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An accurate QED calculation of transition probabilities for the low-lying two-electron configurations of
multicharged ions is presented. The calculation is performed for the nondegenerate states �1s2s� 3S1,
�1s2p3/2� 3P2 �M1 and M2 transitions, respectively� and for the quasidegenerate states �1s2p� 1P1, �1s2p� 3P1

�E1 transitions� decaying to the ground state �1s1s� 1S0. Two-electron ions with nuclear-charge numbers Z
=10–92 are considered. The line profile approach is employed for the description of the process in multi-
charged ions within the framework of QED.
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I. INTRODUCTION

Highly charged ions �HCIs�, in particular, two-electron
HCIs considered in the present work are under intensive ex-
perimental and theoretical investigation during the last de-
cades. In HCI the electrons are propagating in the field of the
nucleus, which exceeds in strength all other external electric
fields accessible in laboratories. This allows for tests of QED
in strong electric fields. The most precise experimental data
have reached relative levels of accuracy of about 1% in one-
electron ions �the measurement of the binding-energy shift,
i.e., the difference between the electron binding energy and
the Dirac point-nucleus value for this energy, ground state,
Z=92 �1�, about 0.4% in two-electron ions �the measurement
of binding energy of one electron in the two-electron ion,
ground state, Z=92 �2��, and about 0.03% in three-electron
ions �the measurements of the 2p1/2−2s1/2 energy difference
for the first excited and ground states, Z=92� �3�. In the
theoretical studies of the few-electron HCI such a level of
accuracy requires the inclusion of the second-order �two-
loop� radiative corrections as well as the screening of the
first-order �one-loop� radiative corrections. The nuclear size,
nuclear recoil, and even the nuclear polarization corrections
appear to be of importance as well. What concerns the inter-
electron interaction corrections, the first-, second-, and partly
third-order corrections should be accounted for in high-Z
HCI. For intermediate Z values and especially for the
quasidegenerate energy levels �see below�, the inclusion of
the interelectron interaction corrections to all orders, at least
within a simplified treatment, becomes necessary. The exist-
ing experimental data for the transition probabilities are less
accurate �3% for Z=54 �4�� but also require from theory to
take into account the interelectron interaction and the lowest-
order radiative corrections. Moreover, HCI can be used for
the investigation of fundamental problems beyond QED:
first, for testing the standard model via the observation of
parity nonconservation �PNC� effects in HCI. Various sug-
gestions on this subject were made in �5� for one-electron
HCI, in �6–11� for two-electron HCI, and in �12,13� for four-
and five-electron HCIs, respectively. Regarding two-electron
HCI such proposals are based exclusively on the crossings of

the energy levels with opposite parity at some Z values. For
example, according to the recent calculation �14� the energy-
level splitting �E=E�2 3P0�−E�2 1S0� for He-like Gd
�Z=64� amounts to �E=0.04�0.74 eV. Since the PNC ef-
fect is proportional to �=Re��E− i� /2�−1=�E / ��E2

+�2 /4�, where �=0.016 eV is the 2 3P0 level width, the
relative PNC effect can be unprecedently large ��=0.05 for
�E=� /2� or exactly zero for ��E=0�. To eliminate the un-
certainty in calculations of the energy splitting �E the full
account for the two-loop radiative corrections and the more
accurate treatment of the interelectron interaction become in-
dispensable. The evaluation of the PNC effects also demands
a most precise knowledge of the transition probabilities
�level width�. Second, it was proposed to use HCI for the
search of the variation in fundamental constants �15,16�.
Again the precise knowledge of the level crossings and tran-
sition probabilities is needed for this purpose �15,16�. In
many cases the two-electron ions are preferable for perform-
ing the corresponding experiments �see, e.g., �9,15��. There-
fore, it is necessary to develop adequate and accurate meth-
ods, which allow for predictions of energy levels, transition
probabilities, and other characteristics of two-electron HCI
with utmost precision.

The most investigated properties of HCI are the energy
levels of the electron configurations. Since more than 40
years in the numerous theoretical works a large variety of
different methods based on the relativistic many-body theory
�RMBT� and QED was suggested and employed in practical
calculations. A short survey of these methods in a historical
retrospective was presented recently in �17�. A common
property of all these methods is that they are exact to all
orders in the parameter �Z �� is the fine-structure constant
and Z is the nuclear-charge number�. In many-electron sys-
tems the expansion in �Z implies an expansion with respect
to the relativistic parameter v̄ /c �v̄ is the mean velocity of an
atomic electron and c is the speed of light�, so that the
�Z-expansion methods can be only applied to nonrelativistic
systems �low-Z atoms and ions�. The relativistic Dirac-
Hartree-Fock �RDHF� method �18� and its natural extensions
such as multiconfigurational RDHF �MC-RDHF� �19� or a
coupled-cluster method based on the RDHF �CC-RDHF� ap-
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proximation �20� were widely used in calculations performed
for particular ion species. Within these methods the one-
electron part of the many-body Hamiltonian is treated ex-
actly as well as the Coulomb part of the interelectron inter-
action Hamiltonian. Only the Breit part of the interaction
Hamiltonian is treated approximately. The validity of this
approach was analyzed thoroughly in �21–23�. For few-
electron ions with high-Z values the application of the per-
turbation theory �PT� with respect to the interelectron inter-
action becomes possible since the interelectron interaction is
of the order of 1 /Z compared to the binding energy �24�.
This feature of the many-electron atomic systems is ex-
ploited in the most powerful non-QED methods for the
evaluation of the properties of HCI in the relativistic many-
body perturbation-theory �RMBPT� approach �25�. By
means of this method the most extensive calculations of the
energy levels in two-electron HCI within a wide range of
nuclear-charge numbers Z were performed �26�. Still, com-
pared to the exact QED theory this method suffers from the
lack of the negative-energy contributions �though these con-
tributions can be introduced with the special nontrivial ef-
forts �27–29�� from the approximate treatment of the Breit
interaction �without retardation� and from the neglect of the
cross-photon interactions �which represent a special QED ef-
fect� in higher orders of perturbation theory. Moreover, the
inclusion of radiative QED corrections within the RMBPT
approach is possible only with the use of the �Z-expansion
expressions �30� which, strictly speaking, are not valid for
HCI. During the last few decades several rigorous QED ap-
proaches for the evaluation of the various properties of the
HCI were formulated. Unlike the non-QED treatments, the
application of QED allows for the consequent improvement
of the accuracy of calculations. The first QED methods,
based on the adiabatic S-matrix approach and the energy
shift formula by Gell-Mann and Low �31� �this formula was
later adjusted by Sucher �32� to the QED applications�, were
introduced in �33� and later applied to the various QED cal-
culations by many authors. However, in higher orders of per-
turbation theory the adiabatic S-matrix approach becomes
rather cumbersome due to the necessity of explicit evaluation
of the adiabatic limit �when adiabatic parameter tends to
zero�. More advantageous for these purposes appeared to be
the two-time Green’s-function �TTGF� method first formu-
lated in �34,35� �see also the recent review �36��. With this
approach a large number of calculations concerning the
higher-order �two-loop� radiative corrections to the energy
levels �37� as well as the first-order radiative corrections to
the hyperfine splittings in HCI �38� and to the bound-electron
g factors in HCI �39� were performed. An original approach
with the covariant generalization of the evolution operator
was recently developed in �40,41�. A special QED approach
for the evaluation of the different characteristics of the HCI
originates from the QED theory of the spectral line profile
first developed by Low �42�. The application of the line pro-
file approach �LPA� to the evaluation of the energy level
shifts was first formulated in �43�; simple examples were
presented in �44�. The LPA possesses all the advantages of
the other methods and allows for the evaluation of any
higher-order corrections. A most general formulation of the
LPA was given in �45–47� with application to the energy-

level calculations in HCI �see also the review �17��. In the
present paper we apply the LPA to the high-precision calcu-
lations of the transition probabilities in HCI.

Because of inherent difficulties, the transition probabili-
ties are less investigated than the energies. This can be ex-
plained by the presence of an extra photon line �emitted pho-
ton� in the corresponding Feynman graphs and by the poorer
convergence of the QED perturbation theory. A calculation
of the transition probabilities with respect to the relativistic
corrections has been performed by Drake �48,49� within the
unified method. The work �48� presents the first relativistic
calculation of transition probabilities for the �1s2s� 3S1
→ �1s1s� 1S0 transition. The work �49� presents the calcula-
tion of transition probabilities for the �1s2p� 3P1 , 1P1
→ �1s1s� 1S0 transitions. A comprehensive review on the
transition probabilities for two-electron ions has been pre-
sented by Johnson et al. �50� about one decade ago, where
the transition probabilities for low-lying two-electron con-
figurations have been calculated for ions within the entire
range of nuclear-charge numbers Z. In �50� the RMBPT ap-
proach was employed. The contribution of the negative-
energy states was discussed in �27–29�. The first complete
QED evaluation of transition probabilities in HCI with the
account for the interelectron interaction and radiative correc-
tions has been presented in �51,52�. The calculation was per-
formed for nondegenerate states for transitions with emission
of electric �51� and magnetic �52� photons, respectively.

In this work we present a calculation of the transition
probabilities for two-electron ions with nuclear charge Z
=10–100. The calculation is performed rigorously within the
framework of QED. We also present a special technique de-
veloped to master the slow convergence of the QED pertur-
bation theory in the case of the ions with intermediate Z
values. The calculation is performed for the nondegenerate
states �1s2s� 3S1, �1s2p3/2� 3P2 �M1 and M2 transitions, re-
spectively� and for the quasidegenerate levels �1s2p� 1P1,
�1s2p� 3P1 �E1 transitions�, decaying to the ground state
�1s1s� 1S0. In the present work we apply the LPA for the
derivation of all necessary formulas and develop it for the
evaluation of transition probabilities for quasidegenerate lev-
els in the framework of QED. In this paper we focus on the
interelectron interaction corrections and leave the inclusion
of the radiative corrections to subsequent studies.

