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We investigate the presence of Feshbach resonances in ultracold alkali-dialkali reactive collisions. A
potential-energy surface of Na3 in the lowest quartet state is constructed and used in quantum scattering
calculations. An analysis of scattering features is performed through a systematic variation in the nonadditive
three-body interaction potential. Our results should provide useful information for interpreting future atom-
molecule collision experiments.
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I. INTRODUCTION

In recent years, there has been a growing interest in ultra-
cold molecules �1�, particularly in the production and prop-
erties of the molecules formed from ultracold atomic gases
�2�. Photoassociation �3� and Feshbach resonance tuning �4�
are two main experimental techniques for a coherent produc-
tion of ultracold molecules from ultracold alkali-metal at-
oms. In 2003 long-lived molecular Bose-Einstein conden-
sates were created from weakly bound homonuclear lithium
and potassium dimers by exploiting magnetically tunable
Feshbach resonances between fermionic isotopes �5–7�.

While Feshbach resonances are always located at the
highest vibrational manifold of the dimer, photoassociation
could in principle allow access to low vibrational dimer
states. In 2005 RbCs molecules were created in their ground
vibronic state �8�. Very recently, several different photoasso-
ciation schemes for molecular formation in the ground vi-
bronic state have also been developed �9–13�.

For the correct interpretation of the forthcoming experi-
ments with cold molecular samples it is essential to under-
stand the atom-molecule and molecule-molecule interactions
at sub-K temperatures �14�. Theoretical results have already
been published for the homonuclear X+X2 ultralow-energy
collisions with X=Li, Na, and K �15–20�. Isotopically het-
eronuclear Li+Li2 ultralow-energy collisions have also been
studied theoretically �20–24�. Collision cross sections have
been measured experimentally for the Cs+Cs2 ultracold in-
elastic processes �25,26�. Very recently reactive and inelastic
rate constants were measured for Li+Li2

� at room tempera-
ture �27�.

Cold collisions are known to be very sensitive to
potential-energy surfaces �16,20�, and therefore experimental
information is needed to improve the corresponding theoret-
ical models. In particular, knowledge of low-energy reso-
nance patterns often allows different properties of the inter-
action potential to be determined with high accuracy. Such
resonances have been studied in great detail both theoreti-
cally and experimentally in ultracold atomic gases; see, e.g.,
�28–30�.

On the other hand, very little is known about atom-
molecule resonances in ultracold collisions. Similarly to

atomic scattering the hyperfine-induced resonances could in
principle exist at very low collision energies. However,
model calculations have shown that for a general polariza-
tion they will be quenched by inelastic spin-exchange tran-
sitions forming singlet molecules �31�.

Alkali-metal dimers on the lowest electronic triplet mani-
fold are only stable if they are in a doubly spin-polarized
state under collisions with doubly spin-polarized atoms �as-
suming that the relativistic spin interactions are neglected�.
Unfortunately, for this specific polarization hyperfine-
induced resonances are prevented by symmetry �resonances
induced by relativistic spin interactions are still possible�. In
spite of this, long-lived three-atom complexes can in prin-
ciple exist and give rise to resonances. Such reactive reso-
nances have been identified in reactive collisions at room
temperature �32�.

In this work, we focus on collisions of Na2 molecules in
the triplet electronic state with ground-state Na atoms. For
this study a potential-energy surface of Na3�1 4A2�� has been
constructed. The occurrence of long-lived three-atom reso-
nances in such collision complex is demonstrated in the ul-
tracold regime. We also study the dependence of collision
cross sections on the potential-energy surface and we show
that at least knowledge of two terms in the cross-section
partial-wave expansion is needed in order to characterize fur-
ther the three-body potential.

