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Final-state probabilities are determined for different atomic fragments arising in the �3He,n ; p , t� reactions
with slow neutrons. We consider the �3He,n ; p , t� reactions in the one-electron 3He+ ion and in the two-
electron 3He atom. It is shown that highly exothermic nuclear reactions in light nuclei can be used as a very
effective tool to study the electron-density distribution in light atoms and its redistribution during such reac-
tions. The idea of bremsstrahlung amplifiers based on the �n ,Q ;q1 ,q2� reactions in accelerated many-electron
ions is proposed.
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I. INTRODUCTION

In this study we consider the problem of atomic
�=electron� excitations in few-electron atoms and ions during
the nuclear �3He,n ; p , t� reaction of the 3He nucleus with
slow neutrons. This nuclear reaction

3He + n = 1H + 3H + 0.764 MeV �1�

of slow neutrons with the 3He nuclei is extremely important
for simplifying thermonuclear burning wave propagation in
highly compressed ���100 g cm−3� deuterium containing
thermonuclear fuel. Indeed, this reaction allows one to con-
vert slow neutrons into the tritium nuclei and, therefore, in-
creases the tritium-deuterium ratio �1–3�. In this work, how-
ever, we shall consider the �3He,n ; p , t� reaction involving
an isolated 3He atom. Such an atom has two electrons. With-
out loss of generality, we shall assume that originally the 3He
atom was in its ground 11S state. We also consider the
nuclear �3He,n ; p , t� reaction involving the 3He+ ion. Our
main goal below is to determine the final-state probabilities
for different states in the final protium and tritium atoms.

It should be mentioned that the general theory of excita-
tions of atomic fragments arising in the exothermic nuclear
�n ,Q ;q1 ,q2� reactions of light atoms with slow neutrons was
considered in our earlier study �4�. Here we choose not to
repeat formulas and conclusions from that work and focus on
consideration of reaction �Eq. �1�� only. Some other similar
nuclear reactions are mentioned only as examples. The ap-
proach used in this study relies on the use of the sudden
approximation �see, e.g., �5� and references therein�. More-
over, we assume that the incident �slow� neutron does not
affect �by its magnetic moment� noticeably any of the elec-
tron shells in the incident 3He atom or ion. The validity of
these approximations was discussed, e.g., in �4�. The nota-
tion p and t stand below in some cases for the 1H and 3H
nuclei arising in Eq. �1�.

Let us evaluate the velocities of the p�=1H� and t�=3H�
nuclei arising in the reaction �Eq. �1�� with slow neutrons. In
general, the kinetic energies Ti�MeV� �i=1,2� and corre-
sponding velocities vi �cm s−1� of the two nuclear fragments
formed in an arbitrary nuclear �n ,Q ;q1 ,q2� reaction of the
incident nucleus Q with slow �or thermal� neutrons �vn�0
and Tn�0� can be evaluated as follows:

Ti �
Mj

M1 + M2
E MeV,

vi � 0.138 411 2 � 1010� Ti

Mi
cm s−1, �2�

where i� j= �1,2� and E is the energy released during the
�n ,Q ;q1 ,q2� reaction �in MeV�. In the last formula for
vi, we assume that the nuclear mass Mi is expressed in the
units of the neutron mass mn. As follows from Eq. �2�, the
velocities of the tritium t and protium p nuclei produced in
the reaction �Eq. �1�� are vt�3.493 17�108 cm s−1

and vp�1.047 73�109 cm s−1, respectively, for E
=0.764 MeV. The numerical value of the atomic velocity,
i.e., the velocity of electron in the ground state of hydrogen
atom, is ve=� ·c�2.188 266 1�108 cm s−1, where � is the
fine-structure constant and c is the speed of light in vacuum.
Therefore, in atomic units �in which ve=1�, the velocities of
the protium and tritium nuclei emitted in the reaction
�Eq. �1�� are vp�4.787 97 a.u. and vt�1.596 32 a.u.

Note that the velocities vt and vp are approximately
1.6–4.8 times larger than the velocities of the 1s electron in
the hydrogen atom. This means that we can apply the sudden
approximation for describing electron transitions during the
�3He,n ; p , t� reaction. On the other hand, the vp and vt ve-
locities are 30–45 times smaller than the speed of light c.
This means that we can restrict ourselves to the nonrelativ-
istic wave functions of the incident and final fragments.

II. ONE-ELECTRON HELIUM ION

First, consider the reaction �Eq. �1�� in the one-electron
3He+ ion which originally was in a hydrogenic �n1�1m1�
state. The corresponding wave function takes the form
�n1,�1

�r�=Rn1,�1
�r�Y�1m1

�n�, where n= r
r is the unit norm vec-

tor. After the nuclear reaction �Eq. �1��, one can find either
the neutral 3H atom �tritium atom�, or neutral 1H atom, or
two bare nuclei 3H+ and 1H+ which do not contain bound
electrons. In this work our main interest is related to the
bound one-electron atoms or ions at the final stage. There-
fore, the wave function of the final state is also written in the
hydrogenic form �n2,�2

�r�=Rn2,�2
�r�Y�2m2

�n�, but the final
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fragment is also moving with the velocity v, where v repre-
sents the velocity of the tritium nucleus vt or the velocity of
the protium nucleus vp.

Thus to determine the final-state probability, we need to
compute the matrix element of the operator exp�ıv ·r� be-
tween the wave functions of the initial and final states in the
two atomic systems �original and final�. For one-electron at-
oms or ions, the corresponding wave functions are hydro-
genic bound-state wave functions. In such a case, the com-
putation of the final-state probability is performed in the
following way.

First, we write the Rayleigh expansion of a plane wave
�with the use of spherical harmonic addition theorem�. The
explicit formula takes the form �see, e.g., �6��

exp�ıv · r� = 4��
�=0

ı�j��vr� �
m=−�

�

Y�m
� �nv�Y�m�nr� , �3�

where Y�m�n� are the spherical harmonics, v is the velocity
of the final atomic fragment, and ny = y

y is the unit norm
vector which corresponds to an arbitrary nonzero vector y.
Also in this equation the spherical Bessel functions j��vr� are
defined by the relation �see, e.g., �7��,

j��vr� =� �

2vr
J�+1/2�vr� , �4�

where J�+1/2�x� are the Bessel functions. Now, by applying
the sudden approximation mentioned above �for more detail,
see �4� and references therein� and with the use of Eq. �3�,
one finds the following explicit expression for the transition-
probability amplitude Ain;fi:

Ain;fi = An1,�1,m1;n2,�2,m2

= ��n2,�2,m2
�r�	exp�ıvN · r�	�n1,�1,m1

�r�


= �
LM

�− 1�m1ıL�4��2�1 + 1��2�2 + 1��2L + 1�

���1 �2 L

0 0 0
�� �1 �2 L

− m1 m2 − M
�YLM�nv�

��Rn2,�2
�r�	jL�vr�	Rn1,�1

�r�
 , �5�

where Rni,�i
�r� �i=1,2� are the radial functions of the initial

and final states in the hydrogenlike system. In this
formula, we also use the standard notation for the Wigner 3j
coefficients �see, e.g., �6,8��. This expression for the
transition-probability amplitude Ain;fi�=An1,�1,m1;n2,�2,m2

�
contains all partial spherical waves YLM�nv�, where
L= 	�1−�2	 , . . . ,�1+�2.