Our paper is organized as follows. In Sec. II we present
the general formulation of the LPA discussing its foundations
and justification. A development of the LPA for the descrip-
tion of transition probabilities is presented in Sec. III. In Sec.
III A we consider transition probabilities for one-electron
ions. The next sections are devoted to two-electron ions. In
Sec. III B the generic expressions for the transition probabili-
ties in zeroth order �i.e., neglecting the interelectron interac-
tion� are presented. The corresponding first-order expres-
sions, where the one-photon exchange between the electrons
is included, are given in Sec. III C. The formulas employed
for the evaluation of amplitudes and transition probabilities
are presented in Sec. IV. The formulas for the nondegenerate
case �Sec. IV A� and for the degenerate case �Sec. IV B� are
described separately. In Sec. IV C we derive the formulas for
transition probabilities as they are applied in numerical cal-
culations. Section V is devoted to the description of the com-
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putational methods. The discussion and analysis of the re-
sults, their comparison with the other available data, and
conclusions are found in Sec. VI.

II. LINE PROFILE APPROACH

The LPA is the version of QED PT which starts from the
description of the atomic electrons as a set of noninteracting
particles moving in the field of the nucleus Vnuc �Furry pic-
ture� and described by the solutions of the Dirac equation,

���p̂� − �0Vnuc − m�	 = 0. �1�

Here, p̂� are the components of the momentum four vector,
p0=
 is the bound-electron energy, and �� are the conven-
tional Dirac matrices. Throughout this paper we use the rela-
tivistic units where �=c=1 and the fine-structure constant
�=e2 / ��c�. The charge of the electron is e=−�e�. In this
paper we designate the eigenvalues of Eq. �1� as 
 while the
physical one-electron energies as �=
+��. The idea of the
LPA is to evaluate the corrections to energy ���� as the shift
of position of resonance in some scattering process due to
the interaction with the quantized electromagnetic field. This
shift up to the very high orders of QED PT does not depend
on the particular resonance process and when this depen-
dence appears the concept of the energy level for the excited
states cannot be strictly defined anymore �17�. For the prac-
tical implementation of the LPA the process of the elastic
photon scattering on atomic electron was employed. This
procedure in the lowest QED PT order is depicted in Fig. 1.

According to the standard Feynman rules �see, e.g., �24��,
the S-matrix element for the graph depicted in Fig. 1 reads

S�2� = �− ie�2� d4xud4xd	̄a0
�xu���uA�u

�k�,����xu�

�S�xu,xd���dA�d

�k,��xd�	a0
�xd� , �2�

where x�= �t ,r� denotes a space time point, 	a0
�x�

=	a0
�r�e−i
t is the one-electron wave function, 	̄=	+�0 is the

Dirac conjugated wave function, A�
�k,��x�=A�

�k,��r�e−i�t is the
four vector of the electromagnetic field potential �photon

wave function�, and k�= �� ,k� and  are the wave vector and
polarization. The frequencies of the absorbed and emitted
photons are �= �k� and ��= �k��, respectively. We employ the
standard covariant notations for four vectors together with
the sign convention for the metric tensor �g���=diag�1,−1,
−1,−1�. Einstein’s sum convention is implied. The four-
dimensional volume is d4x=dtd3r.

We employ the notations xu, xd for the “up” and “down”
vertex coordinates in Fig. 1. These nonstandard notations
will be convenient for the more complicated graphs consid-
ered below. The bound-electron propagator is represented in
terms of an eigenmode decomposition with respect to one-
electron eigenstates of Eq. �1�,

S�xu,xd� =
i

2�
� d�ne−i��tu−td�	

n

	n�ru�	̄n�rd�
�n − 
n�1 − i0�

. �3�

The sum over n runs over the entire Dirac spectrum. Note
that the subscript at the integration variable ��n� is not the
subject of summation over n. These indices are introduced
again for the convenience in handling more complicated
graphs.

Inserting the expressions for the propagator and wave
functions in Eq. �2� and integrating over time and frequency
variables we arrive at

S�2� = �− 2�i����� − ��e2	
n

Aa0n
�k�,���Ana0

�k,�

� + 
a0
− 
n

. �4�

Here we employed the shorthand notation,

Aab
�k,� =� d3r	̄a�r���A�

�k,��r�	b�r� . �5�

The amplitude �U� of the process of elastic photon scattering
is related to the S-matrix element via

S = �− 2�i����� − ��U , �6�

where � and �� represent the energies of the initial and final
states, respectively.

The resonance scattering means that the photon frequency
� is close to the energy difference between two atomic levels
�=
a−
a0

+O���, where � is the fine-structure constant. Ac-
cordingly, we have to retain only one term in the sum over n
in Eq. �4�. Then the resonance amplitude looks like

U�2� = e2
Aa0a

�k�,���Aaa0

�k,�

� + 
a0
− 
a

. �7�

This amplitude has a singularity at �=−
a0
+
a. To avoid

this singularity and to obtain the Lorentz profile for the pho-
ton absorption and photon emission processes we have to
consider the radiative insertions into the internal electron line
in Fig. 1. This insertion is depicted in Fig. 2.

The corresponding matrix element can be written down as

FIG. 1. Feynman graph, describing the photon scattering on an
atomic electron. The wavy lines with the arrows describe the ab-
sorption and emission of photons with momenta k, k� and polariza-
tions e, e�, respectively. The double solid line denotes the electron
in the field of the nucleus; a0 corresponds to the ground electron
state.
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S�4� = �− ie�4� d4xud4x1d4x2d4xd	̄a0
�xu���uA�u

�k�,����xu�

�S�xu,x1���1S�x1,x2���2S�x2,xd���d

�A�d

�k,��xd�D�1�2
�x1,x2�	a0

�xd� , �8�

where D�1�2
�x1 ,x2� denotes the photon propagator which in

the Feynman gauge reads

D�1�2
�x1,x2� =

i

2�
� d�I�1�2

����,r12�e−i��t1−t2�, �9�

I�1�2
��,r12� = g�1�2

1

r12
ei�r12, �10�

with r12= �r1−r2� and the metric tensor g�1�2
.

Integration over the time and frequency variables and em-
ployment of Eq. �6� lead to the following expression for the
amplitude in the resonance approximation:

U�4� = U�2�
�̂aa�� + 
a0

�

� + 
a0
− 
a

. �11�

Here we introduced the energy-dependent matrix element of
the electron self-energy

�̂ud��� = e2	
n

i

2�
� d�

Iunnd�����
� − � − 
n�1 − i0�

�12�

together with the shorthand notation

Iu1u2d1d2
��� = 	

�1�2

� dr1dr2	̄u1
�r1�	̄u2

�r2���1��2

�I�1�2
��,r12�	d1

�r1�	d2
�r2� . �13�

It is assumed that the ultraviolet divergent matrix element
�12� is renormalized in a standard way for the tightly bound
electrons in atoms �see, e.g., �24��.

Repeating these insertions within the resonance approxi-
mation leads to the geometric progression. The resummation
of this progression yields

U = e2
Aa0a

�k�,���Aaa0

�k,�

� + 
a0
− Va���

, �14�

where

Va��� = Va
�0� + �Va��� , �15�

Va
�0� = 
a, �16�

�Va��� = �̂aa�� + 
a0
� . �17�

Within the resonance approximation we can replace �+
a0

by 
a. Then �Va= �̂aa�
a� represents the energy shift due to
the lowest-order electron self-energy correction. It is conve-
nient to decompose explicitly the electron self-energy matrix
element into real and imaginary parts,

�̂aa�
a� = La −
i

2
�a, �18�

where La is the electron self-energy correction to the energy
of the excited level a and �a is the width of this level. Thus,
the pole in Eq. �14� is shifted into the complex plane and the
singularity on the real axis is avoided. The real parts of the
resonance frequency in zeroth and first orders of PT are
given by

�res,�0� = − 
a0
+ 
a, �19�

�res,�0+1� = − 
a0
+ 
a + La. �20�

Taking the amplitude �Eq. �14�� by square modulus, inte-
grating over photon directions, and summing over photon
polarizations we arrive at the probability �cross section� for
the process of the photon scattering on a one-electron atom
or ion. In the resonance approximation this probability fac-
torizes into the product of absorption and emission probabili-
ties with the same Lorentz-profile factor �17�,

L��res� =
�aa0

�� − �res�2 +
1

4
�a

2

, �21�

where �aa0
is the partial width associated with the transition

a→a0.
One of the most important problems within the LPA is the

treatment of the ground state. An insertion of the electron
self-energy correction into the outer electron lines in the
standard Feynman graphs describing the elastic photon scat-
tering on an atomic electron leads unavoidably to singulari-
ties. Since these outer lines correspond to the initial and final
electron states, the problem of improving the energy of the
ground state arises. Moreover the singularities leave the
whole theory incomplete so far that the S matrix for the
bound electrons actually does not exist. One way to circum-
vent these difficulties was suggested decades ago by Barbieri

FIG. 2. Feynman graph corresponding to the electron self-
energy insertion into the electron propagator in Fig. 1. The wavy
line denotes the virtual photon. The other notations are the same as
in Fig. 1.
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and Sucher �53� whose idea was to evaluate the corrections
to the transition probabilities via the imaginary part of the
two-loop diagonal self-energy corrections for the ground
state of an atom. Within the LPA we propose another solution
of the problem �17,54�. To introduce the radiative corrections
to the ground state we consider the more complicated two-
photon process of the excitation of the resonant level a. This
process starts from the one-photon absorption by an artificial
“lower than ground” state a� �see Fig. 3�. This state plays the
role of a regulator, which can be again removed at the end of
evaluations. The insertions of the electron self-energy correc-
tion into the lower �or into the upper� electron propagator
lead finally to the Lorentz line profile of the form �17,54�

L��res� =
�aa0

+ �a0a�

�� − �res�2 +
1

4
��a + �a0

�2

�22�

in the emission process a→a0+�. In the most simple case of
one channel decay the partial widths �aa0

, �a0a�
can be sub-

stituted by �a, �a0
, respectively. In Eq. �22� the integration

over the second photon frequency �0 is performed and �a0
represents the width of the level a0. The presence of the
width �a0

is the only remnant of the introduced artificial
lower than ground state a�. In Eq. �22� �res=−�a0

+�a in-
cludes both corrections La to the energy 
a and La0

to the
energy 
a0

. If both states a and a0 are excited states, formula
�22� represents the known expression for the Lorentz line
shape in case of the decaying final state. In case of the
ground a0 state, we may consider �a0

as the regulating pa-
rameter. Setting �a0

=0 at the end of the calculation, we ob-
tain from Eq. �22� the emission line profile for the transition
from the excited state a to the ground state a0 with the ra-
diative corrections for the ground state included in the defi-
nition of �res.

