eigen-
value equation [for the function f)(r) and the complex
quasienergy €] is to convert it to a system of linear homoge-
neous algebraic equations for the Fourier coefficients of
f(t). These equations have the following form [13,14]:
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Rl(€+ 2kw)f<22=EM§({)](/(6 211215 (13)
k!
where
RAE)=—a;" + r,E/2 —iE""?, (14)

and a; and r; are the scattering length and effective range
parameters. For bound-state problems, these parameters are
intimately related to the binding energy E( and the coeffi-
cient C,; in Eq. (4) [24]: e.g., for s states, 1/ay=«(1
—kro/2) and C3=2k/(1- krg). The explicit forms of the ma-
trix elements M](({)](,(e) in terms of integrals involving Bessel
functions are different for /=0, 1. We present here the form
for s states (I=0) (cf. Ref. [14] for p states):

(0) ik_k’ Cat il e+(k+k")w]t
Mye=—T—=| 3z
NdmiJo
X{e™ ™M _[2(0)] = S} (15)

where

4 sin2(wt/2))

u
() = —B(sin wt —
[0) wt

4 sin(wt/2) ) 16)

\2) = EE(mt
w wt

Note also that Mil)k,(e) satisfies the following useful symme-
try relation:

y®

(O =M (64 2pw). (17)

The function f(¢) is a key component of the TDER for-
mulation of ATD since it comprises all information on the
electron interaction with the core potential U(r) during the
ATD process. Thus, different approximations for the solution
of system (13) for ]&21,2 correspond to different approximate
accounts of the potential U(r) in ATD calculations. The three
most important approximations for f3) are [14]

f<2113= S0 (18)
N=M\(E), k+0, (19)
n_ M /(!,)O(Eo)
T RYE + 2kw) = MU(E,y)
~ M \E)R (Ey+2kw), k+# 0. (20)

All these approximations neglect the Stark effect (by ap-
proximating €= E,)), are valid in the low-frequency (or qua-
siclassical) limit (w<<|E|), and assume fglz:l at k=0. They
differ from one another in their account of binding potential
effects for coefficients fg,z with k#0. (For the case of the
zero-range potential model, corresponding approximations
are discussed in Refs. [11,25].)

Approximation (18) gives the strong-field approximation
(or Keldysh) result for the amplitude A,(p,), AX(p,),
which follows from Eq. (11) upon making the substitutions
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fP(r)—1 and e— E,. It describes only the low-energy part
of the ATD spectrum. As is well known, this approximation
accounts for the potential U(r) only for the initial bound-
state wave function. As discussed in Refs. [11,25], approxi-
mation (19) is equivalent to the “improved Keldysh approxi-
mation” (IKA) [5] within the TDER model, ie., to a
perturbative treatment of U(r). As shown in Sec. III, IKA
(19) is not appropriate for the correct evaluation of A,,(p,) in
the tunneling limit. Instead, the more exact “rescattering ap-
proximation” (20) is necessary. As compared to Eq. (18), the
rescattering approximation corresponds to the first-order per-
turbative account of the nondiagonal matrix elements M,(ffk,
in an iterative solution of system (13). The diagonal matrix
elements Ml(cl,)k(EO) are neglected in the last equality in Eq.
(20) since they vanish for F—0 and give negligible contri-
bution to the denominator in Eq. (20) in the tunneling re-
gime, y<<1, where 7y is the Keldysh parameter, y=w/F
[=(V2m|Ey|w)/(eF) in absolute units].

III. ANALYTIC ANALYSIS OF THE ATD AMPLITUDE
IN THE TUNNELING LIMIT

A. Analytic approximation for the function f(f)

Rescattering approximation (20) for fgl,z provides ATD
rates that are in excellent agreement with exact TDER theory
results over a wide interval of laser parameters (cf. Refs.
[13,14]). To obtain an analytical approximation for the func-
tion f(¢) in Eq. (11), we thus start from the following ap-
proximate result (cf. Appendix B) for the matrix elements
M/(cl,)o(Eo) EM% that enter expression (20) for f1):

2041 [ o \? ™ QRikE
=2 )s [T
T iN16m i \VF) 5 J_; \eos 7,

ik, 7)-S (k&)1 ~1 gin &)’

e + Sin

y kry snd e )
cos &—cos 7,

[
where k,=Vsw—1-u, and

¢
S(ky, &) = if [(ky+ " sin @)*+ 1]de. (22)

The dimensionless time 7, (=wfy) in Eq. (21) is that root of
the saddle-point equation,

8S(ks, To)

=(k;+ 7y ' sin 7)>+1=0, (23)
07'0

which has both a positive imaginary part and the smallest
value of Re 7.

To obtain an analytical expression for (1), we use ap-
proximate result (20) for f) to evaluate the series in Eq.
(10). For this purpose we obtain first the function f(¢) cor-
responding to IKA (19):

A =1+ X M{fje2iker, (24)
k#0

Using Eq. (21) and the identity Zexp[2ik(é-wt)]=m8(&
— i), £i?(7) may be presented as
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20+ 1 ( w )3 Stk 70)
B iN16i \/77 s \cos 7

(ky+ v sin )’

filan -1

X ¢ iStke?) : (25)

COS T—COS T

where 7=wt. In the low-frequency limit, the sum over s in
Eq. (25) can be replaced by an integral over the active elec-
tron’s momentum ¢ using the following substitutions:

©

2
ki —q, 2 olky) — = f @(q)qdq. (26)
K wJg

As a result, expression (25) has the form

(21+1)wJ qdq SiSt@.70)
l\’4’7TlF3/2

IKA( - T
Vcos 7,

P P l
—istgn g+ Y sin 7)
COS T—COS T

Xe (27)

Evaluating the integral in Eq. (27) by the saddle-point
method, we obtain

3
2+l @ £/18(6.7)-50.7)]
2i%1 N F cos 7y(7— 7p)°

fﬁgA(t) -1=

X(g+ vy 'sin 7, (28)
where 7, and ¢ satisfy the following system of equations:
g+ vy 'sin+i=0, (29)
COS T—COS T,
g=—"——" (30)

7= 1)

To obtain the function f(¢) corresponding to rescattering
approximation (20), fﬁ?(r), we use a function, g)(7), as fol-
lows:

120 = 1=[fi2a0) - 11g7). (31)

The function g)(¢) is smoothly varying compared to the os-
cillatory part of ﬂlg A(#). Tt can be estimated using an identity
following from Egs. (20) and (31):

~ 1 T/2 )
MAR; ko -1) = . J a0 = 11g V(0> .
=172

(32)

As follows from Eq. (28), the saddle points for the integral in
Eq. (32) are given by the equation

&g, ) =2kw -1, (33)
where £(g, 7) is defined by
E(g. ) =(q+ 7y sin 1. (34)

Thus, Eq. (33) determines the moments of time 7; at which
the energy of the active electron, &(g, 7)), becomes equal to
2khw+E, (in absolute units). This is the energy resulting
from an exchange of 2k photons between the initially bound
electron and the laser field, which results in the population of
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the 2kth harmonic of the QQES wave function ® (r,r) for
r=r,. Equations (32) and (33) show that at the saddle points
t (= T/w) the function g(l)(t) coincides with R} (&g, 7).
Thus we approximate g (r) for any ¢ as follows:

g1 =R;"((g, 7). (35)

As a result, f%)(t) in Eq. (31) has the form

3
=1+ O S isen
2i F cos 15(7— 7p)

X[E(q. DR} (g, 7). (36)

In agreement with the relation between the corresponding
Fourier coefficients in Egs. (20) and (19), f%)(t) differs from
A2 (2) in Eq. (28) only by the factor R;'(£(g, 7). Equation
(36) clearly shows that the integer unity on the ri ht hand
side (rhs) corresponds to approximation (18) for , while
the second term describes rescattering effects. ThlS ‘rescat-
tering correction” to f1(7) is expressed in terms of two char-
acteristic 7-dependent parameters, 7, and g+7~! sin 7, which
have a simple quasiclassical interpretation. The time 7, (in
units of w™!) is the time at which the initially bound electron
appears in the continuum (due to tunneling) at some point r
and starts to move along a closed trajectory under the action
of the laser field F(f). The momentum g+ v~ sin 7 is the
electron’s momentum upon returning to the same point r at
time 7 with kinetic energy &(q, 7).