In the usual situation, the magnetic quantum numbers of
the initial and final states are unknown. Therefore, the for-
mula for the final-state probability Pin;fi= 	A�1,m1;�2,m2

	2 must
be averaged over the initial-state magnetic and summed over
all final-state quantum numbers. After a few simple transfor-
mations, one finds for the final-state probability,

P̄n1�1;n2�2
�v� = �2�2 + 1��

L

�2L + 1�

���1 �2 L

0 0 0
�2

	�Rn2,�2
�r�	jL�vr�	Rn1,�1

�r�
	2.

�6�

In fact, this formula corresponds to the transitions between
two bound states in one-electron systems, but the nuclei in
these systems have different electric charges and one of the
one-electron systems moves with the relatively large velocity
v. It follows from the last formula that, e.g., if the incident
one-electron atom or ion is in its ground s state then the
excited L state of the final atom can be observed if �and only
if� the experiment allows one to detect the L wave. In other
words, if in some experiment one can observe only S, P, and
D waves then it is impossible to detect in this experiment the
F state of the final atomic system.

Thus, for hydrogenlike �or one-electron� systems, the
computation of the final-state probability Pin;fi is reduced to
the analytical/numerical computation of the corresponding
radial integrals. Let us consider this problem in detail. The
unit norm radial functions of the hydrogenlike wave func-
tions for atom or ion �bound state� with the infinitely heavy
nucleus with nuclear charge Q are written in the form �see,
e.g., �8��,

Rn,��Q,r� =
1

rn
�Q�n − � − 1�!

�n + ��! 2Qr

n
��+1

�
k=0

n−�−1
�− 1�k

k!

�� n + �

2� + k + 1
�2Qr

n
�k

exp�−
Qr

n
� . �7�

If the final state in the moving hydrogenlike system with the
new nuclear charge q��Q� is also bound then the computa-
tion of radial integral in Eq. �6� is reduced to the calculation
of the following matrix element:

�Rn2,�2
�r�	jL�vr�	Rn1,�1

�r�


= �
0

	

Rn2,�2
�Q,r�jL�vr�Rn1,�1

�q,r�r2dr . �8�

The radial functions Rn2,�2
�r� and Rn1,�1

�r� can be represented
as finite sums of the products of powers of r and exponents
exp�−Xr�, where X
0. This matrix element can be com-
puted with the use of Eq. �4� for radial Bessel functions.
Finally, the integral �Eq. �8�� is computed as the finite sum of
the following integrals:

� �

2v
�

0

	

t�−1J��vt�exp�− Xt�dt

=� �

2v

�� + ��
�� + 1�

v�

2��X2 + v2��+�/2

�2F1�� + �

2
,
� − � + 1

2
;� + 1;

v2

X2 + v2� , �9�

where 2F1�a ,b ;c ;x� is the hypergeometric function
�see e.g., �7��. To obtain the final expression, one can use

ALEXEI M. FROLOV AND DAVID M. WARDLAW PHYSICAL REVIEW A 79, 032703 �2009�

032703-2



various formulas known for the hypergeometric functions,
e.g., 2F1�a ,0 ;c ,x�= 2F1�0,a ;c ,x�=1, 2F1�a ,b ;a ,x�
= 2F1�b ,a ;a ,x�= �1−x�−b and many others. The explicit for-
mula for the final-state probabilities for the 1s→ �n�� transi-
tion in one-electron atom or ion is derived in Appendix A.

Let us present the explicit formulas for the transition
probabilities to the ground and excited states of the tritium
and protium atoms which are formed in nuclear reaction �Eq.
�1�� from the ground state of the He+ ion. Let Q be the
nuclear charge of the incident nucleus �3He�, while q desig-
nates the nuclear charge of the final nuclei �3H and/or 1H�,
which move with the speeds vt and vp, respectively. The
probability of formation of the tritium �3H� atom in its
ground state is

Pg,g = P1s,1s =
64�Qq�3

�Q + q�6

1

1 + � v
Q + q

�2�4
. �10�

From this formula one finds for the 3H atom from the reac-
tion �Eq. �1��, �Q=2,q=1,v=vt� Pg,g�0.259 088, i.e., ap-
proximately 25.9% of all 3H atoms formed in the reaction
�Eq. �1�� will be in their ground states. The analogous prob-
ability for the 1H atom will be �0.004 430 8, i.e., approxi-
mately 0.44% of all protium atoms will be in their ground
states. In fact, Eq. �10� shows a very sharp dependence of the
total probability on the velocity and nuclear charge of the
final fragment.

The probability of formation of the tritium atom in its 2p
state is

P1s,2p =
32�Qq�3q2v2

3�Q +
q

2
�10

1

�1 + � v

Q +
q

2
�

2

�
6

. �11�

For the 3H atom from the reaction �Eq. �1��, one finds
P1s,2p�0.293 0%, while for the protium atom P1s,2p
�0.019 80%. In the case Q=q=1, our formula �Eq. �11��
coincides with Eq. �24� from �9�. The analogous probability
for the 3d final state is

P1s,3d =
2

15
�4

3
�8 �3Q + q�2�Qq�3q4v2

�Q +
q

3
�2

+ v2�8
. �12�

Again for Q=q=1, this formula coincides with Eq. �25� from
�9�. The probability amplitude for the g→2s transition takes
the form

M1s,2s =
�2�qQ�3/2

�Q +
q

2
�2

+ v2�2�2Q − q +
4qv2

�Q +
q

2
�2

+ v2�� .

�13�

The corresponding transition probability Pg,2s= 	M1s,2s	2 thus
contains in this case a number of terms.