Now being able to evaluate any desired property of an
atom including the ground-state energy corrections, we can
disregard any insertions in the outer electron lines with their
singularities and define the bound-electron S matrix in this
way. Heuristically, this approach seems to be convincing,
however, it looks unsatisfactory from the formal point of
view. Therefore, we present a direct formal proof of the ex-
istence of the S matrix for the bound electrons based on the
adiabatic approach. This proof was given earlier for the
S�� ,0� matrix �55�. However, S�� ,0� matrix in QED pro-
vides difficulties with renormalization. Here we give the
proof for S�� ,−�� matrix. Our starting point is the Sucher
adiabatic Sa

�� ,−�� matrix �32� instead of Gell-Mann-Low
adiabatic Sa

�� ,0� matrix �31� employed in �55�.
The standard description of an arbitrary process in the

free-electron QED starts from the time evolution of an initial
state to a final state governed by the evolution operator
within the interaction representation based on the relation

�����
 = T exp�− i�
−�

�

dtĤint�t�����− ��


= Ŝ��,− �����− ��
 . �23�

Here, Ĥint�t� is the interaction Hamiltonian in the interaction
representation, ������
 are the state vectors at asymptotic

times t= ��, and Ŝ�� ,−�� is the evolution operator, usually
called S matrix. The interaction between the particles in-
volved is assumed to be absent at t= �� and the transition
probabilities due to the particle interactions at the finite time
moments can be expressed in terms of matrix elements of S
matrix.

Contrary to this, the interaction between the bound elec-
trons is permanently present. Within the adiabatic formalism
of Gell-Mann and Low �31� the interaction Hamiltonian

Ĥint�t� is replaced by the operator

Ĥint�t� = e−a�t�Ĥint�t� , �24�

where a is the adiabatic parameter. Then, at the time mo-
ment t= �� the interaction is switched off and at t=0 is
fully switched on. Using the interaction operator �Eq. �24��
one can perform the QED calculations in the usual manner
and then set a=0 at the end, thus restoring the full interac-
tion for the entire time intervals. This allows for the exten-
sion of the established techniques for calculating free-
electron S-matrix elements to bound electrons in atoms.

Gell-Mann and Low �31� derived a formula which yields
the energy shift of bound-electron states due to the interac-

tion �Eq. �24�� in terms of the evolution operator Ŝa
�0,−��.

Sucher �32� derived a symmetrized version of the energy
shift formula, containing the matrix elements of the evolu-

tion operator Ŝa
�� ,−��. On the basis of the Sucher formula

an adiabatic S-matrix approach for the evaluation of the en-
ergy corrections in bound-electron QED was later developed
�33�.

Here we apply the adiabatic approach for another pur-
pose. We will show that the singularities, arising after the
electron self-energy insertions both in the initial and final

FIG. 3. The process of double-photon scattering on the artificial
lower than ground state a�. Notations are the same as in Fig. 1.
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outer electron lines in the S-matrix element corresponding to
the Feynman graph �Fig. 1�, can be converted to the phase
factor in the following way:

Sa
= �− 2�i����� − ��U exp �̂a0a0

�
a0
�

ia

� . �25�

This is an asymptotic equation �a→ +0�. The a depen-
dence is located in the imaginary exponent. Here the ampli-
tude U differs from Eqs. �6� and �7� by the replacement of


a0
to �a0

=
a0
+ �̂a0a0

�
a0
�, where �̂a0a0

�
a0
� is the diagonal

matrix element of the lowest-order electron self-energy op-
erator. As for the ground state a0 this matrix element is real,
the phase factor does not contribute to the absolute value of
amplitude defined by Eq. �6� and, accordingly, to the line
profile. The proof is given in the Appendix. This proof can be
repeated for any QED correction of any order. This result
justifies the employment of the energy �a0

�with the QED
corrections included� instead of 
a0

in Eq. �14�. The remain-
ing finite contributions from all the insertions in the outer
lines present the QED corrections to the outer wave func-
tions. Moreover, this proof can be repeated also for the few-
electron atoms. In this case the ground state will be corrected
not only for the QED corrections but for the interelectron
interaction as well. Thus, the problem of the existence of the
bound-electron S matrix for the scattering process described
by the Feynman graph �Fig. 1� is solved in any order of QED
perturbation theory.

Now we go over to the most general formulation of the
LPA. We will use the matrix formulation, which allows for
the extension of the LPA to the case of quasidegenerate
states. This formulation is also most suitable for the applica-
tion of the LPA to the evaluation of transition probabilities.
Within this formulation the generalization of Eq. �14� looks
like

U = T+ 1

D���
T , �26�

where the matrix T describes the absorption of the photon by
the electron in the ground state a0 with the excitation to the
resonance �intermediate� state a. The matrix T+ describes the
emission of the photon with the transition a→a0. The diag-
onal matrix �energy denominator� D��� is defined as

D��� = � + �a0
− V�0�, �27�

where � is the photon frequency. The resonance condition
reads

�res = − �a0
+ 
a, �28�

where �a0
is the energy of the ground state and 
a is the Dirac

energy of the state a. The energy �a0
is not necessarily equal

to the Dirac energy; it may include already the radiative cor-
rections �see discussion above�. In Eq. �27� the diagonal ma-
trix D��� involves

V�0� = 
a. �29�

We employ here the matrix formulation of the single-photon
scattering amplitude �26� on the one-electron ion in view of

the further generalization of our approach to the quasidegen-
erate states in two-electron ions. This amplitude is described
by the Feynman graph �Fig. 4�. In this diagram we describe
the photon interaction with the ground state by the boxes and
deliberately omit the outer electron lines describing the
ground-state wave functions. The justification of this ap-
proach was given above.

The next step is the insertion of the electron self-energy
corrections in the internal electron line within the resonance
approximation �see Fig. 5�. The corresponding amplitude
reads �47�

U = T+ 1

D���
�̂�� + �a0

�
1

D���
T , �30�

where �̂ is the diagonal matrix corresponding to the regular-
ized electron self-energy operator. In the case under consid-
eration this matrix reduces to the diagonal matrix element of
the electron self-energy operator for the state a.

FIG. 4. The Feynman graph representing the process of elastic
photon scattering on one-electron ion. The double solid line denotes
the electron in the field of the nucleus �Furry picture of QED�. The
boxes with the wavy lines describe the absorption and emission of
the photons by electron the ground state. The letter I at the internal
electron line implies the resonance approximation, where only the
resonant state I remains in the sum over the intermediate states in
the electron propagator.

FIG. 5. The insertion of the one-loop electron self-energy in the
internal electron line in Fig. 4. The wavy line describes the virtual
photon. The other notations are the same as in Fig. 4.
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Continuing recursively this process, i.e., inserting two,
three, etc., self-energies in the internal electron line in Fig. 4
and summing the geometric progression, we obtain finally

U = T+ 1

D��� − �V���
T , �31�

where �V���= �̂��+�a0
�. Evaluation of the corresponding

matrix element of the one-loop self-energy insertion at �
=�res leads back to Eq. �18�.

Equation �31� illustrates the main idea of the LPA: the
radiative corrections to the energy arise as the shifts of the
resonance frequency due to the various insertions in the in-
ternal electron line in Fig. 4 in the resonance approximation.
Graphically Eq. �31� can be represented by the Feynman

graph �Fig. 6�. Instead of the correction �̂ in the box in graph
�Fig. 6� any irreducible correction can be inserted; the corre-
sponding energy shift will arise as the resonance frequency
shift in Eq. �31�.

In �45–47� the LPA was generalized to the few-electron
ions, in particular for quasidegenerate states. The applica-
tions to two- and three-electron ions were presented. The
general features of the LPA application to the evaluation of
the transition probabilities were formulated in �17� and ex-
emplified with some numerical studies.

In Sec. III of this paper we provide the detailed deriva-
tions of transition probabilities in the few-electron ions
within the framework of the LPA.

III. TRANSITION PROBABILITIES

We are going to evaluate the transition probability for the
process

I→
�0

F , �32�

where I is the initial two-electron state decaying to the final
state F with emission of the photon �0. Within the frame-
work of the LPA the state of an ion is associated with a
position of the resonance. Therefore, we will consider a more
general process which incorporates transition �32�,

A0→
�

I→
�0

F→
��

A0, �33�

i.e., a transition from the state A0 �let A0 be the ground state�
to the state I with absorption of a photon �. Then, the state I
decays to the state F with emission of the photon �0 and,
finally, the state F decays back to the state A0 with emission
of a photon ��. The initial state �I� is associated with the
resonance near �=−EA0

+EI
�0�, where EI

�0� is the zero-order
energy of the state I �sum of the Dirac energies�. The final
state �F� is defined by the resonance near ��=−EA0

+EF
�0�.

The energy of the ground state A0 is given by EA0
.

It will be shown below that in the resonance approxima-
tion the amplitude of scattering process �33� can be written
as

U = T+ 1

D���� − �V����
���0�

1

D��� − �V���
T . �34�

The matrix T describes the absorption of the photon � by the
ground state A0; the matrix T+ describes the emission of the
photon �� with the transition to the ground state A0. The
matrix D��� is defined by Eq. �27�, where V�0� is now the
sum of the Dirac energies for the electrons which belong to
the state I. The matrix D is diagonal in the basis of the
two-electron functions in the j-j coupling scheme. The ma-
trix of the interaction operator �V��� was investigated in
�47�. Here we will construct it in the first order of the per-
turbation theory.

The right denominator corresponds to the resonance asso-
ciated with the state I and the left one defines the resonance
for the state F. The function ���0� is a complicated vertex
which describes the emission of photon �0 by the ion in the
state I decaying to the state F. The matrix element of the
vertex ���0� calculated on the eigenvectors �I and �F of
the matrices D���−�V��� and D����−�V���� correspond-
ing to the states I and F, respectively, represents the ampli-
tude of the decay process �32�,

UI→F = „���0�…�F�I
. �35�

The eigenvectors �I and �F and the vertex ���0� can be
constructed order by order employing perturbation theory.
This procedure is formulated consistently in Secs.
III A–III C.