II. POTENTIAL ENERGY SURFACE

Ab initio calculations were performed using a single-
reference restricted open-shell variant �33� of the coupled-
cluster method �34� with single, double, and noniterative
triple excitations �RCCSD�T��. A basis set consisting of �12s,
12p, 5d, 2f , 1g� basis functions �35� was used for the dimer
calculations, and the same basis set without the g functions
was used for the trimer calculations. Electrons from the 1s
orbital on each sodium atom were not correlated in the
coupled-cluster calculations. The three-atom interaction po-
tential was decomposed into a sum of pairwise additive and
nonadditive contributions,
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Vtrimer�r12,r23,r13� = �
i�j

Vdimer�rij� + V3�r12,r23,r13� . �1�

It has been shown by several authors that in the case of
alkali-metal trimers the nonadditive term V3�r12,r23,r13� is
rather large and cannot be neglected �36–38�. Interaction en-
ergies were calculated with respect to the separated-atom dis-
sociation limit, and the full counterpoise correction of Boys
and Bernardi �39� was employed to compensate for the basis
set superposition error in both the dimer and trimer calcula-
tions. All the ab initio calculations were performed using the
MOLPRO quantum chemistry package �40�.

Forty-seven dimer interaction energies Vdimer on the a 3�u
+

manifold were calculated on an irregular grid covering the
range of interatomic distances from 2.0 to 14.0 Å. These
points were interpolated using the one-dimensional �1D�
reciprocal-power reproducing kernel Hilbert-space �RP-
RKHS� method �41�. The interpolation was done with re-
spect to r2 using RP-RKHS parameters �m=2 and n=3�. The
resulting curve had a minimum at approximately re
=5.194 Å, Vdimer�re�=−172.946 cm−1, which is slightly
higher than the previously reported ab initio minima re
=5.192 Å, Vdimer�re�=−177.7 cm−1 �42�, re=5.20 Å,
Vdimer�re�=−176.17 cm−1 �36�, and re=5.214 Å, Vdimer�re�
=−174.025 cm−1 �37�.

Ivanov et al. �43� analyzed experimental data on triplet
Na2 and derived the accurate position re=5.166 07 Å,
Vdimer�re�=−173.649 60 cm−1 of the a 3�u

+ minimum. There-
fore our ab initio interaction energies were shifted and scaled
�shifted by −0.027 54 Å and scaled by 1.004 07� so that the
minimum of the modified potential-energy curve coincided
with the minimum determined from experiment. The RP-
RKHS interpolation was then repeated using the modified
RP-RKHS method �44�. Beyond the last ab initio point, the
potential energy was then extrapolated to the form

Vdimer�r� = −
C6

r6 −
C8

r8 −
C10

r10 . �2�

The long-range coefficients C6 and C8 were kept fixed to the
values of 1.561�103 Eha0

6 and 1.16�105 Eha0
8, respectively

�45�. The value of the “free” long-range coefficient C10 was
then determined from the corresponding RP-RKHS coeffi-
cients �46� to be 1.19�107 Eha0

10, which compares very well
with 1.158�107 Eha0

10 from Ref. �45�. The resulting
potential-energy curve supports 16 vibrational bound states
and gives a scattering length of 67.1a0, which compares rea-
sonably well �within 10%� with published values 65.3 �47�,
63.9 �48�, and 62.51 �49�.

Three hundred fifty-six trimer interaction energies Vtrimer
on the 1 4A2� manifold were calculated on a regular three-
dimensional �3D� grid covering the range of interatomic dis-
tances from 2.5 to 10.0 Å �geometry configurations were
unique up to a permutation of atoms and satisfied the trian-
gular inequality �r12−r13��r23�r12+r13; at linear geom-
etries, where r23=r12+r13, the distance r23 was permitted to
extend beyond 10.0 Å�.

The grid consisted of 220 C2v points �including 16 D3h
points� and 136 C�v points �including 16 D�h points�. From
the trimer interaction energies the counterpoise corrected

nonadditive energies V3 were extracted using Eq. �1�.
The nonadditive energy function V3 was represented in

the same manner as in the case of the spin-polarized potas-
sium trimer �18,50�. In order to accommodate the geometric
dependencies of the long-range multipole terms, third-order
dipole-dipole-dipole �51� and dipole-dipole-quadrupole �52�
terms were subtracted from the nonadditive energy V3. Their
corresponding long-range coefficients C9 and C11 were fixed
to 1.892�105 Eha0

9 �45� and 1.468 12�105 Eha0
11, respec-

tively �53�. The leading term of the remaining multipole
asymptotic expansion was the fourth-order dipole-dipole-
dipole term �54�, and after a multiplication by a suitable
function it was prepared for an “isotropic” extrapolation
�18,50�. The resulting points were then interpolated, using
the fully symmetrized 3D RP-RKHS interpolation method
�36�, in each interatomic distance with respect to the reduced
coordinate �= � r

S �3 and with RP-RKHS parameters
S=10.0 Å, m=0, and n=2.