The explicit analytical formulas for the amplitudes of the
final-state probabilities in the case of 3p and 3d final states
are

M1s,3p =
64v2

27�6�X2 + v2�3
�Qq�3/2

�2X

5 2F1�1,3;
7

2
;

v2

X2 + v2� −
q

3
� , �14�

where X=Q+ q
3 , and

M1s,3s =
32v2

27�X2 + v2�3 �Qq�3/2

�X

5 2F1�1,3;
7

2
;

v2

X2 + v2� −
2q

3
+

4q2

9

X

X2 + v2� ,

�15�

respectively. The numerical value of the hypergeometric
function used in these both formulas can easily be deter-
mined.

The computed numerical values of the probabilities to
form the six lowest electronic states in the tritium and hy-
drogen atoms can be found in Table I. This case corresponds
to the �3He,n ; p , t� nuclear reaction and it is designated with
the letter �a�. Table I also contains the final-state probabili-
ties determined for two other exothermic nuclear reactions

TABLE I. The velocities v of reaction fragments �in a.u.� and probabilities �in %� of the final states for
four exothermic nuclear reactions �a–c� of some light one-electron atoms or ions with slow neutrons. The
notation a�b� stands for a�10−b.

State

�a� �a� �b� �b� �c� �c�
t p � t 7Li �

V 1.59632 4.78897 4.52989 6.03986 2.40896 4.21568

1s 25.90880 0.443082 8.049481 0.364496 58.22843 15.77608

2s 4.617567 0.832412�1� 1.752660 0.612056�1� 9.037463 2.710316

2p 0.292997 0.197967�2� 0.127544 0.961119�3� 0.645213 0.112925

3s 0.440895�4� 0.514240�3� 0.395100�4� 0.543558�3� 0.533448�4� 0.335469�3�
3p 0.125430�1� 0.390495�2� 0.170681�1� 0.291928�2� 0.500858�2� 0.996830�2�
3d 0.798786�2� 0.284628�5� 0.645351�3� 0.498505�6� 0.734082�2� 0.285480�3�
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with slow neutrons: �b� �6Li ,n ;� , t� �E�4.785 MeV� and
�c� �10B,n ; 7Li ,�� �E�2.791 MeV�. All three nuclear reac-
tions are considered in the corresponding one-electron ions,
i.e., in the 3H+, 6Li2+, and 10B4+ ions.

The final-state probabilities determined for all atomic
fragments arising during these nuclear reactions �i.e., in the
�a�, �b�, and �c� cases� with slow neutrons show similar de-
pendencies upon the velocity of reaction fragment, its elec-
tric charge, and quantum number�s� of the final state. An
obvious exception is the 7Li nucleus from the �10B,n ; 7Li ,��
reaction. But in this case, we cannot apply the sudden ap-
proximation, since the velocity of this nucleus is only
�2.408 96 a.u. This is smaller than the velocity of 1s elec-
tron �or K electron� in the final lithium atom. Nevertheless,
the sudden approximation can still be applied to the 4He+ ion
arising in the �10B,n ; 7Li ,�� reaction. The velocity of � par-
ticle from this reaction is �4.215 68 a.u. is approximately
twice as large as the velocity of 1s electron in the He atom.
Therefore, the results from Table I make sense �and close to
our expectations� for all atomic fragments, but not for the
7Li2+ ion. In general, this explains the reason why one can
apply the sudden approximation to determine the final elec-
tronic state probabilities in the hydrogen atom arising in
many exothermic �n , p� reactions, e.g., in the �14N,n ; 14C, p�
reaction �E�0.625 MeV�.

III. TWO-ELECTRON HELIUM ATOM

Let us consider a different situation when the incident
atomic system in Eq. �1� is the two-electron helium atom
3He. In this case, we also need to consider various bound
states in this two-electron atom. In principle, each of these
states can be chosen as an incident atomic state for the reac-
tion �1�. In this study, however, we shall restrict ourselves to
the cases when the two-electron helium atom 3He is in its
ground 11S state. The total wave function of the ground 11S
state is represented as the product of the radial and spin
components, i.e., �L=0�x1 ,x2�=��r1 ,r2� 1

�2
���−���, where

��r1 ,r2�=��r1 ,r2 ,r12� is the radial part �component� of the
total wave function, while 1

�2
���−��� is the corresponding

spin �singlet� part of the total wave function.
In the general case, we can write for the probability to

find the tritium atom in its nth state, if the incident He atom
was in the ground 11S state,

PHe,3H = 	��n�q = 1;x1�	exp�ıvt · r1�	�g�Q = 2,x1,x2�
	2,

�16�

where vt is the final velocity of the tritium atom and xi are
the compact notations used to designate the spatial �ri� and
spin ��i� coordinates of the ith electron. Also, in this equa-
tion �n�q=1;x1� is the one-electron wave function of the
final hydrogenlike atom �3H or 1H�, while �g�Q=2,x1 ,x2� is
the two-electron wave function of the incident 3He atom.
The generalization of this formula to the N electron systems
in an arbitrary state can be found in �4�. In this work, we are
not interested in the spin variables. For the one- and two-
electron systems, the spin variables can be always separated
from the electron parts of the total wave functions. There-

fore, by integrating over all spin variables, one finds the
formula

PHe,3H = 	��n�q = 1;r1�	exp�ıvt · r1�	�g�Q = 2,r1,r2�
	2,

�17�

which contains only spatial variables. This integral can be
computed in a number of ways, e.g., directly with the use of
three-body perimetric coordinates. This approach is dis-
cussed in Appendix B. It has extensively been used in calcu-
lations for this study. An alternative approach includes the
operations with the density matrices. This approach is con-
sidered below.

One-electron-density matrix

By introducing the one-electron-density matrix �g�r1 ,r1��
�10� for the ground 11S state of the two-electron He atom

�g�r1,r1�� =� 	�g�r1,r2�
��g�r1�,r2�	d3r2, �18�

one can rewrite the formula �Eq. �17�� for the final-state
probability in the form

PHe,3H = �� �g�r1,r1��exp�ıvt · �r1 − r1���

��n�r1��n�r1��d
3r1d3r1�� , �19�

where �n is the hydrogenic �one-electron� wave function of
the final state of the 3H atom. In the general case, when we
have N electrons in the incident state and K electrons in the
final state, one has to introduce various many-electron-
density matrices and transition matrices �4�. Note also that
the one-electron-density matrix has “unit norm,” i.e.,

� �g�r1,r1�d3r1 = 1. �20�

To illustrate the formulas derived above, let us apply them to
the computation of the final-state probabilities of atomic
fragments arising during the nuclear �3He,n ; p , t� reaction.
Let us assume that the incident helium atom was in its
ground 11S�L=0� state with the approximate wave function