Below in this section we will derive general formulas for
the transition probabilities in two-electron ions in zeroth and
first orders of the QED perturbation theory considering the
interelectron interaction as perturbation.

A. One-electron ion

In order to introduce our notations we start from the one-
photon transition in a one-electron ion within zeroth-order
QED perturbation theory. This process with transition from

FIG. 6. The Feynman graph, illustrating Eq. �31�. The box with
the letter � inside corresponds to the infinite number of successive
insertions of the type �Fig. 5�.
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the initial state I into the final state F is described by Eq.
�32�.

In zeroth-order QED perturbation theory the correspond-
ing S-matrix element is given by Feynman graph depicted in
Fig. 7 and reads

S =� d4x	̄F�r�eit
F�− ie���A�
�k0,0���r�ei�0te−it
I	I�r� .

�36�

The Dirac functions 	I�r�, 	̄F�r� and the Dirac energies 
I,

F characterize the initial and final one-electron states. The
emitted photon is described by the momentum four vector k0
and the polarization 0.

In the coordinate representation the photon wave function,

A��k,��r�e−i�t =�2�

�
����e−i��t−kr�, � = 1,2,3, �37�

describes a photon with the momentum k and polarization 
���� is the polarization four vector�. Here, the photon wave
function is understood within the “transverse” gauge, which
in the work �50� is referred as the “velocity” gauge,

A0�k,��r�e−i�t = 0. �38�

Performing the integration over the time variable yields

S = �− 2�i���
F + �0 − 
I�e� d3r	̄F�r���A�
�k0,0���r�	I�r� .

�39�

The expression for the amplitude �U� of the process is de-
fined by Eq. �6�. Then, the amplitude corresponding to Eq.
�39� reads

U = e� d3r	̄F�r���A�
�k0,0���r�	I�r� . �40�

Within the framework of the line profile approach we con-
sider a process described by Eq. �33�. This process is de-
picted in Fig. 8. The S-matrix element corresponding to Fig.
8 is written as

S =� d4xud4xcd
4xdd�ud�d	̄a0

�ru�eitu�
a0
��− ie�

���uA�u

�k�,����ru�ei��tu
i

2�

�	
u

	u�ru�	̄u�rc�
�u − 
u�1 − i0�

e−i�u�tu−tc�

��− ie���cA�c

�k0,0���rc�ei�0tc
i

2�

�	
d

	d�rc�	̄d�rd�
�d − 
d�1 − i0�

e−i�d�tc−td��− ie���d

�A�d

�k,��rd�e−i�tde−itd�
a0
�	a0

�rd� . �41�

We employ notations u, c, and d for the upper, central, and
lower vertices of Feynman graphs. Note that subscripts at the
integration variables �u, �d refer to the corresponding verti-
ces. After integration over the time variables and over the
frequencies ��u, �d� we get the expression defining the am-
plitude �U� of the scattering process,

FIG. 7. The Feynman graph representing the process of the pho-
ton emission. The labels I and F correspond to the initial and final
states.

FIG. 8. The Feynman graphs representing the process of photon
emission in the LPA. This graph incorporates the graph in Fig. 7.
The upper, central, and down vertices are specified by correspond-
ing subscripts �u�, �c�, and �d�, respectively.
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S = �− 2�i����� + �0 − ��e3� d3rud3rcd
3rd	̄a0

�ru���uA�u

�k�,����ru�	
u

	u�ru�	̄u�rc�

a0

+ �� − 
u

���cA�c

�k0,0���rc�	
d

	d�rc�	̄d�rd�

a0

+ � − 
d
��dA�d

�k,��rd�	a0
�rd� �42�

=�− 2�i����� + �0 − ��U . �43�

Being interested in the transition between I and F states
we consider the frequencies of the absorbed and emitted pho-
tons satisfying the conditions

� = − 
a0
+ 
I + O��� , �44�

�� = − 
a0
+ 
F + O��� . �45�

Let us also assume that the states I, F are well isolated.
Hence, we can rewrite the amplitude in Eq. �43� as

U = e3� d3rud3rcd
3rd	̄a0

�ru���uA�u

�k�,����ru�
	F�ru�	̄F�rc�

a0

+ �� − 
F

� ��cA�c

�k0,0���rc�
	I�rc�	̄I�rd�

a0

+ � − 
I
��dA�d

�k,��rd�	a0
�rd� + R ,

�46�

where R denotes the terms regular at �, �� given by Eqs.
�44� and �45�. The first term is singular and it defines the
resonances corresponding to the initial state I and to the final
state F. In the resonance approximation we retain only the
terms singular at the positions of resonances which means
that we neglect the terms denoted by R. The corresponding
corrections are called nonresonant corrections. These correc-
tions give rise to an asymmetry of the line profile and define
the level of accuracy at which the concept of energy levels
itself becomes inadequate for the analysis of experimental
data. They are investigated in �56,57� for highly charged ions
and in �58–64� for the hydrogen atom.

Aiming for the application of the LPA to two-electron
ions we introduce the following notations. The vertex func-
tions �a0

, �a0

+ representing absorption of the photon by the
electron in the state a0 and emission of the photon with sub-
sequent decay of an atom into the state a0, respectively, are

�a0
�r� = e��A�

�k,��r�	a0
�r� , �47�

�a0

+ �r� = e	̄a0
�r���A�

�k�,����r� . �48�

Then, the expression for the amplitude takes the form

U = e� d3rud3rcd
3rd�a0

+ �ru�
	F�ru�	̄F�rc�

a0

+ �� − 
F

� ��cA�c

�k0,0���rc�
	I�rc�	̄I�rd�

a0

+ � − 
I
�a0

�rd� + R . �49�

Introducing notations

Tna0
= −� d3r	̄n�r��a0

�r� , �50�

Ta0n
+ = −� d3r�a0

+ �r�	n�r� �51�

we can reexpress Eq. �46� as

U = Ta0F
+ 1


a0
+ �� − 
F

e� d3r	̄F�r���A�
�k0,0���r�	I�r�

�
1


a0
+ � − 
I

TIa0
+ R . �52�

Introducing the matrices

�n1n2
��0� = e� d3r	̄n1

�r���A�
�k0,0���r�	n2

�r� , �53�

Dn1n2
��� = �� + 
a0

− 
n1
��n1,n2

, �54�

where �n1,n2
means the Kronecker symbol, we can write the

expression for the amplitude in matrix form,

U = Ta0

+ D−1�������0�D−1���Ta0
�55�

=Ta0

+ 1

D����
���0�

1

D���
Ta0

. �56�

Expression �56� coincide with Eq. �34� in zeroth order: �V
=0+O���. Taking into account the radiative corrections, the
matrix �V will contain radiative insertions such as the self-
energy and vacuum-polarization operators. As it was men-
tioned above in the present studies we will neglect the influ-
ence of the radiative corrections.

According to Eq. �35� the amplitude of the process de-
scribed by Eq. �32� reads in the zeroth order of the perturba-
tion theory
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U = ���FI. �57�

As the matrix D��� is diagonal on the Dirac functions and
�V=0, the Dirac functions corresponding to the initial state I
and to the final state F are the eigenvectors for the matrices
D���−�V��� and D����−�V����, respectively.

As a consequence of the application of the resonance ap-
proximation amplitude Eq. �57� does not depend on the par-
ticular choice for the functions �a0

, �a0

+ , which means that
amplitude �57� does not depend on how the initial state I was
excited and how the final state F decayed. Accordingly, the
state a0 can be an arbitrary state. In the further derivations
we will chose states �a0

, �a0

+ calculated within lowest orders
of the perturbation theory.

B. Two-electron ions: Zeroth-order perturbation theory

In the zeroth order of the QED perturbation theory the
S-matrix element for the process �Eq. �32�� in two-electron
ions is given by the Feynman graphs �Fig. 9�. Within the
framework of the line profile approach we consider process
given by Eq. �33�. We assume the state A0 as being the
ground state.

In the approximation of noninteracting electrons the
S-matrix element corresponding to scattering process �33� is

given by the Feynman graphs in Fig. 10. Graphs �a� and �b�
yield the same contribution, so we will consider twice the
graph �Fig. 10�a��.

In zeroth order the wave function of the ground state can
be taken as Slater determinant,

�A0

�0��x1,x2� =
1
�2

det�	a0
�x1�	b0

�x2�� = �A0

�0��r1,r2�e−i
1s�t1+t2�.

�58�

Here, 	a0
�x�=	1s+�x�=	1s+�r�e−i
1st, 	b0

�x�=	1s−�x� refer to
Dirac one-electron functions with different projections of the
total one-electron angular momentum �identical with elec-
tron spin in case of first state�. In zeroth order the ground-
state energy �EA0

� is EA0

�0�=2
1s. The S-matrix element repre-
sented by the diagrams in Fig. 10 is the same as the S-matrix
element represented by Fig. 8 and, accordingly, it is given by
Eq. �41�.

With the purpose of employment of the matrix ���0� in-
troduced in Eq. �34� we rewrite the S-matrix element corre-
sponding to the Feynman graph �Fig. 10�a�� in the form

S = �− i�2� d4xu1
d4xu2

d4xc1
d4xd1

d4xd2
d�u1

d�d1
d�n�̄A0

�0��ru1
,ru2

�eitu1
�EA0

�0�+�����tu1
− tu2

�

�
i

2�
	
u1

	u1
�ru1

�	̄u1
�rc1

�

�u1
− 
u1

�1 − i0�
e−i�u1

�tu1
−tc1

��− ie���c1A�c1

�k0,0���rc1
�ei�0tc1

i

2�
	
d1

	d1
�rc1

�	̄d1
�rd1

�

�d1
− 
d1

�1 − i0�
e−i�d1

�tc1
−td1

�

�
i

2�
	

n

	n�ru2
�	̄n�rd2

�

�n − 
n�1 − i0�
e−i�n�tu2

−td2
�e−itd1

�EA0

�0�+����td1
− td2

��A0

�0��rd1
,rd2

� , �59�

where we have introduced the two-electron vertex functions,

�A0

�0��r1,r2� = e��A�
�k,��r1��A0

�0��r1,r2� , �60�

�̄A0

�0��r1,r2� = �̄A0

�0��r1,r2�e��A�
��k�,���r1� , �61�

and function conjugated to function �58�,

FIG. 9. The Feynman graphs representing the single-photon
transition in a two-electron ion to lowest order in �. The notations
are the same as in Figs. 4–8. Ii �i=1,2� and Fi �i=1,2� denote the
initial and final states for the two electrons. FIG. 10. The Feynman graphs representing the process of elastic

photon scattering on the two-electron ion within the LPA. These
graphs incorporate the graphs in Fig. 9. See in the text the notations
a0 , b0.
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�̄A0

�0��x1,x2� =
1
�2

det�	̄a0
�x1�	̄b0

�x2�� = �̄A0

�0��r1,r2�ei
1s�t1+t2�.