B. Analytic result for the ATD amplitude

Substituting fﬁe (r) from Eq. (36) into integral (11), the
ATD amplitude separates into a sum of “Keldysh” [A'®)(p,)]

and “rescattering” [A,(f)(p,,)] terms,

ADp,) = ABp,) + AV (p,). (37)

The Keldysh amplitude is

Cy [21+1 (7 F L
AP (p,) = \/ f (Pu — —sin T) eS®rdr,
2 4o J_, [0)

(38)

where S(p,,7) is given by Eq. (12) after making the substi-
tutions €e— Ey=—1 and wt— 7. The component of p, parallel
to the laser polarization axis is pj=e,-p,, while p,
= \e"pi— pﬁ. Note that for the case of a linearly polarized field,
the electron angular distributions are axially symmetric with
respect to the laser polarization axis and are invariant under
the reflection, 8— (7r—6). Thus, in what follows we assume
that the electron ejection angle 6 runs over the interval
(0,7/2), i.e., py=0. The rescattering amplitude has then the
following form:
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-~ Cuf 20+ 1)\ m
A,(f)(Pn) - Tf( ) w2
l

4ar —a \F cos (17— 7p)°

eiCD(f)

!
><(17| - gsin 7') [£(g, DR} (E(g, D)d,

(39)
where
(I)(T) = S(pm T) + S(l], 7'0) - S(f], T) . (40)

The saddle points of the integrand in Eq. (39) are given by
the equation d®(7)/d7=0, i.e.,

1 F o\
®'(r)=—||p,—e,—sin7| —&(¢g.7) |=0, (41)
w w
where the derivative ®’(7) may be parametrized as follows:

1
(I)’(T) = ;[pn - ezQ+(T)] . (pn + ezQ)

1
= ;[pi -2y 'py sin 7— g, (Dql, (42)

where
g (N=g+2y'sin 7. (43)

Equations (29), (30), and (41) give a coupled system of
saddle-point equations for 7, g, and 7. However, the proper
saddle-point evaluation of the integral in Eq. (39) leads to a
complicated expression for the ATD amplitude as a sum of
separate saddle-point contributions (cf. [2]). Moreover, the
standard saddle-point method becomes inapplicable at the
classical cutoff energy (pi: 10u,,), where two isolated saddle
points of the function ®(7) merge into a single one [9].

In this paper we perform an approximate evaluation of the
integral over 7 in Eq. (39) based on the general ideas of the
uniform approximation [26]. Namely, we approximate the
function ®(7) by a cubic polynomial near the point 7=7,
where ®”(7)=0 and, as discussed below, ®’(7) has a maxi-
mum. Moreover, we consider only classically allowed closed
electron trajectories, in which case 7, ¢, and 7 are real. As
will be shown, our approximation is appropriate for the de-
scription of the high-energy part of the ATD spectrum. (A
similar method for estimating A;’:(”(p,,) was used in Ref. [9],
in which the authors started with a modified Keldysh result
for the ATI amplitude [taking into account the potential U(r)
perturbatively]. A more accurate semianalytical description
of the ATI plateau using the uniform approximation within
the framework of the IKA was presented in Ref. [8].)

We consider first Egs. (29), (30), and (41) in the lowest
order in 7. In this case, 7y~ T, while g=g=—7v"! sin 7, as
follows from Eq. (29). Substituting ¢— ¢ in Eq. (30), we
obtain a relation between the dimensionless times 7, and 7in
the lowest (i.e., zero) order in 7
COS T— COS Ty

sin 7y =— (44)

T—;O

As an analysis of the explicit form for ®"(7) shows, the first
derivative, ®'(7), achieves its maximum near the point 7
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=7, where ¢,(7) is a maximum. The positions of the maxima
of ¢,(7) are given by the equation ¢,(7)=0, which [using
Eqgs. (30), (43), and (44)] may be represented as

sin 7— sin 7 0

2 cos T— (45)

T— 1T
Numerical analysis of Eqgs. (44) and (45) shows that g,(7)
attains its global maximum at 7,=-2.881, 7=7=1.425:
max{q,(7)}=¢,(P=2.24y"". The physical meaning of the
times 7, and 7 becomes clear if one represents saddle-point
equation (41) as [cf. Eq. (42)]

[p,—e.q.(7] (p,+eq) =0, (46)

and considers the case of p,,lle.. For this case Eq. (46) has the
solution |p,|=¢,(7), where ¢*(?) =~ 10u,,. The times 7, and 7,
therefore, are the saddle points of Egs. (29), (30), and (41)
for the case when the electron is ejected along the polariza-
tion axis (#=0) with the maximum classically allowed en-
ergy, 10u,, (i.e., the cutoff energy).

Near the point 7=7, the function ®'(7) in Eq. (42) can be
approximated by a three-term quadratic polynomial in x
=(1=7/7, ax’+bx+c, by expanding ¢,(7) and ¢ in 7—7 up
to quadratic terms. The linear term in x may be removed by
making the linear transformation 7—[7—b/(2a)]. As a re-
sult, the expansion of ®’(7) near its maximum (at 7=7) has
the following form:

A2 B2
1|a(r=7° b }’ 47)

CD'(T)=;[T—E+C

where

T=T+0b/(2a),
a=7yp+ ao,
b=a(p-q,),
c=(p,~Ap)* - £(G.79) ~ (p,~ Ap)* - 3.11u,,

sin 7

F F
=0.989— = —.

w w w

Ap=F

The numerical values of ¢g,(7) and ¢ at 7=7 and of the pa-
rameters «, and a; are ¢, (P=G,=224vy"!, ¢(PD=7
=0.26y"!, y=0.10, and a;=0.29. According to Eq. (47), the
function ®(7) near the point 7=7 is approximated by a cubic
polynomial:

1 a(r=7)3
= w{ 37
where @ is given by [cf. Eq. (40)]

(I)O = S(pm ?) + 3(‘7’ a:0) - 3((7, ?) . (49)

b2
+ (c - —)(7'— 7')} +d,, (43)
4a

As our numerical analysis shows, lowest-order (in ) re-
sult (48) for ®(7) is not sufficiently accurate for the evalua-
tion of the integral in Eq. (39). To consider the next-order
corrections in vy for the coefficients a, b, and c, it is necessary
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first to analyze more accurately the system of saddle-point
equations (29) and (30), beyond the approximations given by
g=-7v"" sin 7, and Eq. (44), both of which were used for the
derivation of Eq. (47). By an iterative (in y) solution of Egs.
(29) and (30), starting from 7,=7,(7) and g=—7"" sin 7(7),
we find the corrections of order y to 7, and g:

To= '7’0 - i’)//COS F(), (50)