The three-atom interaction potential Vtrimer for the
1 4A2� state of Na3 was then reconstructed using Eq. �1�.
Its D3h global minimum of −880.9 cm−1 is at r12=r13=r23
=4.34 Å and D�h saddle point of −381.7 cm−1 is at
r12=r13=5.06 Å. The minimum of our trimer potential is
approximately 5% deeper than the minima reported by Hig-
gins et al. �36� and Soldán et al. �37�. Two cuts through the
surface are shown as contour plots in Fig. 1 for values of the
valence angles 60° and 180°.

III. QUANTUM DYNAMICS

The scattering observables are obtained by solving the
time-independent Schrödinger equation for three atoms.
Quantum dynamical calculation is performed using hyper-
spherical democratic coordinates. This system of coordinates
is comprised of three internal coordinates �two hyperangles
and one hyper-radius� describing the shape and the size of
the molecular triangle and three Euler angles describing the
orientation of the molecular plane in space. The total wave
function is expanded on a set of hyperspherical basis func-
tions varying with the hyper-radius. The resulting closed
coupled equations are solved using a logarithmic-derivative
propagator approach. Details on the method can be found in
�55�.

The hyperspherical democratic coordinates are especially
well adapted in describing alkali-metal species reactions that
mainly proceed through an insertion mechanism �15�. How-
ever, the region of large interparticle distances, where the
system separates into atom and molecule, is not efficiently
described in hyperspherical coordinates. Therefore the scat-
tering wave function in the outer region is computed using
Jacobi coordinates. State-to-state probability amplitudes are
finally extracted by matching to the short-range wave func-
tion obtained with the hyperspherical approach �55�.

Atom-atom collisions in the ultracold regime are deter-
mined by a small number of parameters. In fact, the s-wave
scattering lengths and the dominant term in the long-range
multipole potential expansion are sufficient in general to pre-
dict all near-threshold scattering and bound-state properties.
This feature has allowed many systems of experimental in-
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terest to be accurately modeled based on a limited amount of
experimental information �28–30�. Observed energy-
dependent cross sections and Feshbach or shape resonances
often provided a key piece of information for determining
theoretically the scattering lengths and the long-range disper-
sion coefficients.

The situation appears to be more complex for atom-
molecule collisions due to the additional rovibrational de-
grees of freedom and anisotropic interactions. As collisional
data may be soon available we begin to study here what
experimental information might be best suited to constrain
the collision models. For most alkali-metal systems, and for

Na2 in particular, the two-body potential is known with high
accuracy from a combination of conventional room tempera-
ture and ultracold atom spectroscopy �49�. Therefore, one
may expect the three-body interaction V3 to represent the
largest source of uncertainty. We assume that its shape is
essentially correct and following the approach of �16�, we
solve the scattering problem with a scaled potential �V3. At
variance with Ref. �16� which considered inelastic scattering
we discuss here scattering resonances in elastic collisions.

We focus on molecules in the lowest triplet rovibrational
state, which is collisionally stable under two-body collisions
with atoms if both colliding partners have maximal spin pro-
jection on the quantization axis. We show in Fig. 2 the atom-
diatom s-wave scattering length as as a function of the three-
body control parameter �. Each time a three-body bound
state crosses the dissociation threshold the as presents a typi-
cal divergence, termed a zero-energy resonance. One may
note that a 0.1–1% potential variation �1–10 cm−1 on the
potential depth� is sufficient for a complete −� to +� varia-
tion in as.

In order to investigate the relation between the zero-
energy quantity as and finite-energy scattering, we select val-
ues of the control parameter � corresponding to the same
value of as and compare the corresponding energy-dependent
elastic cross sections.