��r1,r2� =
Q3

�
exp�− Q�r1 + r2�� , �21�

where ri= 	ri	 �i=1,2�, while the parameter Q=Z− 5
16 �so-

called optimal nuclear charge, see, e.g., �8,11�� and Z=2 for
the helium atom. From here, one finds the explicit expression
for the one-electron spinless density matrix in the helium
atom

��r1,r1�� =
Q3

�
exp�− Q�r1 + r1��� . �22�

Now, for the ground 1s state in the tritium atom, the final-
state probability is given by the expression given in Eq. �19�,
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P„G�He� → G�T,Vt�…

= ��He
�1��G�He�;r1;r1��	exp�ıVt · �r1 − r1���

�	�T�G�T�;r1��T�G�T�;r1��


=
4�q · Q�3

�

���
0

	

dr r2exp�− �Q + q�r + ıVt · r��
���

0

	

dr r2exp�− �Q + q�r − ıVt · r�� ,

�23�

where G designates the ground state of the corresponding
system, i.e., 11S state in the He atom and 1s state in the 3H
and/or 1H atom.

It is clear that the result �Eq. �23�� does not depend upon
the direction of the final tritium nucleus, i.e., it does not
change upon the substitution Vt→−Vt. By computing both
integrals in Eq. �23�, one finds

P„G�He� → G�T,Vt�… =
64Q3q3

�Q + q�6

1

1 +
Vt

2

�Q + q�2�4
.

�24�

Note that this formula coincides exactly with Eq. �10�. By
using the values Q= 27

16 �8�, q=1, and Vt=1.596 32, one finds
that P(G�He�→G�T ,Vt�)�24.37%. Analogously, the
probability to form the 2s state in the tritium atom is
�0.418% �this follows from Eq. �11� with Q= 27

16�. For
the protium atom 1H �or p� which is formed in the
nuclear �3He,n ; p , t� reaction of two-electron helium
atom, one finds P(G�He�→1s�1H,Vp�)�0.269% and
P(G�He�→2s�1H,Vp�)�3.62�10−3%. The actual prob-
abilities computed with the use of highly accurate wave
functions for the helium atom are slightly different from
these values �see below�.

The simplicity of the one-electron spinless density matrix
used above �see Eq. �22�� can force one to search for some
special functions which reduce the ��r1 ,r1�� matrix to a diag-
onal form. It appears that the one-electron spinless density
matrix ��r1 ,r1�� can always be so reduced, i.e.,

��r;r�� = �
j=1

	

nj� j�r�� j�r�� , �25�

where the � j�r� are spin-free functions of one variable. These
functions are called the natural orbitals, while the corre-
sponding numbers nj are the occupation numbers �12� �see
also �13,14� and references therein�. The natural orbitals
� j�r� are pairwise orthogonal and have unit norm, i.e.,
��i�r� 	�i�r�
=�ij. The occupation numbers nj in this equation
are always non-negative and for an arbitrary j, 0�nj �1.
The number of nonzero occupation numbers is called the
rank r of the ��r1 ,r1�� matrix. The advantage of using the
natural orbital expansion �Eq. �25�� for the one-electron spin-

less density matrix of the He atom is obvious, since in such
cases the computation of corresponding probabilities is re-
duced to a trivial problem. However, an overall accuracy can
be lost during this procedure and below we shall not use it.
Instead, we want to construct the one-electron �spinless� den-
sity matrix ��r1 ,r1�� from highly accurate three-body wave
functions.

Note that all final-state probabilities for the �3He,n ; p , t�
reaction in atoms can be obtained from Eq. �19�. However,
for two-electron atomic systems which take part �or arise� in
the �3He,n ; p , t� reaction, we have developed a procedure
which can be used to construct the one-electron-density ma-
trices from the explicitly correlated two-electron wave func-
tion. Additional complexity of the problem follows from the
fact that three relative coordinates r32, r31, and r21 used in the
explicitly correlated wave functions cannot be separated
from each other. Here and below in this study, the relative
coordinate is rij = 	ri−r j	=rji, where ri and r j are Cartesian
coordinates of the particles with indexes i and j, respectively.
The subscripts 1 and 2 designate the two electrons, while
subscript 3 always means the positively charged nucleus. In
fact, for atomic two-electron systems and for our present
purposes, the following system of interparticle notation
r2�=r32�, r1�=r31�, and r21 is more convenient.

The advantage of relative coordinates follows from the
fact that highly accurate wave functions of arbitrary two-
electron atomic systems can easily be determined numeri-
cally with the use of the following variational expansions for
the wave function �A�r1 ,r2 ,r12�:

�A�r1,r2,r12� = �
i=1

N1

�
j=1

N2

�
k=1

N3

Cijk�i�r1�� j�r2��k�r12� , �26�

where Cijk are the known variational coefficients and �i, � j,
and �k are the single-argument basis functions. Below, for
simplicity we restrict ourselves to the consideration of the
S�L=0� states in two-electron atomic systems only. The gen-
eralization of our present method to the states with L�1 is
straightforward, but it requires numerous additional notations
and explanations.

The formula �Eq. �26�� is applied to the bound S�L=0�
state in an arbitrary three-body system. For two-electron sys-
tems, the actual permutation symmetry between two elec-
trons must also be taken into account. As we mentioned
above, all states of the two-electron atoms and ions are sepa-
rated into two series: singlet and triplet states. For singlet
states, all radial parts of the total wave functions must be
symmetrized in the following way:

�A�r1,r2,r12� =
1

2
�1 + P̂12��

i=1

N1

�
j=1

N2

�
k=1

N3

Cijk�i�r1�� j�r2��k�r12�

=
1

2�
i=1

N1

�
j=1

N2

�
k=1

N3

Cijk��i�r1�� j�r2��k�r12�

+ � j�r1��i�r2��k�r12�� , �27�

where P̂12 is the electron-electron permutation �P̂12
2 =1�.
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First, consider a three-particle system which contains
three nonidentical particles. In this case, the one-particle den-
sity matrix for the bound S�L=0� state can be written in the
form

�g�r1,r1�� = �
i=1

N1

�
j=1

N2

�
k=1

N3

�
I=1

N1

�
J=1

N2

�
K=1

N3

CijkCIJK

��i�r1��I�r1���
A1

A2

� j�r2��J�r2�r2dr2

� �
B1

B2

�k�r12��K�r12�r12dr12� , �28�

where the limits A1 and A2 are the functions of r1 and r1�,
while the internal limits B1 and B2 depend upon the r1, r2, r1�,
and r2� variables. Finally, the explicit expression for the in-
ternal product of integrals