Y

2(7—Ty)cos Ty 51

g=~—7vy"'sin7 -
Equations (50) and (51) allow one to obtain y-dependent
corrections to factors a, b, ¢ in Eq. (47). However, numerical
analysis shows that the 9 corrections to a and b give negli-
gible contributions to the final results, so that only the cor-
rection to the parameter ¢, c— c+A, where

A =2 cos 7/cos 7, = —0.30, (52)

is significant. [In fact, —A=0.30 gives the first quantum cor-
rection to the classical result for the energy &, where &
=&(g, D ~=3.11u,.] Also, the imaginary y-dependent term
on the rhs of Eq. (50) contributes to @, in Eq. (49). As a
result, d, becomes complex. Replacing 7, in Eq. (49) by the
more accurate result (50), we obtain the lowest (first order in
v) correction to P:

2i

ADy= ——.
3F|cos 7|

(53)

Approximating ®(7) in Eq. (39) by Eq. (48) (with c—¢
+A, ®)— Dy+Ad), the integral over 7 may be estimated
analytically. Note first that the behavior of the integrand near
the saddle points governs the value of integrals involving
highly oscillatory exponential functions, such as in Eq. (39).
In the lowest order in 7, the saddle points of the function
®(7), 7.(p,), are given by substituting Eq. (47) for ®'(7)
into saddle-point equation (41):

7-(p,)=7=* l\,'bz —4ac. (54)
2a

One sees that the saddle points 7, and 7_ are symmetric with
respect to 7 for any p,,. According to Eq. (41), the following
substitution for the energy £(q, 7) in the integrand of Eq. (39)
is valid at the saddle points:

F 2
g(qa T) - (pn - ez;Sin T*(pn)) . (55)

As follows from the discussion below Eq. (46) and as a
direct analysis of Eq. (54) shows, the saddle points 7. merge
to a single one, 7. — 7, at the classical cutoff energy, i.e., at
pﬁ=57‘2=10u1, and #=0. Thus in order to have a simple
analytic expression for the ATD amplitude, we approximate
the saddle points 7. in Eq. (55) by 7 and replace 7, and 7 in
the smooth part of the integrand in Eq. (39) by 7, and 7. (As
our numerical results show, this approximation is reasonable
for approximating the ATD rates for photoelectron energies
Enzpizhtp.) Finally, we extend the integration limits in
the integral in Eq. (39) to *o, so that the integral of
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expli®(7)] may be expressed in terms of the Airy function

Ai(€). As a result, the ATD amplitude ~Zl,(f)(pn) takes the fol-
lowing analytic form:

_ C (2l+1)e’
A(p,) = —“’\/ ¢
n (Py) i N 16ma?3F3 cos 7y(7- 7,)°3

% e—2/(3F|cos 7ol Ai(g)f(l)(l)n _ Ap) s (56)

i

where

F._ _ F
Ap=e —sinT=e,—,
w w

E=(aF) ™" [c + A - b¥(4a)], (57)
A(p) =1+ 1D)p'(p- )R (p?). (58)

IV. RESULTS AND DISCUSSION
A. Three-step formula for the ATD rates FflR’(p,,)

Converting .Zlfl(pn) in Eq. (56) from scaled to absolute
units and substituting the result into Eq. (1), the n-photon
differential ATD rate F;R)(pn) in the high-energy plateau re-
gion takes the following analytic form:

I'®(p,) = Z(F,)W(p,) o (p, - Ap). (59)

Thus, our key results, Egs. (56) and (59), factorize into a
product of three terms corresponding to the three-step rescat-
tering model of ATI or ATD, thus providing a convincing
quantum justification for this model. Below we discuss each
of the three terms in Eq. (59) separately.

The “ionization factor” Z(F, ) (in units of cm™) is given
by

20+ 1 how \*F,
I(F,w)=Cx, (—“’) L4/ (60)
87 \|Ey|/) F

where, more exactly, the field amplitude F should be re-
placed by F=F|cos 7| [cf. Eq. (56)], i.e., by the magnitude
of the laser field F(r) at the moment of ionization, =7,/ w.
(This is a consequence of our approximation y<<1, which is
equivalent to the quasistatic limit.) However, for simplicity,

we approximate F=~F, because |cos 7| =0.966. As shown in
Appendix C, the factor Z(F,w) is given by the modulus
squared of Keldysh amplitude (38) in the quasiclassical limit
(y—0) for the case of low-energy (|p,|—0) electrons
ejected along the direction of polarization of the laser field
F(7). The factor Z(F, w) may also be represented (cf. Appen-
dix C) in terms of the decay rate I'y(F) of an initial bound
state 4,,,,(r), with m=0 in a static electric field F:

m
1(F,@) =274, 0= ——¥Tu(F),  (61)
K
where I'((F) is given by [27]

hk F
Fst(F) = @(21 + I)CilF—e_4F0/(3F). (62)
0

033406-7



FROLOV, MANAKOV, AND STARACE

The “propagation factor” W(p,,) (in units of cm™! s7!) de-
scribes the propagation of an electron in the laser-dressed
continuum from the moment of ionization t=t,= 7w~ up to
the rescattering event, at t=t,=7w ™

Do ﬁa)>2 Ai%(¢)
W(p,) = —2— | 5| ——5 63
(®) h(7- ?0)3<Ea1 [al/(21,)]" (63)

where (7-7,)3=79.84 = 80,

. —Ap[*/(2m) — (3.11u, + 0.3|E,

§=Ip p*/(2m) — ( lbg, | 0|)’ (64
E,[al/(21,)]
_P® L, Ap=SF, (65)
el w

and 1,=3.51X10'® W/cm?. We have neglected the term
~b?/(4a) [cf. Eq. (57)] in Eq. (64) for & because its contri-
bution is considerable only for = /4, where F,(f)(pn) is a
few orders of magnitude smaller than for #=0. Within this
approximation, the numerator in the Airy function argument
& [cf. Eq. (64)] has a transparent physical meaning: it is the
difference between the kinetic energy of an electron in a
laser field at the moment of rescattering, r=t,, and that ac-
quired during its propagation in the laser field over the inter-
val 07=7-7,=4.306. Note that the latter kinetic energy in-
volves the quantum correction 0.3|E,|, while its “classical”
part, £(g,7) =3.11u,, is slightly smaller than the correspond-
ing energy 3.17u,, for the case of harmonic generation.

The last factor in Eq. (59) is the cross section for elastic
scattering of the electron, [p;/=|p/|, where the initial momen-
tum p; is directed along the laser polarization, p;=|p,
—Aple,, and the final momentum is given by p,=p,—Ap. In
terms of the wave vector k=p/#, o'”(p) has the form

QI+ 1D)X(k-e)? 1+ 1) (k-e)?

(1)( - =
o(p)= = ~
IR (k)| (_ 1 N "l_kz)z_'_kz(zm)

a; 2

(66)

We emphasize that Eq. (66) gives the exact elastic cross
section within effective range theory for /-wave scattering, in
which case the scattering phase & (k) in the I-wave part of the
elastic-scattering amplitude [22],

20+ 1
2ik

filp) = (¥~ 1)P(cos 6), cos O=(k-e,),

(67)

where P;(x) is a Legendre polynomial, is parametrized ac-
cording to effective range theory [22] as

1 rk?

K cot (k) == —+ -

a

(68)

It is worthwhile noting that the factor R,(E) in TDER theory
[cf. Eq. (13)] is intimately related to the dynamical part of
the amplitude f;(p) for electron scattering from a short-range
potential.
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FIG. 1. (Color online) High-energy ATD spectra for three dif-
ferent angles 6 for H™ in a CO, laser field (\=10.6 pum) with
intensity 1=2 % 10'> W/cm? (y=0.424). Solid curves: exact TDER
results; dot-dashed curves: analytic result (59). Vertical lines mark
the positions of the plateau cutoff according to Eq. (73) (solid
lines), Eq. (72) (dashed lines), and Eq. (71) (dotted line). The ar-
rows mark the positions of the maxima of the interference oscilla-
tions according to Eq. (83).