We first consider total angular momentum J=0. For j=0
rotational states this implies an angular momentum �=0.
Figure 3 shows the result of the comparison for a typical
positive value of as. The partial J=0 cross sections � for
as	0 show a qualitatively similar behavior essentially deter-
mined by the value of as and by the long-range C6 coeffi-
cient. One can remark the well-known zero-energy limit
�→4
as

2. The minimum of the cross section corresponds to
the scattering phase shift going through a multiple of 
, and
in the absence of contributions from higher order partial
waves would correspond to a Ramsauer-Townsend minimum
in the total cross section �56�.

The cross sections calculated for as�0 are more interest-
ing. A large negative scattering length is associated with a
bound state turned into a virtual state with energy E0 in the
continuum. This situation can be conveniently described by
decomposing the elastic phase shift into a background plus a
resonance contribution �56,57�,

(a)

(b)

FIG. 1. Cuts through the Na3 quartet surface in valence coordi-
nates. Upper panel: cut for a bond angle of 60°; the global mini-
mum of −881 cm−1 is at r12=r13=r23=4.34 Å. Lower panel: cut at
collinear geometries; the collinear minimum of −382 cm−1 is at
r12=r13=5.06 Å. Contours are labeled in cm−1.
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FIG. 2. The Na+Na2 �v=0, j=0� s-wave scattering length as a
function of the three-body control parameter � �see text�. Horizontal
lines identify model potentials corresponding to as=−100a0 and
60a0.
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� = �bg + �res, �res = − arctan
�/2

E − Er
, �3�

where Er=E0+ is the resonance position, with � and  as
the resonance width and shift, respectively. For the first few
angular momenta � low-energy scattering is determined by
the asymptotic behavior ��E�+1/2, �bg�E�+1/2, and 
�const �57�.

There will be a low-energy resonance only if the width is
sufficiently narrow, ��E��E. If the more strict condition
��E��E is fulfilled, ��E� can be replaced with the constant
quantity �r=��Er�, and the decomposition in Eq. �3� implies
that � undergoes a rapid 
 variation across resonance. Note
that because of the ��E1/2 threshold law, �=0 scattering at
sufficiently low energy always violates the ��E condition
and no resonant behavior will arise. However, this does not
rule out the presence of resonances at higher yet very low
collision energy �see below�.

Resonances can also be analyzed in terms of the Wigner
time delay �58�,

Q = 2�
d�

dE
, �4�

i.e., the average delay of a scattering event compared to free
transit in the absence of the potential. In the threshold regime
using Eq. �3� one obtains

Q =
��

�E − Er�2 +
�2

4

�1 −
d

dE
	 +

2

v

d�bg

dk
−

E − Er

�E − Er�2 +
�2

4

1

v

d�

dk
,

�5�

where v is the velocity in the relative motion and k is the
relative wave vector. The first term is the usual Lorentzian
profile arising from exponential decay with a d

dE correction.
Near isolated resonances at high energy this is usually the
dominant contribution to the time delay; see, e.g., �59�. The

resonance shift  is usually a slowly varying function of
energy but in the presence of additional scattering features
such as shape resonances in the background continuum �60�.

The second term in Eq. �5� is the classical time for the
relative particle to span a distance 2

d�bg

dk . For �=0 elastic
scattering �bg�−kabg, and this term reduces to −2abg /v cor-
responding to an attractive �repulsive� character of the back-
ground potential for negative �positive� background scatter-
ing lengths abg. The third term vanishes for E=Er and gives
a correction of dispersive shape across resonance.

Note that in Fig. 4 one can essentially identify two classes
of curves. The first class �full lines� presents a monotonically
decreasing behavior toward the first minimum, which corre-
sponds to nonresonant scattering. The second class �dashed
lines� presents peaks at which the scattering partial cross
section reaches the unitarity limit �= 4


k2 �dotted line in Fig.
3� and can in principle be associated with a resonant behav-
ior.