�62�

As in the case of the one-electron ion the functions �A0

�0�, �̄A0

�0�

describe the properties of the scattering process �compare
Eqs. �47� and �48��.

The S-matrix element, corresponding to the Feynman
graph �Fig. 10�a��, contains two-electron propagators. In Eq.
�59� we formally introduced the third propagator S�xu2

,xd2
�.

We have to show that expression �59� leads to Eq. �42�. With
the aid of the Dirac-Sokhotsky formulas we can write

��n − 
n�1 − i0��−1 =
2�

i
���n − 
n� − �− �n + 
n + i0
n�−1.

�63�

Employing this identity and integrating over variables
tu2

, td2
and �n, because of orthogonality of the Dirac func-

tions, reduces the sum over n to terms n=1s only. The first
term in the right-hand side of Eq. �63� yields Eq. �42�, while
the second term vanishes after integration over �u1

�because

n�0 and the both poles lie in the same complex half plane�.

Going beyond the approximation of noninteracting elec-

trons, the functions �A0
, �̄A0

will be more complicated func-
tions than Slater determinants �Eqs. �60� and �61��. However,
when calculating transition probability we can ignore the de-
tails involved in the preparation of the initial state �I� and the
further decay of the final state �F�. Accordingly, in the reso-
nance approximation, there is no need to specify the func-

tions �A0
, �̄A0

.
In order to utilize efficiently the Feynman graphs, tech-

nique within the framework of the line profile approach in
the case of the two-electron ions, we introduced two ele-
ments: lower and upper boxes with letters A0 inside. These
boxes describe the two-electron state A0 absorbing or emit-
ting a photon. These lower and upper boxes correspond to
the following expressions in the S-matrix elements �see Eq.
�59��:

e−itd1
�EA0

+����td1
− td2

��A0
�rd1

,rd2
� ,

�̄A0
�ru1

,ru2
�eitu1

�EA0
+�����tu1

− tu2
� ,

respectively. Accordingly, in zeroth order of the perturbation
theory the S-matrix element for the scattering process �Eq.
�33�� is represented by the graphs in Fig. 11 and is given by
Eq. �59�.

Integration over the time variables in Eq. �59� yields the
following expression:

S = �− i�3 i

2�
�3

�2��3 	
u1d1n

� d�u1
d�d1

d�n�65

�TA0u1n
+ e�A�k0,0���u1d1

Td1nA0
��u1

− 
u1
�1 − i0��−1

���d1
− 
d1

�1 − i0��−1��n − 
n�1 − i0��−1, �64�

which involves the following shorthand notations:

�65 = ��EA0
+ �� − �u1

− �n����u1
− �d1

+ �0�

����d1
+ �n − EA0

− �� , �65�

the complicated vertex

Tn1n2A0
= −� d3r1d3r2	̄n1

�r1�	̄n2
�r2��A0

�r1,r2� �66�

and the one-electron matrix element

An1n2

�k,� =� d3r	̄n1
�r���A�

�k,��r�	n2
�r� . �67�

We are interested in the transition probability at the frequen-
cies corresponding to the positions of resonances

� = − EA0
+ EI

�0� + O��� , �68�

�� = − EA0
+ EF

�0� + O��� . �69�

To zeroth order EI
�0�=
I1

+
I2
and EF

�0�=
F1
+
F2

determine
the positions of the resonances �sum of the Dirac energies�
corresponding to the initial and final states, respectively.
Within the framework of the resonance approximation one
can retain only the terms which are singular at the positions
of resonances. The Dirac energies 
I1

, 
I2
, 
F1

, and 
F2
cor-

respond to the positive-energy electron states; accordingly,
within the resonance approximation we can omit all terms

u1

�0, 
d1
�0, and 
n�0, which fixes the signs of the

imaginary part of the poles in Eq. �64�.
Applying Eq. �63� we can write the following equality:

�65��u1
− 
u1

�1 − i0��−1��d1
− 
d1

�1 − i0��−1

���n − 
n�1 − i0��−1

= �65�EA0
+ �� − 
u1

− 
n�−1�EA0
+ � − 
d1

− 
n�−1

�
2�

i
��EA0

+ � − �d1
− 
n� + �65R . �70�

The abbreviation �65R for the product between �65 as given
by Eq. �65� and the quantity R referring exclusively to the
terms which are regular at the positions of the resonances is

FIG. 11. The Feynman graphs representing the process of elastic
photon scattering on the two-electron ion. The boxes with the letter
A0 inside and wavy lines depict complicated vertices describing the
absorption and emission of a photon by the two-electron ion. The
photon line in the center denotes the emission of a photon with
frequency �0= �k0� corresponding to the transition energy from the
initial to the final two-electron state.
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employed. These terms are regular because the imaginary
parts of the poles enter with equal signs.

We employ Eq. �70� for the evaluation of Eq. �64�. More-
over, applying the resonance approximation in Eq. �64� all
the regular terms R in Eq. �70� can be omitted and the sum
over u1 , d1 , n reduces to the terms only, which satisfy the
conditions


d1
+ 
n = EI

�0� = 
I1
+ 
I2

, �71�


u1
+ 
n = EF

�0� = 
F1
+ 
F2

. �72�

Accordingly, for the contribution of the Feynman graph �Fig.
11�a�� we can write

Sl = �− 2�i���� − �0 − ���

�TA0u1n
+ �EA0

+ �� − 
u1
− 
n�−1eAu1d1

�k0,0��

��EA0
+ � − 
d1

− 
n�−1Td1nA0
. �73�

Here, we suppose that u1 ,d1 ,n match with the conditions
�Eqs. �71� and �72��, so that the index d1 runs over I1, I2,
index u1 runs over F1, F2, and index n runs over I1, I2, F1,
F2. This yields a nonvanishing contribution only if I2=F2
�single excitation�.

In the same way the expression for S-matrix element cor-
responding to graph �Fig. 11�b�� can be derived,

Sr = �− 2�i���� − �0 − ���TA0nu2

+ �EA0
+ �� − 
n − 
u2

�−1

�eAu2d2

�k0,0���EA0
+ � − 
n − 
d2

�−1Tnd2A0
, �74�

where the states u2 ,d2 ,n now satisfy the conditions


n + 
d2
= EI

�0�, �75�


n + 
u2
= EF

�0�. �76�

One can verify that the results for the graphs �Figs. 11�a� and
11�b�� are equal, i.e.,

Sl = Sr. �77�

Our goal is to present expressions �Eqs. �73� and �74�� in
the form of Eq. �34�. In doing so, we consider the graph
depicted on Fig. 12. The block � represents a complicated
vertex describing the emission of the photon �0. This vertex
can be written in the form

��xc1
,xc2

,xs1
,xs2

� = ��rc1
,rc2

,rs1
,rs2

�eitc1
�0��tc2

− tc1
�

���ts1
− tc1

���ts2
− tc1

� . �78�

The function � is a generic but yet unknown function. It can
be derived under the requirement that the graph in Fig. 12
yields the same contribution as the graphs in Fig. 11. The S
matrix corresponding to Fig. 12 appears as

S = �− i�2� d4xu1
d4xu2

d4xc1
d4xc2

d4xs1
d4xs2

d4xd1
d4xd2

d�u1
d�u2

d�d1
d�d2

�̄A0
�ru1

,ru2
�eitu1

�EA0
+�����tu1

− tu2
�

�
i

2�
	
u1

	u1
�ru1

�	̄u1
�rc1

�

�u1
− 
u1

�1 − i0�
e−i�u1

�tu1
−tc1

� i

2�
	
u2

	u2
�ru2

�	̄u2
�rc2

�

�u2
− 
u2

�1 − i0�
e−i�u2

�tu2
−tc2

��− i���xc1
,xc2

,xs1
,xs2

�

�
i

2�
	
d1

	d1
�rs1

�	̄d1
�rd1

�

�d1
− 
d1

�1 − i0�
e−i�d1

�ts1
−td1

� i

2�
	
d2

	d2
�rs2

�	̄d2
�rd2

�

�d2
− 
d2

�1 − i0�
e−i�d2

�ts2
−td2

�e−itd1
�EA0

+����td1
− td2

��A0
�rd1

,rd2
� . �79�

In the lowest order of perturbation theory Eqs. �73� and �74� follow from Eq. �79� if we set

��rc1
,rc2

,rs1
,rs2

� = 2e��1A�1

�k0,0���rc1
���rc1

− rs1
���rc2

− rs2
� . �80�

FIG. 12. The Feynman graph representing the process of elastic
photon scattering on the two-electron ion. In addition to Fig. 11 the
box with letter � inside and with an external photon indicates the
complicated vertex for the emission of a photon �0 corresponding
to the transition from the initial to the final state �I→F�.
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Consider now Eq. �79� with � given by Eqs. �78� and
�80�, respectively. After integration over the time variables
we receive

S = Sl + Sr = �− i�3 i

2�
�4

�2��3� d�u1
d�u2

d�d1
d�d2

�82

�TA0u1u2

+ 2eAu1d1

�k0,0���u2d2
Td1d2A0

���u1
− 
u1

�1 − i0��−1��u2
− 
u2

�1 − i0��−1

���d1
− 
d1

�1 − i0��−1��d2
− 
d2

�1 − i0��−1,

�81�

where

�82 = ��EA0
+ �� − �u1

− �u2
����u1

+ �u2
+ �0 − �d1

− �d2
�

����d1
+ �d2

− EA0
− �� �82�

and �u2d2
is the Kronecker symbol. The employment of

equalities analogous to Eq. �63� yields

�82��u1
− 
u1

�1 − i0��−1��u2
− 
u2

�1 − i0��−1

���d1
− 
d1

�1 − i0��−1��d2
− 
d2

�1 − i0��−1

= �82�EA0
+ �� − 
u1

− 
u2
�−1�EA0

+ � − 
d1
− 
d2

�−1

�2�

i
�2

���u2
− 
u2

����d2
− 
d2

� + �82R . �83�

The term �82R is again understood as in Eq. �70� above as
shorthand notation for the regular part.