Equation (59) for F;R)(p,l) shows that the electron wave
packet W(E) introduced in Refs. [15-17] has the following
explicit analytic structure:

W(E) = Z(F,w)W(p,). (69)

Moreover, the elastic cross section o' in Eq. (59) depends
on the same “shifted” momentum, p,—Ap, that was intro-
duced in the empirical parametrization for ATI or ATD rates
in Refs. [15-17]. Note also that a closed-form analytic for-
mula (involving an Airy function) for ATI or ATD angular
distributions near the plateau cutoff was obtained earlier in
Ref. [9] for a ground state of s symmetry without specifica-
tion of any particular atomic potential U(r), which was taken
into account perturbatively, in first order. The differences
from our expression (59) are: (i) FLR)(p,,) in Ref. [9] involves
the Born result [~|U(p,)|?] for the elastic cross section with
an “unshifted” (i.e., Ap=0) momentum p,,, and (ii) the argu-
ment of the Airy function in Ref. [9] is different from that in
our Egs. (57) and (64): actually the authors of Ref. [9] did
not present an explicit analytic expression for this argument,
but (based on results of numerical analyses) approximated
this argument by a term proportional to [p2/(2m)—E(6)],
where EZ(6) is the classical position of the plateau cutoff for
a given ejection angle @ [cf. Eq. (72)].

Figures 1 and 2 compare the results of our analytic for-
mula (56) for the ATD amplitude with results of an exact
numerical evaluation of amplitude (9) expressed in terms of
generalized Bessel functions [13,14]. For both the H™ and F~
negative ions, one sees that for detached electron energies at
the high-energy end of the ATD plateau, as well as beyond
the plateau cutoff, the analytic and exact numerical results
agree quantitatively very well. Our analytical results not only
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FIG. 2. (Color online) The same as in Fig. 1, but for F~ in a laser
field with A=1.8 um and /=4 X 10> W/cm? (y=0.375).

correctly predict the differential ATD rates FQR)(p,,) for elec-
trons ejected along the laser polarization axis (#=0), but also
reproduce well the shape of the angular distributions in the
6-dependent cutoff regions of the ATD spectra. It is worth-
while emphasizing that the shift Ap, of the momentum p,, in
the argument of the elastic-scattering cross section in Eq.
(59) affects significantly the magnitude of the ATD rates:
neglecting this shift reduces the absolute value of the rates
by about an order of magnitude compared to the exact TDER
results in Figs. 1 and 2. This reduction is not surprising since
’(p) increases with decreasing electron energy. Note that
the evolution of the angular distribution I',(p,) as n varies
across the cutoff region [i.e., the transition from an angular
distribution I',(p,) concentrated along the vector F(z) at the
cutoff energy and beyond to the side-lobe structure existing
for below-cutoff energies] was described in detail in Ref. [9].
Our results are in good qualitative agreement with those in
Ref. [9]. Hence we do not pursue this question in the present
paper.

In the following subsections we discuss in turn a number
of very general results for the ATI or ATD process that are
obtained using analytic formulas (56) and (59).

B. ATI or ATD cutoff position

The well-known classical position of the ATT or ATD cut-
off (for 6=0),

ES'=10.007u, ~ 10u,, (70)

has been obtained from numerical solution of the classical
Newton equations for a free electron in a laser field within
the rescattering scenario [28]. The first quantum correction to
classical law (70),

EY = 10u, + 0.538|E,

; (71)

was found in Ref. [29] using the strong-field approximation
and saddle-point analyses in terms of quasiclassical electron
trajectories. As in the case of the cutoff energy in high-order
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harmonic generation (where the quantum correction is about
0.32|Ey| [30]), the quantum corrections increase the extent of
the plateaus. However, as shown by numerical results, the
position of the last maximum in both ATT and harmonic gen-
eration spectra, after which rates start to decrease steeply,
may take place both above and below the classically pre-
dicted cutoff positions. Moreover, the above-mentioned (qua-
si)classical derivations define the cutoff position indirectly,
not as the maximum in the rate before it begins decreasing,
but as the maximum energy of an electron moving in a laser
field along a one-dimensional trajectory. Therefore, the
three-dimensional structure of the electron wave packet as
well as its transverse spreading is ignored in such consider-
ations. In contrast, our analytical results for ATD rates show
excellent agreement of the cutoff positions with those of ex-
act numerical results (cf. Figs. 1 and 2), thus offering the
possibility of predictin% the cutoff position analytically, as
the energy at which FI(IR (p,) attains its highest energy maxi-
mum. In addition, our analysis allows us to obtain the depen-
dence of the cutoff energy on the ejection angle 6. To the
best of our knowledge, an analytical approximation for this
dependence at small 6 was suggested for the first time in Ref.

[9]:
ENO) =E" ~7.9u,6? = (10~ 7.9)u,, (72)

where the ejection angle 6 is in radians. Note that our ana-
lytic formulas, derived below, for the plateau cutoff energies
for =0 [cf. Eq. (79)] and 6>0 [cf. Eq. (80)] differ from
those in Eq. (71) [29] and Eq. (72) [9], respectively, that
have been obtained previously by others.

According to the quasiclassical considerations of Ref.
[28], the extent of the high-energy plateau is determined by
the dynamics of the rescattering wave packet, which in our
case is given by the factor W(p,) in Eq. (63). Therefore, we
define the ATT or ATD cutoff as the highest energy maximum
of the function W(p,) [corresponding to |p,|=p.(0)] for a
given direction of the vector p,, i.e., a given 6. Since the
Airy function Ai(¢) decreases rapidly for positive values of
the argument ¢ and oscillates for £<0, the equation for the
plateau cutoff momentum p(6) and the corresponding cutoff
energy, E.(6)=p2(6)/(2m), follows by equating the argument
of Ai(9) in Eq. (56) to the position & of the first maximum
of Ai(&) for £€<0 (at £, =-1.019; see, e.g., Ref. [31]):

_ 2Iat>l/31 b2
=2 v AlE - | =6 73
& (al E, ¢+ A[E| 4a & (73)

where the dimensionless parameter a is defined by Eq. (65)
and the parameters ¢ and b in absolute units are given by

— Ap)?
Czu_?,'llup’
2m

(P - 2.24¢F] w)?
.
2m

b*=

For later use, it is convenient to rewrite Eq. (73) as
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4ac - b*=4a{& [al/21)] PE - A[Eo}.  (74)

This transcendental equation cannot be solved analytically
with respect to p,=p.(6) for a fixed ejection angle 6. We
thus treat it approximately, taking into account that both 7y
and fiw/|E,| are small in the tunneling limit. We express the
cutoff momentum p.(6) as pC(0)=pE.O)(6)+ApC(0), where
pgo)(ﬁ) satisfies the equation

F(6),6) = 4ac - b*=0. (75)

We now expand the left-hand side (lhs) of Eq. (74) in p about
the point p= pE.O)(H), retaining only the linear term, and con-
sider the rhs of Eq. (74) as a perturbation, evaluating it at the
point p.(6)=p”(6). We thus obtain the following result for
Ap(6):

ats [al/(zlat)]1/3Eat - A|E0|}
df(p,6)/dp

Consider first the position of the cutoff at zero ejection
angle, 6=0. In this case the solution of Eq. (75) is