G = �
A1

A2

� j�r2��J�r2�r2dr2�
B1

B2

�k�r12��K�r12�r12dr12

�29�

contains 16 different terms which represent all possible loca-
tions of the four points �r1 ,r1� ,r2 ,r2�� on the real axes. From
Eq. �28�, one also finds that

�
0

	

�g�r1,r1�r1dr1 = �
i=1

N1

�
j=1

N2

�
k=1

N3

�
I=1

N1

�
J=1

N2

�
K=1

N3

CijkCIJK�
0

	

�i�r1��I�r1�r1dr1�
A1

A2

� j�r2��J�r2�r2dr2�
	r1−r2	

r1+r2

�k�r12��K�r12�r12dr12�
= 1, �30�

where A1 can be 0 or r1, while A2 can be r1 or 	. Formally, in this case Eq. �29� is equivalent to the condition that the wave
function �A�r1 ,r2 ,r12� �Eq. �26�� has a unit norm.

For two-electron atomic systems, the one-particle density matrix for the bound S�L=0� state can be written in the form,

�g�r1,r1�� = �
i=1

N1

�
j=1

N2

�
k=1

N3

�
I=1

N1

�
J=1

N2

�
K=1

N3

CijkCIJK�i�r1��I�r1���
A1

A2

� j�r2��J�r2�r2dr2�
B1

B2

�k�r12��K�r12�r12dr12

+ �i�r1��J�r1���
A1

A2

� j�r2��I�r2�r2dr2�
B1

B2

�k�r12��K�r12�r12dr12� . �31�

By using the analytical formulas derived above, we have
evaluated the final-state probabilities to detect one-electron
tritium/protium atoms in those cases in which the incident
He atom is in its ground state. In particular, we have found
for the ground state of the tritium �3H� atom Pg,g�3H�
�27.3%, while for the corresponding protium �1H� atom
Pg,g�1H��0.51%. The corresponding probabilities to find
the final tritium and protium atoms in the excited 2s states
are Pg,2s�

3H��4.75% and Pg,g�1H��0.93%, respectively. In
general, these results are quite close to the corresponding
probabilities obtained in Sec. II for the one-electron He+ ion.
It should be mentioned that if the nuclear �3He,n ; p , t� reac-
tion proceeds in the two-electron He atom then one can also
detect the formation of two-electron tritium ion �3H−� in the
final state. The probability of such a process is evaluated
below.

IV. FORMATION OF THE TWO-ELECTRON FRAGMENTS

If the nuclear �n ,Q ;q1 ,q2� reaction involves many-
electron atoms or ions then it is possible to detect atomic
fragments of this reaction which contain two and even more
electrons. For the �3He,n ; p , t� and �6Li ,n ;� , t� reactions,
the observation of the final atomic fragments with two elec-

trons is of some interest in applications. From a theoretical
point of view, it is interesting to evaluate the total probability
of tritium 3H− ion formation from the �3He,n ; p , t� reaction,
if it proceeds in a two-electron 3He atom. It is clear a priori
that such probabilities are small. For instance, by using data
from Table I, one can evaluate that the total probability to
form the 3H− ion �negatively charged tritium ion� in the
�3He,n ; p , t� reaction is �0.625%. Here we want to develop
a rigorous procedure for evaluating the final-state probabili-
ties in those cases when two-electron atomic fragments are
formed during exothermic nuclear reactions of light nuclei
with slow neutrons.

To obtain the complete solution of this problem, consider
first the approximate wave function for both two-electron
systems, i.e., for the helium atom �ground state� and tritium
ion 3H−. The two-electron tritium ion 3H− has only one
bound state �11S-ground state�. The approximate ground-
state wave functions of these ions at rest are represented in
the following one-term form:

�g�r1,r2,r12� = C1

2
�1 + P12�exp�− �1r1 − �2r2 − �3r12� ,

�32�

where r1 and r2 are the two scalar electron-nuclear coordi-
nates, r12 is the scalar electron-electron coordinate. The op-
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erator P̂12 designates the electron-electron permutation. The
optimal values of nonlinear parameters �1, �2, and �3 for
this one-term trial wave functions can be found in Table II
�in atomic units�. Table II also contains the numerical values
of normalization constant C and variational energy E for each
one-term wave function. Note that our “one-term’ wave
functions for both systems with carefully optimized nonlin-
ear parameters are the best functions in their class.

As follows from Table II, the nonlinear parameter �3 is
relatively small for both systems. So, in the first approxima-
tion, we can assume that �3=0. Note that this parameter is
responsible for describing the electron-electron correlations.
In the systems with �3=0, there is no correlation at all and
the two electrons are considered to be independent. For
atomic systems with two independent electrons, the corre-
sponding amplitude M of the final-state probability is the
symmetrized sum of the two following terms:

M =
1

2
CHeCH−�

0

+	

exp�− ��1 + �1�r1�j0�vr1�r1
2dr1

��
0

+	

exp�− ��2 + �2�r2�j0�vr2�r2
2dr2

+ �
0

+	

exp�− ��1 + �2�r1�j0�vr1�r1
2dr1

��
0

+	

exp�− ��2 + �1�r2�j0�vr2�r2
2dr2� , �33�

where �i and �i �i=1,2� are the “optimal” exponents deter-
mined for the He atom and 3H− ion, respectively. Note that
each of these terms is the product of two one-electron inte-
grals which can be computed independently. By applying
this approximate formula to the �3He,n ; p , t� reaction in two-
electron He atom, one finds that the probability of formation
of the 3H− ion is �2.94%, while the probability of 1H− ion
formation is �5.23�10−5%.

Now, if the one-term wave functions also contain inter-
electron exponents, i.e., exp�−�1r12� and exp�−�2r12�, re-
spectively, then the last formula is modified to the form,

M =
1

2
CHeCH−�

0

+	

exp�− ��1 + �1�r1�j0�vr1�r1dr1

��
0

+	

exp�− ��2 + �2�r2�j0�vr2�r2dr2

��
	r1−r2	

r1+r2

exp�− ��1 + �2�r12�r12dr12

+ �
0

+	

exp�− ��1 + �2�r1�j0�vr1�r1dr1

��
0

+	

exp�− ��2 + �1�r2�j0�vr2�r2dr2

��
	r1−r2	

r1+r2

exp�− ��1 + �2�r12�r12dr12� . �34�

Note that despite some similarities between this formula and
previous formula �Eq. �33��, these formulas have completely
different meaning. In Eq. �33� the variables r1 and r2 can be
considered as independent variables. This drastically simpli-
fies all the following computations �i.e., integration over all
variables�. In Eq. �34�, we have to integrate first over the
interelectron variable r12. But such an integration will change
the explicit form of functions upon r1 and r2 variables. Fi-
nally, the analytical computation of the integrals over the r1
and r2 variables is not an easy task even in simple cases.