Insertion of Eq. �83� into Eq. �81� leads to the expression

S = �− 2�i���� − �0 − ���TA0u1u2

+ �EA0
+ �� − 
u1

− 
u2
�−1

��u1u2d1d2
�EA0

+ � − 
d1
− 
d2

�−1Td1d2A0
, �84�

where

�u1u2d1d2
= 2eAu1d1

�k0,0���u2d2
. �85�

We also suppose that EI
�0�=
d1

+
d2
and EF

�0�=
u1
+
u2

, other-
wise, this term is absent. Equation �84� together with Eq. �6�

gives expression for the amplitude of process �Eq. �33��.
With the use of Eq. �35� one obtains the expression for the
transition amplitude. In zeroth order the eigenfunctions �I,
�F are given by combinations of the Dirac functions in the
j-j coupling scheme.

This was the goal of our derivations in this section: to
express the amplitude in the form equivalent to Eq. �34�.
This presentation of the amplitude will help us to solve the
problem of the transition probabilities for the quasidegener-
ate states. For the solution of this problem we need to present
all the expressions in the generic matrix form �Eq. �34��.

C. Two-electron ion: First-order perturbation theory
(one-photon exchange)

Now, we go over to the next order corrections to the tran-
sition probabilities and consider the one-photon exchange
correction. This correction is represented by the graph in Fig.
13�a�. The corresponding S-matrix element can be written as

S = �− i�2� d4x1d4x2d4xu1
d4xu2

d4xc1
d4xd1

d4xd2
d�u1

d�u2
d�d1

d�d2
d�nd��̄A0

�ru1
,ru2

�eitu1
�EA0

+�����tu1
− tu2

�

�
i

2�
	
u1

	u1
�ru1

�	̄u1
�rc1

�

�u1
− 
u1

�1 − i0�
e−i�u1

�tu1
−t1� i

2�
	
u2

	u2
�ru2

�	̄u2
�r2�

�u2
− 
u2

�1 − i0�
e−i�u2

�tu2
−t2�

��− ie���c1A�c1

�k0,0���rc1
�ei�0tc1

i

2�
	

n

	n�rc1
�	̄n�r1�

�n − 
n�1 − i0�
e−i�n�t1−t2��− ie�2 i

2�
��1��2I�2�3

����,r12�e−i��t1−t2�

�
i

2�
	
d1

	d1
�r1�	̄d1

�rd1
�

�d1
− 
d1

�1 − i0�
e−i�d1

�t1−td1
� i

2�
	
d2

	d2
�r2�	̄d2

�rd2
�

�d2
− 
d2

�1 − i0�
e−i�d2

�t2−td2
�e−itd1

�EA0
+����td1

− td2
��A0

�rd1
,rd2

� , �86�

where r12= �r1−r2� and the expressions for I�1�2
���� ,r12�� I�1�2

c,t ���� ,r12� are defined in Coulomb gauge as

FIG. 13. The Feynman graph representing the process of elastic
photon scattering on the two-electron ion. This graph includes the
one-photon exchange correction and, accordingly, it represents the
next order of the perturbation theory �photon exchange correction�
compared to the graph �Fig. 11�.
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I�1�2

c ��,r12� =
��10��20

r12
, �87�

I�1�2

t ��,r12� = − ��1�2

r12
ei�r12 +

�

�x1
�1

�

�x2
�2

1

r12

1 − ei�r12

�2 ��1 − ��10��1 − ��20� �88�

or in Feynman gauge as

I�1�2
��,r12� =

g�1�2

r12
ei�r12. �89�

We will also employ the following notation for the matrix element:

Ia�b�ab
c,t ��� =� d3r1d3r2	̄a��r1�	̄b��r2��1

�1�2
�2I�1�2

c,t ��,r12�	a�r1�	b�r2� . �90�

In Eq. �86� again the additional electron propagator �sum over n� is artificially introduced with the same purpose as in Sec.
III B.

Integration over the time variables in Eq. �86� yields

S = �− i�5 i

2�
�6

�2��5� d3r1d3r2d3ru1
d3ru2

d3rc1
d3rd1

d3rd2
d�u1

d�u2
d�d1

d�d2
d�nd��̄A0

�ru1
,ru2

��92

�	
u1

	u1
�ru1

�	̄u1
�rc1

�

�u1
− 
u1

�1 − i0�	u2

	u2
�ru2

�	̄u2
�r2�

�u2
− 
u2

�1 − i0�
e��c1A�c1

�k0,0���rc1
�	

n

	n�rc1
�	̄n�r1�

�n − 
n�1 − i0�
e2��1��2I�1�2

����,r12�

�	
d1

	d1
�r1�	̄d1

�rd1
�

�d1
− 
d1

�1 − i0�	d2

	d2
�r2�	̄d2

�rd2
�

�d2
− 
d2

�1 − i0�
�A0

�rd1
,rd2

� , �91�

where

�92 = ��EA0
+ �� − �u1

− �u2
����u1

+ �0 − �n�

����n − � − �d1
����u2

+ � − �d2
�

���− EA0
− � + �d1

+ �d2
� . �92�

Accordingly, in Eq. �91� we can set

�u1
= EA0

+ �� − �u2
, �93�

�d1
= EA0

+ � − �d2
, �94�

�n = EA0
+ � − �u2

. �95�

Investigating the position of resonances near

�� = − EA0
+ EF

�0�, �96�

� = − EA0
+ EI

�0�, �97�

one can separate out those terms in Eq. �91� that become
singular near these resonances with the aid of the following
sequence of equations �compare with Eq. �63��:

�92��u1
− 
u1

�1 − i0��−1��u2
− 
u2

�1 − i0��−1��n − 
n�1 − i0��−1��d1
− 
d1

�1 − i0��−1��d2
− 
d2

�1 − i0��−1

= �92�EA0
+ �� − 
u1

− 
u2
�−12�

i
���u2

− 
u2
��EA0

+ � − 
n − 
u2
�−1

��2�

i
���d2

− 
d2
��EA0

+ � − 
d1
− 
d2

�−1 − �EA0
+ � − �d2

− 
d1
�1 − i0��−1�− �d2

+ 
d2
+ i0
d2

�−1� + �92R . �98�
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Here R represents the terms which are regular in the vicinity
of the resonances given by Eqs. �96� and �97�. The first term
in the curly brackets possesses a singularity �at the reso-
nance; Eq. �97�� either in the case of 
d1

+
d2
=EI

�0� or in the
case of 
n+
u2

=EI
�0�. The second term becomes singular only

in the latter case.

Introducing the variable

x = �d2
− 
u2

�99�

we rewrite the S-matrix element Sld corresponding to the
Feynman graph �Fig. 13�a�� in the form

Sld = �− 2�i����� + �0 − ��TA0u1u2

+ �EA0
+ �� − 
u1

− 
u2
�−1	

n

eAu1n
�k0,0��

��e2Inu2d1d2
��
d2

− 
u2
���EA0

+ � − 
n − 
u2
�−1�EA0

+ � − 
d1
− 
d2

�−1 − e2 i

2�
� dxInu2d1d2

��x���x − 
d2
+ 
u2

− i0
d2
�−1

��x − EA0
− � + 
d1

+ 
u2
− i0
d1

�−1�EA0
+ � − 
n − 
u2

�−1�Td1d2A0
. �100�

The first term in the curly brackets has usually simple poles at two different points or it has a singularity of the second order
if the points coincide. This term represents the first term of the geometric progression built for the initial state I �see �47� for
details�. Summation of the geometric progression results in a shift of the position of the resonance corresponding to the initial
state and, accordingly, in a correction to the eigenvector of the initial state ��I� �see Eq. �35��. As this term is taken into
account while we generate the geometric progression, it does not contribute to the vertex operator and we can omit it here.

Proceeding in a similar way for the evaluation of the S-matrix element Srd, corresponding to the Feynman graph �Fig.
13�b��, we get

Srd = �− 2�i����� + �0 − ��TA0u1u2

+ �EA0
+ �� − 
u1

− 
u2
�−1

�	
n

eAu2n
�k0,0���e2Iu1nd1d2

��
u1
− 
d1

���EA0
+ � − 
u1

− 
n�−1�EA0
+ � − 
d1

− 
d2
�−1

− e2 i

2�
� dxIu1nd1d2

��x���x − 
d1
+ 
u1

− i0
d1
�−1�x − EA0

− � + 
d2
+ 
u1

− i0
d2
�−1�EA0

+ � − 
u1
− 
n�−1�Td1d2A0

.