F
PO = pO(0) =224, (77)
w

Ap(6) = . (76)

p=r0(0)

which corresponds to a photoelectron energy equal to the
classical cutoff energy E in Eq. (70). Substituting Eq. (77)
into Eq. (76), we obtain the first quantum correction (of or-
der ) to p(co) for 0=0:

1/3 E
at

. 78
|Eo|} 78)

— 1
Ap.=y\N2m|E|| 0.12 - ().54(—)
21,
Combining results (77) and (78), the cutoff position for 6
=0 is given by

E,=E+0.54|Ey| - 2.42[1/(21,)]E,. (79)

If one omits the intensity-dependent correction in square
brackets, then Eq. (79) reduces to the result of Ref. [29] in
Eq. (71). The intensity-dependent correction in Eq. (79) de-
scribes the quantum spreading of the returning electron wave
packet and governs the sign of the total quantum correction
to the classical 10u, law. The intensity /. at which the two
corrections in Eq. (79) approximately compensate for each
other is I, ~2.2 X 107(|Ey|/ E,)*I,. For I<I, the extent of
the ATI or ATD plateau is larger than 10u,, while for 1> 1,
the position of the cutoff lies below 10u,. For H™ and F~, I,
corresponds to intensities of about 1.6X10' and 1.5
X 10'2 W/cm?, respectively. This approximate compensa-
tion explains why classical result (70) is in better agreement
with our more accurate estimate (79) and with the exact nu-
merical results in Figs. 1 and 2 for =0 as compared to
cutoff law (71). (For rare-gas atoms, we estimate that this
compensation occurs in the range 10'-10' W/cm?) In
Fig. 3 we compare the cutoff position given by Eq. (79) with
that obtained from the numerical solution of transcendental
equation (73). One sees that analytical estimate (79) repro-
duces very well the exact results, while Eq. (71) significantly
overestimates the cutoff energy.

In a way similar to that for the case #=0, Egs. (74)—(76)
allow one to estimate the position of the cutoff for nonzero
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—>10.2

E, (inunits of u

FIG. 3. Cutoff energy vs the Keldysh parameter y for §=0 and
two frequencies, w=0.075|Ey| (thick lines) and w=0.15|E,| (thin
lines). Solid lines, exact results [cf. Eq. (73)]; dot-dashed lines,
results of Eq. (79); dotted line, results of Ref. [29].

ejection angles, assuming that the angle @ (in radians) is
small. The derivation is straightforward, but lengthy. Hence
we present here only the final result:

E.(6) = ESN(0) + (0.54 - 0.216°)|E,|
- (2.42-0.9668°)[1/(21,)]"°E,,, (80)

where ES(6) is given by Eq. (72). In Fig. 4 we compare
results of analytic formula (80) with those obtained from the
exact solution of Eq. (73). One sees that Eq. (80) describes
quite well the 6 dependence of the cutoff energy up to 6
=~35°, but significantly underestimates the cutoff energy as 6
increases further. As for the results of Ref. [9] [i.e., Eq. (72)],
one sees that they overestimate the cutoff energy for 6
=32° and underestimate the cutoff energy for 6=32°, ap-
proaching the results of Eq. (80).

C. Interference oscillations in the energy and momentum
distributions of ATD electrons

Figures 1 and 2 show that the rates I',(p,) oscillate as
functions of the photoelectron energy, En=pﬁ/ (2m). Qualita-
tively, this behavior is essentially independent of the ejection
angle 6. Near the high-energy end of the plateau, each of
these oscillations involves more than ten photoelectron
peaks. Such broad oscillation structures are known also in
ATT spectra and have been found not only in theoretical re-
sults (obtained either by direct numerical solution of the
TDSE—as in, e.g., Ref. [32] for atomic H—or by use of
modified Keldysh theories [2,9]), but also in experimentally

_
o O O

E. (in units of u,)

a o N

o
-
o
N
o
w
o
N
o
(&)
o
(9]
o

FIG. 4. Cutoff energy vs ejection angle 6 for y=0.5 and w
=0.155|E,|. Solid line, exact results [cf. Eq. (73)]; dot-dashed line,
results of Eq. (80); dotted line, results of Eq. (72).
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measured results (cf. Refs. [33,34]). According to Eq. (59),
these oscillations originate from the oscillatory behavior of
the propagation term W(p,), while the positions of their
maxima and minima coincide with the positions (&) of the
maxima and minima of the Airy function Ai(¢) for k=2.
[Recall that ¢, (=—1.019) determines the position of the pla-
teau cutoff; cf. Sec. IV B.] For k=2, the values of &, are
approximated well (i.e., with an accuracy of a few percent)
by equating to 7k/2 the argument of the sine function in the
asymptotic form of Ai(-|€]) for large |&| [31],

Ai(-g) ~ |§|‘”“sin(§|§l3’2+ ;—7) (81)

The maxima (minima) of I",(p,), at the photoelectron ener-
gies (Ep) max(min)» correspond to odd (even) k in the relation

E=§=-0253702k-1]?"?, k=2, (82)

where & is given by Eq. (57). The energies (E}) max(min)
(=[Pi(0) max(miny))*/ (2m)) are given by Eq. (74) upon substi-
tuting there & — & and solving it with respect to
Pi(0) max(min)- Since the analysis of Eq. (74) for our case is
essentially the same as in Sec. IV B, we present only the
final result:

(@ p. (a.u)

FIG. 5. (Color online) Electron momentum distributions follow-
ing ATD of H™ by a CO, laser field (\=10.6 wm) plotted vs p;
=p cos 6 and p |, =p sin 6 (where 0 is the angle between the polar-
ization vector of the linearly polarized laser field and the momen-
tum p of the detached electron). Results are shown for two intensi-
ties: (a) I=5X10'" W/em? (y=0.848); (b) I=2x10'"" W/cm?
(y=0.424). The left half of each figure (i.e., p, <0) shows our
analytical results for I',,(p,) [cf. Eq. (1)] obtained using Egs. (37),
(38), and (56). The right half of each figure (i.e., p, >0) shows the
corresponding exact TDER results. The narrow black line tracing
the outer maximum of the momentum distribution in each figure
marks the cutoff position as a function of angle according to Eq.
(73); see the discussion in the text.
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I=1x10"*W/cm®

A\

FIG. 6. (Color online) The same as in Fig. 5, but for ATD of F~
by a laser field of wavelength A\=1.8 um and two intensities: (a)
I=1x108% W/em? (y=0.75) and (b) I=4X%X10" W/cm?> (y
=0.375).

(EQ)max(min)(0) = ES(0) + (0.54 - 0.21 %) |E,|

+&(2.37-0.93A)[1/(21,)]"E,,.
(83)

It is interesting to note that according to Eq. (83) the distance
between maxima or minima in the ATI or ATD spectra for a
given ejection angle depends only on the intensity:

Ey

E;E’" =(&-&)(2.37-0.93P) 12113, (84)

at

Thus, measurements of the distance between two maxima (or
minima) in ATI or ATD spectra allow one to estimate the
intensity of a laser field.

The interference oscillations are most spectacular in the
momentum distribution of the ejected electrons. In Figs. 5
and 6 we present these distributions for ATD of H™ and F~. In
these calculations we used the total ATD amplitude in Eq.
(37), including the Keldysh amplitude, so that the major dif-
ferences between our analytic results for I',(p,) (shown in
the left half of each figure) and the exact TDER results
(shown in the right half of each figure) occur for energies
from the onset to the middle part of the plateau.