Based on the last formula, it is easy to obtain the closed
expression for the probability amplitude M to form the nega-
tively charged H− ion, during the nuclear �3He,n ; p , t� reac-
tion in two-electron 3He atom. Let � and � be the three-
body wave functions of the helium atom and H− ion,
respectively. Below we shall consider the case when these
two systems are in their ground states only. As per Eq. �26�,
we represent these wave functions in the form

��r1,r2,r12� =
1

2
�1 + P̂12��

i=1

N1

�
j=1

N2

�
k=1

N3

Aijk�i�r1�� j�r2��k�r12� ,

�35�

��r1,r2,r12� =
1

2
�1 + P̂12��

I=1

N1

�
J=1

N2

�
K=1

N3

Bijk�I�r1��J�r2��K�r12� ,

�36�

where Aijk and Bijk are the corresponding variational coeffi-
cients determined from the results of highly accurate compu-

tations of these systems and P̂12 is the electron-electron per-
mutation. In this notation, one can write the closed
expression for the probability amplitude,

TABLE II. Optimal values of the nonlinear parameters �1, �2, and �3 and normalization constants C �the
value of C−2 is presented� used in the one-term wave function �Eq. �18��.

System �1 �2 �3 C−2

	H− 1.07502156952042a 0.483749895649205 −0.146567513488393 1.08729676507270
	He 2.20655916007215b 1.44058525334471 −0.207334197404063 3.16685234182372�10−3

aThe total energy of this system is −0.523 865 929 763 678 a.u.
bThe total energy of this system is −2.899 534 375 443 69 a.u.
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M =
1

2
CHeCH−�

i=1

N1

�
j=1

N2

�
k=1

N3

�
I=1

K1

�
J=1

K2

�
K=1

K3

AijkBIJK

��
0

+	

�i�r1��I�r1�j0�vr1�r1dr1�
0

+	

� j�r2��J�r2�j0�vr2�r2dr2�
	r1−r2	

r1+r2

�k�r12��K�r12�r12dr12

+ �
0

+	

�i�r1��J�r1�j0�vr1�r1dr1�
0

+	

� j�r2��I�r2�j0�vr2�r2dr2�
	r1−r2	

r1+r2

�k�r12��K�r12�r12dr12� . �37�

By using this formula, we can evaluate the amplitude of the
final-state probability to form the 3H− ion from the two-
electron He atom during the �n , 3He , t , p� nuclear reaction.
Indeed, each of the integrals in this formula can be computed
�in many cases analytically, in some cases numerically�,
while the coefficients Aijk and BIJK are assumed to be known
from the corresponding variational expansions. To illustrate
this formula, we determined the probability amplitude to de-
tect the 3H− ion in its ground state in the nuclear reaction
�Eq. �1��, in which the original He atom was also in its
ground state. The result is M �0.095 and the total probabil-
ity P= 	M	2�0.009 25=0.925%. Note that the computed
probability is quite close to the expected value, i.e., it is
relatively small.

V. TRANSITIONS IN THE MOVING ATOMIC
FRAGMENTS

In all the calculations above, we have ignored the transi-
tions between different excited and ground states in the mov-
ing atomic fragments. It is clear, however, that such transi-
tions can be important in some cases because their overall
contribution may change the final-state probabilities pre-
dicted in our calculations. For instance, let us assume that
during the nuclear reaction �Eq. �1��, the tritium atom 3H was
formed in the excited 2p state. At the same time the posi-
tively charged 1H+ ion was formed in the same reaction. The
atom and ion are rapidly moving from each other in the two
opposite directions �in the case of slow neutrons�. The origi-
nal �=minimal� distance D between these two ions is larger
�or equal to� a0=1 a.u., where a0 is the Bohr radius. At
shorter distances �i.e., D�1 a.u.�, the formation of the tri-
tium atom is not completed and an atomic wave function
cannot be associated with the nascent atom. Therefore, we
cannot use such distances in our analysis.

In the tritium atom rest frame, the outgoing 1H+ ion
moves with the velocity V�vp+vt�6.5 a.u. This value is
�20 times smaller than the speed of light c. The electromag-
netic interaction between the 3H atom and rapidly moving
1H+ ion �i.e., proton� can stimulate the transition from 2p
state �and other excited states� of the tritium atom into its
ground 1s state. In the case of the �6Li ,n ;� , t� reaction, the
electromagnetic interaction between fast reaction fragments
is even larger.

In this section, we want to consider the interaction be-
tween the proton and tritium atoms. This problem was dis-

cussed in �4�. Here we develop a different approach which is
significantly simpler and has a number of advantages in ap-
plications. The main idea of this approach is very transpar-
ent. It was shown �15� that already at very short internuclear
distances R�0.1 a.u., the motion of the two reaction frag-
ments proceeds with constant velocities. Therefore, our
original problem is reduced to the well-known problem of
atomic excitations by a rapidly moving charged particle �pro-
ton�. The probability of transition from the state i into the
state f is given by the formula �see, e.g., �8,16��

Pfi =
1

�2��
0

T

�f 	Ŵ�t�	i
exp�ı� fit�dt�2

, �38�

where Ŵ�t� is the perturbation, T is the time when this per-
turbation acts, and � fi is the transition frequency. In this
section we shall use regular �i.e., nonatomic� units. Let r
= �x ,y ,z� be the vector which defines the position of the elec-
tron in the tritium atom. The origin of our coordinate system
is placed at the tritium nucleus which is assumed to be at
rest. The proton moves along the x direction. The proton
position at the moment t is defined by the initial vector R
= �Vt+D ,0 ,0�.