We focus on the lowest-energy peak of Fig. 4 and make
the three-body potential slightly more attractive in order to
further shift this feature toward threshold. Figure 5 shows the
sin2 � and Q quantities for three selected potentials. The fea-
ture near 400 �K can be essentially classified as a resonance
with �r
0.5Er. As the potential becomes more binding �
becomes larger than Er ��r=Er for Er
200 �K� and the
resonant behavior tends to disappear. As the peak is made to
shift closer to threshold the time delay is fully dominated by
the background contribution; see upper panel. Also note
�lower panel� that in all cases the unitarity limit sin2 �=1 is
attained.

An additional interesting feature that can be observed by
inspection of Figs. 3 and 4 is the near coincidence of J=0
elastic cross sections computed with different three-body po-
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FIG. 3. The partial J=0 Na+Na2 �v=0, j=0� elastic cross sec-
tion as a function of collision energy for different values of the
three-body control parameter determined by the same value of the
atom-diatom scattering length as=60a0. The inset refers to the typi-
cal energy regime of current ultracold molecule experiments.
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FIG. 4. The partial J=0 Na+Na2 �v=0, j=0� elastic cross sec-
tion as a function of collision energy for different values of the
three-body control parameter determined by the same value of the
atom-diatom scattering length as=−100a0. Cross sections present-
ing resonant behavior are identified by dashed lines. The dotted line
denotes the unitarity limit �see text�. Sample cross sections obtained
using different � and presenting very similar energy dependence are
emphasized in the inset. The inset also shows �dashed-dotted lines�
two virtually identical cross sections for as	0 extracted from
Fig. 3.
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tentials in the whole energy range E�10 mK. Sample cross
sections illustrating this circumstance for both as	0 and
as�0 are put forth in the inset of Fig. 4. This shows that
knowledge of energy-dependent cross sections in the regime
where only the J=0 partial wave is important is in general
not sufficient to determine the strength of the three-body
nonadditive potential, even if its shape was precisely fixed.

However, model potentials giving equivalent J=0 cross
sections will not in general be equivalent if J	0 scattering is
explored. For instance, Fig. 6 shows the J=1 elastic cross
sections for �v=0, j=0� molecules. Calculations use the
same model potentials as the inset of Fig. 4 and can be iden-
tified according to the line style. Order of magnitude differ-
ences are observed for J=1 cross sections in cases where J
=0 cross sections are identical. One can conclude that the
initial characterization of a theoretical model based on purely
elastic collisions should take into account a sufficiently
broad energy range for the contribution of J	0 partial
waves to become observable. In alternative, in cases where
the method for the production of cold molecules allows the
initial rovibrational state to be controlled, at least one experi-
mental inelastic cross section �for some �v=0, j	0� initial
state, for instance� should complement the elastic collision
data.

Please note that one peak is also observed in Fig. 6.
Analysis of numerical results based on Eq. �3� shows that
�r
0.5Er, i.e., this feature represents a resonance. The inset
shows the resonance width as the peak center is shifted by
making the � parameter vary. Its position below the maxi-
mum 
400 �K of the �=1 centrifugal barrier �we find
�r=Er for Er
500 �K� suggests that it is a shape reso-
nance. However, Feshbach coupling similar to the one found
for J=0 collisions is not conclusively ruled out.

In conclusion, we have presented a potential-energy sur-
face for Na3�1 4A2��. We have demonstrated that long-lived

triatomic complexes exist and give rise to resonance effects
in reactive collisions even at very low collision energies.
General features to be expected in atom-molecule scattering
in the ultracold regime have also been investigated by per-
forming a systematic variation in the three-body part of the
interaction potential. Knowledge of energy-dependent J=0
elastic cross sections may not be sufficient to determine the
strength of the nonadditive three-body interaction. To this
aim, at least one additional J	0 elastic or inelastic cross
section needs to be experimentally determined. In this work
we have studied the sensitivity of scattering observables by
introducing a global scaling parameter of the three-body in-
teraction. In perspective, as cold collision empirical data will
become available, it is likely that more complex parametri-
zations of the potential-energy surface will need to be intro-
duced in order to compare quantitatively theory and experi-
ments.
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