The origin of the oscillation pattern in the ATI or ATD
spectra becomes clear within the classical three-step sce-
nario. As follows from the classical equation for the electron
energy E after rescattering [28], this energy depends on the
initial time 7, (corresponding to the ionization event), 7,
~T7,=—2.881, and the moment 7, at which the electron
comes back and rescatters. For E<< 10u,, there are two
closed classical trajectories (“long” and “short”), which cor-
respond to the same final energy E, but have different return
times 7, denoted by 7, and 7_. As discussed in Ref. [9], the
oscillation pattern in the ATT rates results from interference
between these two trajectories. In our quantum analysis, the
times 7, and 7_ are given by Eq. (54). Evaluating the integral
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in Eq. (39) by the saddle-point method, it can be shown that
the rescattering amplitude is (in scaled units)

.Z(l)(pn) . ei[(D(T_)+7T/4] _ ei[®(7+)—77/4]. (85)
Substituting 7 into Eq. (48) for ®(7), we obtain

(b* - 4ac)*?

(I) + —(I) = +
(re) = ®g= F = r 2

2
=¥ §|x|3/2, (86)

where x is given by Eq. (57) upon omitting there the quan-

tum correction A. As a result, the amplitude .Zlff)(p,,) involves
an oscillating factor, sin[(2/3)|x|*?+ /4], which is the same
one as in asymptotic form (81) of the Airy function for the
case of A=0. Therefore, the broad oscillations in the rates
I',(p,) below the cutoff originate from interference of the
contributions of the two saddle points 7. or, in classical
terms, from the interference of the short and long classical
trajectories.

D. Interference oscillations in the intensity and frequency
dependences of the n-photon ATD rate

Interference oscillations, similar to those discussed in Sec.
IV C, also take place in the intensity and frequency depen-
dences of the ATD rate for a fixed number n of absorbed
photons. Indeed, even if for given intensity and laser wave-
length the n-photon ATD peak occurs at the cutoff (so that
only one trajectory contributes to the corresponding ATD
amplitude), with increasing I or A the position of this peak
moves to the below-cutoff part of the plateau, where both
saddle points 7. contribute to the propagation factor WW(p,,)
in Eq. (63) and cause interference oscillations. Condition
(82) gives a transcendental equation for the intensities or
frequencies corresponding to the minima and maxima of
these oscillations.

In Figs. 7 and 8 we present the dependence of the ATD
rate for H™ as a function of intensity and frequency for n
=150. One sees that analytic result (59) predicts quite
smooth oscillations in both the intensity and frequency de-
pendences of the ATD rate (cf. dot-dashed lines in Figs. 7
and 8), while the exact numerical results show that these
smooth oscillations are strongly modified. These modifica-
tions are caused by threshold phenomena that significantly
affect the ATD rates at intensities (or frequencies) corre-
sponding to the closure of the lowest open (ny-photon) de-
tachment channel with variation in / (or w) [33,35-38], i.e.,
whenever

|Eo| +u, = nohw. (87)

[In our derivation of ;lff)(pn), such threshold phenomena
were omitted owing to substitution (26).] It is interesting to
note that the threshold phenomena in Figs. 7 and 8 become
visible even for ATD peaks at the cutoff. This contrasts with
the case of high-harmonic generation, where threshold phe-
nomena become important only in the middle part of the
plateau for harmonic rates [37,39]. This difference stems
from the fact that the effects of the atomic potential are much
more important for the description of the ATD or ATI plateau
than for the plateau in high-harmonic spectra. (Indeed, even

PHYSICAL REVIEW A 79, 033406 (2009)

10%F

BERREERE
i , “ S N
10°F i i ‘ |
10°F L L o ‘

T

107F AT ‘ N ‘ ‘/ /;\L/ﬂ
10°) g L/ T

10°F \ j
10°L i E J
10°F 9=30° l ‘ l
107} . WA
10°F j
10°} ! !

) :
10° ‘ i f

T4 76 T
Intensity (in units of 10" W/cm®)

Detachment rate (s

FIG. 7. (Color online) Intensity dependence of the ATD rate
I',(p,) for H™ for n=150 and the wavelength A=10.6 um. Solid
lines, exact numerical TDER results; dot-dashed lines, results of our
analytic equation (59). Vertical solid lines mark the positions of the
ng-photon detachment thresholds [according to Eq. (87)] for 21
=ny=27. Arrows mark the positions of the maxima of the oscilla-
tion pattern in the intensity dependence of I',(p,) according to Eq.
(82).

though laser-induced threshold phenomena are governed by
both electron-atom and electron-laser interactions, for har-
monic generation the atomic potential effects may be taken
into account in lowest order, i.e., on the level of bound-state
wave function [25], whereas the ATD or ATI plateau origi-
nates from higher order, rescattering effects.)

E. Generalization to ATI of neutral atoms

Our analytic results for ATD amplitudes and rates may be
generalized to give an acceptable description of the high-
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FIG. 8. (Color online) The same as in Fig. 7, but for the wave-
length dependence of I',(p,) with n=150 for the intensity /=6
% 10" W/cm?. Vertical solid lines mark the positions of the
ny-photon detachment thresholds for 22 =ny=26.
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energy part of the ATI spectrum for a neutral atom. This
generalization is based on the following three considerations:
first, analytic result (59) for the ATD rates represents, in fact,
a “quantum replica” of the classical three-step scenario [28],
which, as is commonly accepted, does not depend on the
atomic species; second, as demonstrated in Secs. IV B-IV D,
the results of our analytic formulas compare reasonably well
with the exact numerical TDER results for ATD spectra for
negative ions; and, third, each of the three terms in Eq. (59)
has a transparent physical meaning and thus can be replaced
by its corresponding atomic counterpart. In the following
paragraphs, we discuss the atomic counterparts for each of
the three terms in Eq. (59):

(i) The “Coulomb-modified” ionization factor Z9(F, w) is
given by Eq. (61) in which I'y(F) [cf. Eq. (62)] is replaced
by the tunneling formula for ionization of an atomic electron
by a static field, I''“)(F). We parametrize the energy E, of an
active atomic electron as Ea=—ﬁ2K§/ (2m). As is well known
[27.,40], Fgf)(F) differs from I'y(F), first, by the “Coulomb
factor”  (4F,/F)**,  where  F,=\2m|E,|*/(eh), v
=Z\E,/(2|E,|)=Z/(k,a,) is an effective principal quantum
number, and Ze is the charge of the remaining atomic core
(i.e., Z=0 for negative ions and Z=1 for neutral atoms). Sec-
ond, the asymptotic behavior (for x,r> 1) of the bound-state
wave function for a Coulomb-type potential,

'T//Kalm(r)

r>l<;1 = CKalrv_le_KarYl,171(f)’ (88)

differs in form from that in Eq. (4) for a short-range poten-
tial. Thus the term C% in Eq. (62) should be replaced by
C2 %", As a result, the ionization factor Z(F, w) in Eq. (59)
for the case of ATI is given by Eq. (61), where I'y(F) is
replaced by

h 4Fa 2v-1
r'9(F) = %(21+ I)Cial(K_F) B (39)

a

(i) If we neglect the quantum correction (A|E|
=0.3|E,|) in the argument & of the Airy function, the propa-
gation factor W(p,,) in Eq. (63) does not involve any atomic
parameters (since it describes free-electron motion in a laser
field). Thus, its generalization to the case of ATI involves
simply the replacement A|E,|— A|E,| in Eq. (64).