�101�

Note that the graphs in Figs. 13�a� and 13�b� give equal
contributions �for 
d1

+
d2
=EI

�0� and 
u1
+
n=EI

�0�, respec-
tively�. Accordingly, the equality Sld=Srd holds. The vertices
corresponding to the graphs �Figs. 13�a� and 13�b�� look like

�u1u2d1d2

�1�ld = 	
n

eAu1n
�k0,0���
n+
u2

,EI
�0��− e2 i

2�
� dxInu2d1d2

��x��

��x − 
d2
+ 
u2

− i0
d2
�−1

��x − EA0
− � + 
d1

+ 
u2
− i0
d1

�−1� �102�

=���0�K�1�ld�u1u2d1d2
, �103�

�u1u2d1d2

�1�rd = 	
n

eAu2n
�k0,0���
n+
u1

,EI
�0��− e2 i

2�
� dxIu1nd1d2

��x��

��x − 
d1
+ 
u1

− i0
d1
�−1

��x − EA0
− � + 
d2

+ 
u1
− i0
d2

�−1� �104�

=���0�K�1�rd�u1u2d1d2
, �105�

where ��0� is given by Eq. �85�. Here we have introduced
matrices K�1�ld and K�1�rd for abbreviation of the matrix ele-
ments in the square brackets. Note that if the initial state is
well isolated the terms which do not match the condition

d1

+
d1
=EI

�0� are smaller by one order of perturbation theory
and can be omitted. Accordingly, the matrices K become
diagonal.
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As it was done for the zeroth-order corrections, expres-
sions �100� and �101� should be cast into the form �Eq. �34��.
For this purpose consider the graph �Fig. 14�a��. The com-
plicated vertex � has been already composed in the zeroth
order �Eq. �85��. Our goal is now to evaluate the interelectron
interaction corrections to the vertex �. For that we will in-
vestigate the modification of a generic complicated vertex
�gen after taking into account the interelectron interaction
�Fig. 14�a��. The S-matrix element corresponding to Fig.
14�a� in the first order of perturbation theory in the interelec-
tron interaction looks like

S = �− i�2� d4x1d4x2d4xu1
d4xu2

d4xc1
d4xc2

d4xs1
d4xs2

d4xd1
d4xd2

d�u1
d�u2

d�s1
d�s2

d�d1
d�d2

d��̄A0
�ru1

,ru2
�eitu1

�EA0
+���

���tu1
− tu2

�
i

2�
	
u1

	u1
�ru1

�	̄u1
�rc1

�

�u1
− 
u1

�1 − i0�
e−i�u1

�tu1
−tc1

� i

2�
	
u2

	u2
�ru2

�	̄u2
�rc2

�

�u2
− 
u2

�1 − i0�
e−i�u2

�tu2
−tc2

��− i��gen�rc1
,rc2

,rs1
,rs2

�ei�0tc1

���tc1
− tc2

���tc1
− ts1

���ts1
− ts2

�
i

2�
	
s1

	s1
�rs1

�	̄s1
�r1�

�s1
− 
s1

�1 − i0�
e−i�s1

�ts1
−t1� i

2�
	
s2

	s2
�rs2

�	̄s2
�r2�

�s2
− 
s2

�1 − i0�
e−i�s2

�ts2
−t2�

��− ie�2 i

2�
��1��2I�1�2

����,r1,2�e−i��t1−t2� i

2�
	
d1

	d1
�r1�	̄d1

�rd1
�

�d1
− 
d1

�1 − i0�
e−i�d1

�t1−td1
� i

2�
	
d2

	d2
�r2�	̄d2

�rd2
�

�d2
− 
d2

�1 − i0�
e−i�d2

�t2−td2
�

�e−itd1
�EA0

+����td1
− td2

��A0
�rd1

,rd2
� . �106�

Integration over the time variables yields

S = �− i�5 i

2�
�7

�2��5� d3r1d3r2d3ru1
d3ru2

d3rc1
d3rc2

d3rs1
d3rs2

d3rd1
d3rd2

d�u1
d�u2

d�s1
d�s2

d�d1
d�d2

d��̄A0
�ru1

,ru2
��108

�	
u1

	u1
�ru1

�	̄u1
�rc1

�

�u1
− 
u1

�1 − i0�	u2

	u2
�ru2

�	̄u2
�rc2

�

�u2
− 
u2

�1 − i0�
�gen�rc1

,rc2
,rs1

,rs2
�	

s1

	s1
�rs1

�	̄s1
�r1�

�s1
− 
s1

�1 − i0�	s2

	s2
�rs2

�	̄s2
�r2�

�s2
− 
s2

�1 − i0�

�e2��1��2I�1�2
����,r1,2�	

d1

	d1
�r1�	̄d1

�rd1
�

�d1
− 
d1

�1 − i0�	d2

	d2
�r2�	̄d2

�rd2
�

�d2
− 
d2

�1 − i0�
�A0

�rd1
,rd2

� , �107�

where

�108 = ��EA0
+ �� − �u1

− �u2
����0 + �u1

+ �u2
− �s1

− �s2
���− � + �s1

− �d1
���� + �s2

− �d2
����d1

+ �d2
− EA0

− �� .

�108�

Again we use the sequence of equations which separate out the terms �R� which are regular near the positions of the
resonances under consideration �Eqs. �96� and �97��,

�108��u1
− 
u1

�1 − i0��−1��u2
− 
u2

�1 − i0��−1��s1
− 
s1

�1 − i0��−1��s2
− 
s2

�1 − i0��−1��d1
− 
d1

�1 − i0��−1

���d2
− 
d2

�1 − i0��−1

= �1082�

i
�3

���u2
− 
u2

����s2
− 
s2

����d2
− 
d2

��
u1
+
u2

,EF
�0��
s1

+
s2
,EI

�0��
d1
+
d2

,EI
�0�

��EA0
+ �� − 
u1

− 
u2
�−1�EA0

+ � − 
s1
− 
s2

�−1�EA0
+ � − 
d1

− 
d2
�−1 + �1082�

i
�2

����u2
− 
u2

����s2
− 
s2

��
u1
+
u2

,EF
�0��
s1

+
s2
,EI

�0��EA0
+ �� − 
u1

− 
u2
�−1

��EA0
+ � − 
s1

− 
s2
�−1�EA0

+ � − �d2
− 
d1

�1 − i0��−1�− 1��− �d2
+ 
d2

+ i0
d2
�−1 + �1082�

i
�2

���u2
− 
u2

�

FIG. 14. The Feynman graphs representing the process of elastic
photon scattering on the two-electron ion. In the lowest order of the
perturbation theory these graphs reduce to the graphs �Fig. 13�.
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����d2
− 
d2

��
u1
+
u2

,EF
�0��
d1

+
d2
,EI

�0��EA0
+ �� − 
u1

− 
u2
�−1

��EA0
+ � − �s2

− 
s1
�1 − i0��−1�− 1��− �s2

+ 
s2
+ i0
s2

�−1�EA0
+ � − 
d1

− 
d2
�−1 + �108R . �109�

Applying this result to Eq. �107� and combining the graphs �Figs. 12 and 14�a�� �see Eq. �84�� for the S-matrix element Scd,
corresponding to the Feynman graph �Fig. 14�a�� we get

Scd = �− 2�i����� + �0 − ��TA0u1u2

+ �EA0
+ �� − 
u1

− 
u2
�−1�u1u2s1s2

gen �e2Is1s2d1d2
��
s1

− 
d1
��

��EA0
+ � − 
s1

− 
s2
�−1�EA0

+ � − 
d1
− 
d2

�−1 + ��1�s1s2d1d2
�EA0

+ � − 
d1
− 
d2

�−1 − e2 i

2�
� dxIs1s2d1d2

��x��

��x − 
d1
+ 
s1

− i0
d1
�−1�x − EA0

− � + 
d2
+ 
s1

− i0
d2
�−1�EA0

+ � − 
s1
− 
s2

�−1 − e2 i

2�
� dxIs1s2d1d2

��x��

��x − 
d1
+ 
s1

+ i0
s1
�−1�x − 
d1

+ EA0
+ � − 
s2

+ i0
s2
�−1�EA0

+ � − 
d1
− 
d2

�−1��Td1d2A0
. �110�

The first term in the curly brackets has singularities at

�� = − EA0
+ 
u1

+ 
u2
, �111�

� = − EA0
+ 
s1

+ 
s2
, �112�

� = − EA0
+ 
d1

+ 
d2
. �113�

It can be considered as the first term of the geometric pro-
gression corresponding to the initial state. This progression
can be summed up �see �47��. After this the position of the
resonance corresponding to the initial state will include the
interelectron interaction correction �one-photon exchange�.

The first term in the square brackets ��1�s1s2d1d2
=�s1d1

�s2d2
� represents the contribution of the graph �Fig.

12�. The terms in the square brackets have singularities given
by Eqs. �111� and by either Eq. �112� and �113�. The last two
terms represent the interelectron interaction correction to the
generic vertex �gen. The whole term in the square brackets
corresponds both to the vertex �gen and to the vertex Td1d2A0

,
which represents the process of excitation of the ground state
by the photon � with transition to the excited state �I�. Ac-
cordingly, the contribution of this term to the vertex �gen

appears with the power of 1/2.
Suppose that the initial state is isolated, i.e., the admixture

of the other states has a magnitude of the next order of the
perturbation theory. Then, we can set


s1
+ 
s2

= 
d1
+ 
d2

= EI
�0� �114�

and omit the summation over s1 , s2 in the square brackets in
Eq. �110�. Accordingly, the vertex �cd with the interelectron
interaction correction given by the graph �Fig. 14�a�� will
look like

�u1u2d1d2

cd = �u1u2s1s2

gen ��1�s1s2d1d2
− e2 i

2�
� dxIs1s2d1d2

��x��

��x − 
d1
+ 
s1

− i0
d1
�−1�x − EA0

− � + 
d2

+ 
s1
− i0
d2

�−1 − e2 i

2�
� dxIs1s2d1d2

��x��

��x − 
d1
+ 
s1

+ i0
s1
�−1�x − 
d1

+ EA0
+ �

− 
s2
+ i0
s2

�−1�1/2

= �u1u2s1s2

gen ��1 + K�1�cd�1/2�s1s2d1d2
. �115�

The last equality defines the matrix K�1�cd. Note that the cor-
rection factor appears under the square root. The term in
square brackets in Eq. �110� can be equally referred to the
vertex �gen and to the vertex Td1d2A0

. Accordingly, the part of
this term connected with �gen, thus contributing to �cd, is the
square root of this term.

The vertex �cd should be equal to the sum of the contri-
butions of Eqs. �85�, �102�, and �104�,

�cd = ��0��1 + K�1�ld + K�1�rd� .

Accordingly, we derive ��d=�gen�,

�d = ��0��1 + K�1�ld + K�1�rd��1 + K�1�cd�−1/2.