In this notation, the interaction between the electron and

moving proton �i.e., the perturbation Ŵ�t� in Eq. �38�� is
written in the form

Ŵ�t� = −
Qe2

	R − r	
= −

Qe2

R
−

Qe2�Vt + D�x
R3 − ¯ , �39�

where R=��Vt�2+D2. Since x�D and V is large then we
have x�R and for t
1 one also finds that x�R. Here and
below we restrict ourselves to the two lowest-order terms in

the expansion for Ŵ�t�. Terms which contain y2, z2, and x2

contribute in higher orders. Note that the first term does not
depend upon the electron coordinates. Using Eq. �39� the
matrix element in Eq. �38� becomes

�f 	Ŵ�t�	i
 = −
Qe2

R
� fi −

Qe2

R3 �Vt + D�xfi, �40�

where xfi=�� f
�x�id

3r, while � f and �i are the wave func-
tions of the stationary states in the tritium atom and integra-
tion is performed over the electron coordinates d3r=dxdydz.
Now, the transition probability i→ f takes the form
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Pfi =
Q2e4	xfi	2

�2 ��
0

	 Vt + D

��Vt�2 + D2�3/2exp�ı� fit�dt�2

=
Q2e4	xfi	2

�2V2 �D

V
F�� fi,

D

V
� − ı

�

�� fi
F�� fi,

D

V
��2

,

�41�

where i� f and the function F is

F�� fi,
D

V
� = �

0

	 cos�� fit�dt

t2 +
D2

V2

=
V� fi

D
K1�D� fi

V
� . �42�

Here and below, the notation Ki�x� stands for the modified
Bessel functions �17� �also called MacDonald or Schläfli
functions�.

To finish these computations, one needs to use the follow-
ing formula:

�

��
K1��z� = − zK0��z� −

1

�
K1��z� , �43�

where z is a parameter. From here one finds

�

��
�

z
K1��z�� = − �K0��z� . �44�

Now, the final formula takes the form

Pfi =
Q2e4	xfi	2� fi

2

�2V2 K1
2�D� fi

V
� + K0

2�D� fi

V
��

=
Q2e4	xfi	2

�2D2 ��D� fi

V
� , �45�

where

��x� = x2�K1
2�x� + K0

2�x�� �46�

is the internal bremsstrahlung function.
Note that the internal bremsstrahlung function depends

only upon the ratio
D� fi

V . The maximal �additional� excitation
is reached when D� fi=V. In atomic units the formula for
probability �Eq. �45�� takes the form

Pfi =
Q2	xfi	2

D2 ��D� fi

V
� , �47�

where for protons Q=1. From this formula, one finds the
limits for the variation of xfi values. Indeed, since Pfi�1
then it follows from Eq. �47� that 	xfi	�

D
Q .

The formulas derived in this section allow one to evaluate
the probabilities of “additional” transitions between different
excited states and between excited and ground states. In gen-
eral, such transitions may change the probabilities predicted
in our calculations performed in Secs. I–IV.

VI. BREMSSTRAHLUNG AMPLIFIERS

The exothermic nuclear �n ,Q ;q1 ,q2� reactions in few-
electron ions can be used to create special devices which can
be called the bremsstrahlung amplifiers. Such devices can be
used to generate very intense pulses of x-ray radiation. Here
we briefly discuss the basic physics of such amplifiers for
internal bremsstrahlung. In general, if Nf electrons from
some ion suddenly become free due to some nuclear reaction
in an atom then they emit radiation, which is called the in-
ternal bremsstrahlung �see, e.g., �18,19� and references
therein�. The intensity distribution in frequency � of such a
radiation takes the form �20�

dI���
d�

=
e2Nf

2

�c
 1

�
ln�1 + �

1 − �
� − 2�

+
2e2�2

15�c3�2�2 �
i
j=1

Nf

Rij
2 �0� − �

i
j=1

Nf

��� · Rij�0��2�
+ . . . , �48�

where �� = v
c , �= v

c , and v is the velocity of the ion before
nuclear reaction, c is the speed of light, � is the frequency of
radiation, and e is the electron charge. The first term in this

expansion ��
e2Nf

2

�c � represents the spectrum known for inter-
nal bremsstrahlung �see, e.g., Eq. �15.66� in �19��. The sec-
ond term � 2e2�2

15�c3 is the small correction to such a spectrum.
This term is proportional to the sudden electron-electron dis-
tance Rij�0�=ri�0�−r j�0� which represents the lowest-order
correction on the spatial electron-electron correlation in the
maternal atom. In this formula, we have neglected by all
higher-order terms upon the small parameter �= �a

c , where a
is atomic radius. In general, by measuring the appropriate
corrections experimentally, one can study the spatial
electron-electron correlations �and the electron distribution�
in outer electronic shells of the maternal atom.

Let us briefly discuss the idea which may allow one to
amplify the emitted radiation �i.e., bremsstrahlung� by accel-
erating the incident positively charged ions to very large en-
ergies. Suppose the two-electron 6Li+ ion has been acceler-
ated to a very large energy, e.g., its Lorentz � factor is �
= 1

�1−�2 �1�106. Now, if the �6Li ,n ;� , t� reaction occurs in
this ion then the two electrons suddenly become free. A sud-
den appearance of two very fast electrons will produce a very
intense pulse of radiation �bremsstrahlung�. It looks like the
two-electron � decay, but the energy of the emitted electrons
is �100 000 times larger than the energy of very fast � elec-
trons. In fact, the emitted radiation �bremsstrahlung� can be
amplified even further if the �6Li ,n ;� , t� reaction proceeds
in a very strong magnetic field H. An additional �synchro-
tron� amplification of electron bremsstrahlung in this case
will be defined by the factor �2H2. For very large H, the
intensity of such a radiation can be extremely large. In gen-
eral, by using very intense magnetic fields and accelerating
the incident 6Li+ �or 10B+� ions to very large energies, one
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can amplify the original nonrelativistic bremsstrahlung in
1012−1014 times. Further amplification can be related with
the use of reactions of fast neutrons with nuclei in many-
electron atoms. If during such a reaction Nf electrons from
the incident atom become free then we have an additional
amplification factor Nf

2, which represents the coherent brems-
strahlung from Nf electrons. It should be noted that the de-
scribed mechanism of bremsstrahlung amplification is of in-
terest in some astrophysical applications.

VII. CONCLUSION

We have considered the nuclear �3He,n ; p , t� reaction of
the 3He nucleus with slow neutrons in the one-electron he-
lium ion �3He+� and the two-electron helium atom �3He�.
The final-state probabilities are determined for a number of
excited states in the final tritium and protium atoms arising
in the reaction �1�. Analogous final-state probabilities are
also evaluated for some other highly exothermic nuclear re-
actions involving light one-electron ions: �6Li ,n ;� , t� and
�10B,n ; 7Li ,��. All these reactions are of great interest in
various applications. The probability of formation of the
two-electron tritium 3H− and protium 1H− ions in the nuclear
reaction �3He,n ; p , t� reaction in the two-electron He atom is
also evaluated. The total probability to form any of these
negatively charged hydrogen ions is relatively small.