(iii) The cross section for elastic electron scattering from a
short-range potential (o”) in Eq. (59) should simply be re-
placed by that from a singly charged positive atomic ion, i.e.,
0 = ¢o,. In particular, for ATI of atomic hydrogen o, is
given by the Rutherford formula:

m?e*

-2
€.p
a(p) = 4(1+—> . p=p,—Ap.  (90)
p p

Note, that in the shifted (in Ap) reference frame, Eq. (90)
reduces to usual Rutherford formula for elastic backscatter-
ing. This is a key point in Refs. [15,16] that is found to be
necessary to describe the “backrescattered ridges” in ATI an-
gular distributions.

Upon making the replacements indicated above, our ana-
lytic formula in Eq. (59) for the ATD rate for a negative ion
takes the following form for the ATI rate for a neutral atom:
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FIG. 9. (Color online) ATI spectrum of atomic hydrogen for a
laser intensity 7=2x 10" W/cm? and Aw=2 eV (1,=7.18 eV, y
=0.97) for three electron ejection angles 6 (with respect to the di-
rection of linear laser polarization). Thin solid lines with symbols:
TDSE results of Ref. [32] (circles, #=0°; squares, 6=30°; dia-
monds, #=50°). Thick lines without symbols: Coulomb-modified
TDER results according to Eq. (91) (solid line, 6=0°; dashed line,
0=30°; dot-dashed line, §=50°). The results obtained using Eq.
(91) are shifted to higher energy by 0.4u, (=2.87 eV).

I,(p,) = ZF,w)M(p,)0,(p, - Ap), (91)
where
2041 ,[4F \?"!
I(F,0)=Cy f(—) e HdBR (92)
a 21K, K, F

Note that in the Coulomb approximation [41], the factor C2 ,
a
for the active electron of a neutral atom is

2 Ka(ZKa)ZV

ool = Wv-DC(v+1+1)°

(93)

where I'(x) is the gamma function.

In Fig. 9 we compare results of our Coulomb-modified
analytic result in Eq. (91) (for differential ATI rates along the
high-energy part of the ATI plateau) with the benchmark re-
sults of Ref. [32] for ATI of the hydrogen atom obtained by
numerical solution of the TDSE. Our results show that for all
ejection angles 6, the cutoff positions of the ATI spectra ob-
tained in our calculations are shifted to lower energy as com-
pared to those of Ref. [32] by the same constant energy
(=0.4u,). As shown in Fig. 9, after shifting our results by
this energy, the agreement of our results for the ATI spectra
with those of Ref. [32] may be considered as perfect taking
into account the approximate character of our results. (Note
also that our results are formally valid in the tunneling limit,
ie., for y<1 and hw/|E,|<1, while for the data in Fig. 9
these parameters are y=0.97~1 and #w/|E,|=0.15.) The
significant difference between the numerical TDSE results
and those obtained using our Eq. (91) (and making the con-
stant energy shift discussed above) at the minima of the os-
cillation patterns may be caused, in part, by the finite dura-
tion of the laser pulse (=25 fs) used in Ref. [32]. Finally, we
note that the shift in ATT spectra in Fig. 9 is somewhat puz-
zling. We suspect that determining its origin will require a
more detailed comparison with TDSE results over a wide
interval of laser intensities and frequencies in the region
y<lI.
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V. SUMMARY AND CONCLUSIONS

To summarize the results of this paper, we note first that
our analysis is based on our essentially exact TDER theory
[13,23]. This theory combines the well-known effective
range theory [22] for a single weakly bound electron in a
short-range potential with the well-known quasistationary
quasienergy state (or Floquet) theory [20] to describe the
electron’s interaction with a monochromatic laser field. In
the tunneling limit and for electron energies near the cutoff
of the ATD plateau, we have approximated the TDER formu-
lation to obtain closed-form analytic formulas for ATD rates.

The closed-form analytic result for the ATD rate in Eq.
(59) is remarkable in that it is the product of three factors,
each one of which corresponds to one of the three steps of
the well-known rescattering scenario [42,43]. Moreover, if
the factor corresponding to elastic electron scattering from
the atomic core is removed, the remaining part of this for-
mula gives an analytic expression for the electron wave
packet introduced phenomenologically in recent analyses of
ATT processes [15-19]. This electron wave packet occurs
similarly in ATD processes. Moreover, since it corresponds
to free-electron motion in the laser field, it is not significantly
dependent on the atomic species from which the active elec-
tron originates since this dependence stems only from the
ionization factor. Most importantly, the numerical predictions
of ATD rates provided by Eq. (59) agree very well with the
exact numerical results of our TDER theory, as demonstrated
in the many detailed comparisons presented in Secs.
IV B-IV D above. The only disagreements relate to thresh-
old effects arising from multichannel interactions at particu-
lar values of laser intensity and frequency corresponding to
the closure of a multiphoton detachment channel. Such mul-
tichannel interactions are ignored in our quasiclassical deri-
vation of the analytic formula for the ATD rate and hence
cannot be expected to appear in the predictions of the for-
mula.

Owing to the fact that each of the three factors of the
closed-form analytic formula for the ATD rate in Eq. (59) has
a clearly defined physical interpretation, we have been able
to generalize it quite straightforwardly to be applicable for
ATI rates. That is, we simply introduce appropriate modifi-
cations originating from the fact that in neutral atoms the
active electron moves in the Coulomb field of an ionic core.
These modifications apply mainly to the factor correspond-
ing to elastic electron scattering from the atomic core. Other
modifications arise from the different asymptotic form of the
initial bound-state wave function of the active electron. The
resulting closed-form analytic formula for the ATI rate is
given in Eq. (91). As shown in Fig. 9, the results of this
analytic formula (when shifted in energy by 2.87 eV) agree
essentially exactly in shape with the benchmark results of
Ref. [32] on the ATT spectrum of atomic H, obtained by
direct numerical solution of the TDSE. The reasons why a
shift in energy is necessary to have nearly a perfect match of
the predictions of our analytic formula and the results of
solving the TDSE are at present unclear to us. Moreover,
elucidation of this issue probably requires further compari-
sons over a much wider range of laser parameters.

We conclude by noting that our closed-form analytic for-
mulas for both ATD and ATI rates [in Egs. (59) and (91),
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respectively] give one analytical insight into how these rates
may be controlled by varying the laser field parameters or by
varying the atomic species. Note also that our results provide
more accurate analytic formulas than obtained previously by
others for ATD and ATI plateau cutoff energies as a function
of angle, as discussed in Sec. IV B. Finally, in presenting an
analytic expression for the phenomenological electron wave
packet that has been introduced in a number of analyses of
ATT processes [15-19], we provide a means of obtaining
directly the elastic-electron-scattering cross sections from in-
vestigations of ATT and ATD processes.
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APPENDIX A: DERIVATION OF EQ. (5)

We use the spectral expansion of the Green’s function
G(r,t;r',t") in terms of Volkov wave functions W(r,?),

O -1 .
G(r,t;r’,t’):—(t_ht )f W (r )WL, )dp, (A1)
1

where @(t—t') is the Heaviside (step) function. The Volkov
wave functions have the following form:

W, (r,1) = e‘(i/h)fp@p(r,t), (A2)
D, (r,1) = (27h) > 2expliS,(r,1)/h], (A3)
where 6p=p2/(2m)+up and
er-F(r) eF(1)
Sn= e ( m)
[ 2R
—f (% - u,,)dt, F(1) =F cos wt.

Substituting Eq. (A1) into Eq. (3) for x(r,r’,t), we obtain
2 1h !
X@J20=L——fdgf di'f(t")
m —00

><e(i/ﬁ)(f‘el’)(’_t,)q)p(r,t)@;(l",t’). (A4)

The function CID:;(r’ ,t")f(¢") is periodic in the time ¢', so that
we expand it in a Fourier series and perform the integration
over t’ in Eq. (A4) to obtain (cf. Ref. [23]):

! Elfdt’f(t’)
K T 0

47 mft

ei[Sp(r,t)—Sp(r’,t’)]/h—isw(r—t’)
X | d
f P €—€,+shw+i0

x(r,r';)=—

(A5)

The integration over the momentum p in Eq. (A5) may be
performed analytically and yields Eq. (5) above.

APPENDIX B: QUASICLASSICAL LIMIT
OF THE NONDIAGONAL MATRIX ELEMENTS M;!’)k,(e)

One-dimensional integral representation (15) for M,((l)k,(e)
is the most appropriate one for numerical calculations. How-
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ever, for approximate analytic evaluations of M,({{),c,(e) in the
quasiclassical limit (7w <<|E,|) an alternative representation,
derived in this appendix, is more convenient. In what fol-
lows, we use scaled units and consider the nondiagonal (k
# 0) matrix elements M,%(e) EM,% [which are equivalent to
M,((Qm!m(e—me) in view of symmetry relation (17)].

Consider first the case of a bound state of s symmetry.
According to the TDER theory [13], the s-wave part of the
QQES wave function ® (r,r) satisfies, on one hand, the fol-
lowing boundary condition for r=<r_:

1 e, 2kw)] }ka,

C . 1
D (r,1) = £ e‘z’k“”{; + [— —+
0

N4
(B1)
— AI=0) :
where f5, = f(2k and aq and r, are the s-wave scattering

length and effective range, respectively. On the other hand,
for r=r,, the QQES wave function is given by Eq. (2),

13
@ (r,1) = — V47C,, J dr' G(r, ;0,6 )f(1") el

C
dinnan, (B2)
\NaGTT

where x(r,r’,t) is defined by Eq. (5). For small r (r~r,),
the s-wave part of function (B2) has the form

f ®(r,n)dQ, = \"ZTCKZE e‘z”“‘”<@{ + > [iVe+ 2kw 6y g
k r k'

+M;?g,]f2k,), (B3)
where we have used the relation [cf. Eq. (13)]

1 e
|:— — + %(E'F ka)]ka = E (i\’€+ 2kw5k’kr + Mk,k’) 2k -
do '

(B4)

Upon substituting f(r)=1 (or, equivalently, f»; = &) in Egs.

(B2) and (B3) [i.e., using the function ®(r,7)
=®(r,1)|;-1). the matrix elements M,(&)) with k#0 are
given by the r-dependent Fourier coefficients of the function

J® (r,1)dQ, upon substituting there r— 0, i.e.,

T
M = (C 4nT) M lim f O (r,1)e¥ qQ dr, (BS)
r—0 Jo

which may be represented as
(0) am i ) ier+2ikwt
M=~ T dt| d7G(0,1;0,t— 7)e . (B6)
0 0

Using the explicit form (5) for x(r,r’,7) and substituting
there f(r)=1, the matrix element Mfc% for k#0 takes the
form
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? ei[s(-k‘s,t’)-s(-ﬁs,tmsz]
-’
) 3 e |cos wt — cos wt'|

where both integrals are taken over the period T=27/ w,

didt’, (B7)

= = cos wt —cos wt’
I R e ——r

R
ky=Ve+sw—u,,

B i/ F 2
S(—Ks,t)=f {(Kx(t,t’)+;sin wr) —e]dr.

For the case of a bound state of p symmetry, the deriva-
tion is more cumbersome since the small-r boundary condi-
tion, similar to that in Eq. (B1), involves additional terms,
~r2 and ~r [13,23], and differentiation of the function
x(r,r’,t) with respect to z’ is necessary [cf. Eq. (2)]. Thus
we omit these lengthy calculations and present only the final
result for the matrix element M;J&(e):

3 C!)2 ei[S(—ﬁS,t’)—S(—ﬁs,t)+2kwt]
wiho=ro3 [ |
s
F

K, =e/k,,

2FT? |cos wt — cos wt']
~ . - F
X| K+ —sin ot | - | K+ —sin wt’ |drdt’.
) w

(B8)

Carrying out the integrations over ¢’ in Egs. (B7) and (B8)
by the saddle-point method (in a way similar to that in Ap-
pendix B of Ref. [23]), the two results may be given in a
unified form applicable for both s and p states. This form is
given by Eq. (21) of the main text.

APPENDIX C: ALTERNATIVE DERIVATION
FOR THE IONIZATION FACTOR IN EQ. (60)

In this appendix we show how Eq. (60) follows from the
quasiclassical (saddle-point) treatment of Keldysh amplitude
(38) in the limit p,, — 0. For simplicity, all formulas are given
in scaled units (cf. Sec. II).

The saddle points for the integral in Eq. (38) are given by
the equation

F 2
(pn——sin ’T) =-1, (CD)
w

which has two (complex-conjugated) pairs of roots: two of
these roots have positive imaginary parts, while those of the
other two are negative. Only the roots with positive imagi-
nary parts (7, and 7,) contribute to the Keldysh amplitude in
the limit y— 0 [40]. Moreover, if 7; is the solution of Eq.
(C1) with the smallest real part, then the second solution (7,)
is 7,=m—7|. In the lowest order in p,, the result for 7| is [40]

7 =i arcsinh(y) + yp/\1 + 2. (c2)

Using the relation between 7, and 7, it can be shown that the
second derivative of S(p,,7) is the same for both saddle
points in the limit p,, —0:
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Frra L 2F

20
S" Py 1) =S" (P 7)) = — _2\“"1 + ’}’2 -
w W
Expansion of S(p,,, 7) at 7=7, and 7, up to terms Npi has the
form

, 2Fp
S(pm Tl) = lg(pn’ 0) + 7”5

. 2Fp
S(p,, ) =ig(p,, 0 — 7“ + 7n, (C3)
where
2 ! 2 2
g(p,.0) = Y= 1+ 5(3 sin? 6+ ¥*)p: |. (C4)

Evaluating the integral in Eq. (38) by the saddle-point
method using Egs. (C2)—(C4) and then taking into account
the p,-dependent terms only in the exponential, the square of
the modulus of AfLK)(pn) takes the form

21+ 1)C%w?
8m°F

Neglecting the term ~p? in Eq. (C5) for g(p,,6), Eq. (C6)
yields the ionization factor Z(F, w) in Eq. (60) after convert-
ing from scaled to absolute units and multiplying by 2.

The factor Z(F,w) may be connected also with the total
detachment rate in the Keldysh approximation, I'®4) which
is given by [cf. Eq. (1)]

A0, = el (C5)
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F(KA) = 2 2pnf |A1(1K)(pn)|2dﬂﬁn

2[+1

C2yeGP)

* T
X f dpf d0p2 sin 96—2}72(3 sin? 6+92)/(3F)
0 0

2
i (21 + I)CK1F3/2e_4/(3F>
327 1+ 93 ’

(Co)

where we have replaced the summation over n by an inte-
gration over p in a way similar to Eq. (26) (after which the
integrations over p and 6 are performed analytically). Ne-
glecting the term 92/3 in the denominator, I'®4) in Eq. (C6)
reduces to the well-known result for the total detachment rate
in the quasistatic (low-frequency) limit [40]:

3F
N = [T (F),
2ar

20+ 1)C?
( ) KIF
4

(C7)
where
Iy(F) = e ¥/Gh) (C8)

is the detachment rate of a weakly bound state ,;,,(r) hav-
ing angular momentum / and m=0 in a static electric field F

[27].
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