It is shown that highly exothermic nuclear reactions in
atoms and ions can be used to study the electron-density
distribution in the incident atomic systems and its redistribu-
tion during such reactions. In fact, the same nuclear reactions
can be used for the same purposes in many complex mol-
ecules which contain Li, B, N, and some other atoms. In
most cases, the rapidly moving atomic fragment contains ei-
ther one electron or no electrons at all. In some cases, how-
ever, such a fragment may contain two and even three atomic
electrons. In fact, the total probability to form two- and
three-electron atomic fragments in exothermic nuclear reac-
tions with slow neutrons is less than 1% for light atoms. We
also discuss the redistribution of the final-state probabilities
due to additional transitions in the nascent final atomic frag-
ments. A number of exothermic nuclear �n ,Q ;q1 ,q2� reac-
tions in a few-electron atoms or ions with neutrons can also
be used to create some special devices which can be called
the �internal� bremsstrahlung amplifiers. Such devices can be
used to generate very intense pulses of x-ray radiation.
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APPENDIX A

Let us present the closed formula for the final-state prob-
ability amplitude for a one-electron atom or ion in the
�n ,Q ;q1 ,q2� reaction. The incident state of the one-electron
system is the ground 1s state, while the final �n�� hydrogenic
state can be arbitrary. All nuclear masses are assumed to be

infinite. In this case, the expression for the final-state prob-
ability amplitude is

M�1s → n���Q,q,v�

=
��Q

n
�q�n − � − 1�!

�n + ��!

�2q

n
��+1

�
k=0

n−�−1
�− 1�k

k!
� n + �

2� + k + 1
�

�2q

n
�k �k + 2� + 2�!

�� +
3

2
�

v�

2��X2 + v2�k+3/2+�

�2F1� k + 3

2
+ �,−

k + 1

2
;� +

3

2
;

v2

X2 + v2� , �A1�

where X=Q+ q
n . In this case, in Eq. �6� we have �1=0 and

�2=�=L. Finally, one finds that additional angular factor in
Eq. �6� equals unity, and therefore, one finds that the total
probability is P= 	M�1s→n���Q ,q ,v�	2.

APPENDIX B

In this appendix, we derive analytical formulas for some
three-body radial integrals which play a great role in this
study. First, let us present the explicit formula for the
l,m,n�� ,� ,�� integral, where

n,k,l��,�,�� = �
0

	 �
0

	 �
	r32−r31	

r32+r31

exp�− �r32 − �r31 − �r21�

�r32
l r31

m r21
n dr32dr31dr21, �B1�

where �, �, and � are the three real parameters, while l, m,
and n are the integer numbers. If integer parameters l, m, and
n are “substantially negative” then this integral �Eq. �B1�� is
singular. This case was considered in �23�. Here we want to
consider only regular three-body integrals, i.e., the cases
when all l, m, and n are non-negative. The analytical formula
for the n,k,l�� ,� ,�� integral is easily obtained in perimetric
coordinates u1, u2, and u3, where ui=

1
2 �rij +rik−rjk� and rij

=ui+uj �21,22�. Here and everywhere below in this section,
�i , j ,k�= �1,2 ,3� and rij =rji. In perimetric coordinates the
integral �Eq. �B1�� takes the form

n,k,l��,�,�� = 2�
0

	 �
0

	 �
0

	

�exp�− �� + ��u1 − �� + ��u2 − �� + ��u3�

��u1 + u2�n�u1 + u3�m�u2 + u3�ldu1du2du3.

�B2�

The integration over three independent perimetric coordi-
nates ui �0�ui�	� is trivial and the explicit formula for the
n,k,l�� ,� ,�� integral is written in the form
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n,k,l��,�,�� = 2l ! m ! n ! �
l1=0

l

�
m1=0

m

�
n1=0

n Cm−m1+l1

l1 Cl−l1+n1

n1 Cn−n1+m1

m1

�� + ��m−m1+l1+1�� + ��l−l1+n1+1�� + ��n−n1+m1+1 , �B3�

where Ck
m are the binomial coefficients �=number of combi-

nations from k by m�.
Now, consider different three-body integrals which can be

written in the following form:

�1,1,1
�0� ��,�,�;V� = �

0

	 �
0

	 �
	r32−r31	

r32+r31

exp�− �r32 − �r31 − �r21�

�j0�Vr32�r32r31r21dr32dr31dr21, �B4�

which also depend upon the parameter V and contain one
Bessel function j0�Vr32�. This integral can easily be com-
puted analytically in perimetric coordinates. First, note that
j0�Vr32�r32=sin�Vr32�=sin�Vu2�cos�Vu3�+cos�Vu2�sin�Vu3�.
From here one finds

�1,1,1
�0� ��,�,�;V�

= 2�
0

	 �
0

	 �
0

	

exp�− �� + ��u1 − �� + ��u2 − �� + ��u3�

��u1
2 + u1u2 + u1u3 + u2u3�sin�Vu2�

�cos�Vu3�du1du2du3

+ 2�
0

	 �
0

	 �
0

	

�u1
2 + u1u2 + u1u3 + u2u3�

�cos�Vu2�sin�Vu3�

�exp�− �� + ��u1 − �� + ��u2 − �� + ��u3�du1du2du3.

�B5�

Analytical computation of each of these eight integrals is
performed with the use of formula �3.944� from �7� �see Eqs.
�5� and �6��. For instance, consider the first integral in the
last formula

2�
0

	

exp�− �� + ��u1�u1
2du1�

0

	

exp�− �� + ��u2�

�sin�Vu2�du2�
0

	

exp�− �� + ��u3�cos�Vu3�du3

=
4

�� + ��3

sin�arctan
V

� + �
�

��� + ��2 + V2�1/2

cos�arctan
V

� + �
�

��� + ��2 + V2�1/2

=
4V�� + ��

�� + ��3��� + ��2 + V2���� + ��2 + V2�
. �B6�

To obtain the final expression, we have used formulas �7�
and �8� from Eq. �1.624� �7�. Note that here we have V
0
�always� and �+�
0 �this condition follows from the con-
vergence of corresponding integrals in perimetric coordi-
nates�. The computation of all remaining integrals is also
straightforward. The analytical expression for the
�1,1,1

�0� �� ,� ,� ;V� is used in Sec. III above. The approach de-
veloped in this appendix allows one to derive the analytical
formulas for three-body integrals which contain two Bessel
functions j0�Vr32� and j0�Vr31�. These formulas are needed in
Sec. IV above. In fact, our method can be used to calculate
�analytically� the whole different class of three-body inte-
grals.
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