Employing an expansion

�1 + x�−1/2 = 1 −
1

2
x + O�x2� �116�

and neglecting the higher-order terms we can write
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�d = ��0�1 + K�1�ld + K�1�rd −
1

2
K�1�cd� + eO��2� .

�117�

Since we are interested only in the corrections of the zeroth
and first orders we can set

� = − EA0
+ EI. �118�

The first-order correction to the � arises in the case of the
reference state, i.e., when some of the following conditions
are fulfilled:


n + 
u2
= 
d1

+ 
d2
, �119�


u1
+ 
n = 
d1

+ 
d2
, �120�


s1
+ 
s2

= 
d1
+ 
d2

. �121�

It is possible to describe the contributions of graphs in Figs.
13�a� and 13�b� as twice the contribution of the graph in Fig.
13�a�. Accordingly, the reference states are defined by Eqs.
�119� and �121�, respectively.

Thus, we can write

K�1�ld + K�1�rd −
1

2
K�1�cd = 2K�1�ld −

1

2
K�1�cd

= − 2e2 i

2�
� dxInu2d1d2

��x���x − 
d2
+ 
u2

− i0
d2
�−2 − �− e2 i

2�
� dxIs1s2d1d2

��x��

��x − 
d1
+ 
s1

− i0
d1
�−2 − e2 i

2�
� dxIs1s2d1d2

��x���x − 
d1
+ 
s1

+ i0
s1
�−2� . �122�

This expression can be simplified with the aid of the follow-
ing identities:

2Inu2d1d2
��x���x − 
d2

+ 
u2
− i0�−2 − Is1s2d1d2

��x��

���x − 
d2
+ 
u2

− i0�−2 + �x − 
d2
+ 
u2

+ i0�−2�

= Inu2d1d2
��x����x − 
d2

+ 
u2
− i0�−2

− �x − 
d2
+ 
u2

+ i0�−2�

= 2�

i
� �

�x
Inu2d1d2

��x����x − 
d2
+ 
u2

� . �123�

Here the formula

1

�x + i0�2 −
1

�x − i0�2 = −
2�

i

�

�x
��x� �124�

was utilized.
The same procedure should be applied to Figs. 13�c�,

13�d�, and 14�b�, where the one-photon exchange is inserted
above the emission of the photon �0.

Finally, we can write the following expression for the ver-
tex �:

� = ��0� + ��1� + eO��2� , �125�

where

�u1u2d1d2

�0� = 2eAu1d1

�k0,0���u2d2
, �126�

�u1u2d1d2

�1� = 	
n


n+
u2
=
d1

+
d2

e3Au1n
�k0,0�� �

�x
Inu2d1d2

��x���x=
u2
−
d2

+ 	
n


n+
d2
=
u1

+
u2

e3 �

�x
Iu1u2nd2

��x���x=
d2
−
u2

And1

�k0,0��.

�127�

Equation �127� represents the reducible part of the first-order
corrections, i.e., the reference state contribution.

Having constructed a general expression for the vertex �
we can apply the formulas derived for the generic graphs in
Figs. 12 and 14 for evaluating the contributions of the graphs
in Figs. 11 and 13. Now we can express these contributions
via the matrix �, which enables us to extend the calculations
to the quasidegenerate levels. To derive the formula for the
amplitude �Eq. �35��, we will have to consider separately the
case of nondegenerate levels and the case of quasidegenerate
levels, respectively.

IV. EVALUATION OF TRANSITION PROBABILITIES

Evaluating the transition probabilities we should distin-
guish nondegenerate and quasidegenerate levels. For the
nondegenerate levels standard QED perturbation theory can
be applied. Configurations are called quasidegenerate if they
cannot be considered as being well isolated. For these con-
figurations the interelectron interaction must be taken into
account up to higher orders. Accordingly, this requires to
develop a special technique.
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In Secs. IV A and IV B we derive expression for the am-
plitude of the scattering process for nondegenerate and
quasidegenerate levels, respectively. In Sec. IV C we write
down the final expressions for transition probabilities suit-
able for numerical calculations.

A. Nondegenerate levels

Here, we will suppose that the initial and the final states
are well isolated. The set of graphs in Figs. 11 and 13 should
be divided into two subsets: reducible �containing the refer-
ence states� and irreducible. For the zero-order and the re-
ducible subset of diagrams formulas �35� and �125� can be
applied, where the functions �I, �F are given by a combi-
nation of the two-electron determinants in j-j coupling
scheme. For irreducible subsets of diagrams we can apply a
procedure that will be described below.

Consider the first terms in the curly brackets in Eqs. �100�
and �101�,

Sld = �− 2�i����� + �0 − ��TA0u1u2

+ �EA0
+ �� − 
u1

− 
u2
�−1

���− 1�e3	
n

�Au1n
�k0,0���EA0

+ � − 
u2
− 
n�−1Inu2d1d2

���
d2
− 
u2

����EA0
+ � − 
d1

− 
d2
�−1Td1d2A0

, �128�

Srd = �− 2�i����� + �0 − ��TA0u1u2

+ �EA0
+ �� − 
u1

− 
u2
�−1

���− 1�e3	
n

�Au2n
�k0,0���EA0

+ � − 
u1
− 
n�−1

�Iu1nd1d2
��
u1

− 
d1
����EA0

+ � − 
d1
− 
d2

�−1Td1d2A0
.

�129�

The prime at the summation symbol indicates that in Eq.
�100� terms for which 
d1

+
d2
−
n−
u2

=0 �and in Eq. �101�
terms, where 
d1

+
d2
−
u1

−
n=0� holds are omitted. Since
the levels I, F are well isolated the expressions in the curly
brackets in Eqs. �128� and �129� can be viewed as correc-
tions to the vertex �; one can also set �=−EA0

+EI
�0� in the

vertex. Thus, we have to take into account the following
corrections:

��1�d = �− 1�e3 	
n


d1
+
d2

−
n−
u2
�0

Au1n
�k0,0��

��
d1
+ 
d2

− 
u2
− 
n�−1Inu2d1d2

��
d2
− 
u2

��

+ �− 1�e3 	
n


d1
+
d2

−
u1
−
n�0

Au2n
�k0,0��

��
d1
+ 
d2

− 
u1
− 
n�−1Iu1nd1d2

��
u1
− 
d1

��

�130�

�this is the contribution of the graphs in Figs. 13�a� and
13�b�� and

��1�u = �− 1�e3 	
n


u1
+
u2

−
n−
d2
�0

Iu1u2nd2
��
d2

− 
u2
��

��
u1
+ 
u2

− 
d2
− 
n�−1Ad1n

�k0,0��

+ �− 1�e3 	
n


u1
+
u2

−
d1
−
n�0

Iu1u2d1n��
u1
− 
d1

��

��
u1
+ 
u2

− 
d1
− 
n�−1Ad2n

�k0,0�� �131�

�this is the contribution of the graphs in Figs. 13�c� and
13�d��. Accordingly, for nondegenerate levels the amplitude
�Eq. �35�� is given by the matrix element of

� = ��0� + ��1� + ��1�d + ��1�u �132�

evaluated with the aid of the zeroth-order wave functions
corresponding to the states I and F, i.e., by means of two-
electron determinants in the j-j coupling scheme.

B. Quasidegenerate levels

In Sec. IV A we introduced the vertex � via expression
�34�. In order to derive the amplitude as defined in Eq. �35�
the wave functions �I, �F have to be constructed. These
functions are eigenvectors of the matrix V which was inves-
tigated in �47�. Diagonalization of the matrix V is a serious
task because V has infinite dimension. One possible solution
of this problem is the substitution by a large but finite matrix.
Another strategy is the modification of a perturbation theory.
Here we will concentrate on the development of a proper
perturbation theory.

The perturbation theory for the case of a nondegenerate
level �as well as for the case of the fully degenerate levels� is
well known �65�. Here we will apply it to the case of the
quasidegenerate levels. Considering N two-electron states
��� defined in the j-j coupling scheme we assume that these
states are mixing with each other, i.e., they have the same
symmetry and the corresponding energy levels are close to
each other. Under such condition the standard perturbation
theory may not work and we have to modify it. These N
states compose a set g= ��ig

, ig=1, . . . ,N�. The idea is now
to build an eigenvector �ng

corresponding to a state �ng
�g. We also suppose that all the other states �beyond the set
g� are either nonmixing with the state ng or their energy
levels are far enough from the level ng, i.e., that the set g is
large enough to incorporate all the closely lying levels. Then
perturbation theory will again work. Otherwise the set g has
to be enlarged. Similar but not equivalent schemes were con-
sidered earlier in the frames of RMBPT �66�. Here, we apply
it in QED.

It is convenient to write the matrix V in a block form,

V = �V11 V12

V21 V22
� , �133�

where the block V11 is constructed entirely on the states from
the set g and the block V22 does not contain states from the
set g. The matrix V can be decomposed as
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V = V�0� + �V , �134�

where V�0� is a diagonal matrix �a sum of the Dirac energies�.
The matrix �V contains the small parameter � �the expan-
sion parameter of the QED perturbation theory� and can be
treated as a perturbation. In what follows we restrict our-
selves to the interelectron interaction corrections. In the
lowest-order these corrections reduce to the one-photon ex-
change correction,

�V = 	
g=c,t

Ig��b − b���a�b�ab. �135�

We can write the matrix V as

V = �V11 V12

V21 V22
� = �V11

�0� + �V11 �V12

�V21 V22
�0� + �V22

� . �136�

The block matrix V11 is finite and can be diagonalized nu-
merically according to

V11
diag = B+V11B . �137�

Since in general V is a complex-valued symmetrical matrix,
i.e., Vij =Vji, matrix B is a complex orthogonal matrix,

BtB = I . �138�

Here I is a unit matrix �Iij =�ij� of the proper dimension. The
superscript t in Eq. �138� means transposition.

Compose a matrix

A = �B 0

0 I
� �139�

which is also an orthogonal matrix

AtA = I . �140�

Acting by the matrix A on V yields

Ṽ = AtVA = � V11
diag Bt�V12

�V21B V22
� . �141�

Since we have supposed that the required state ng is weakly

mixing with the states not included in the set g, the matrix Ṽ
can be diagonalized with the standard procedure �65�,

Ṽdiag = C̃tṼC̃ , �142�

where the matrix C̃ can be built order by order. The zeroth

and the first orders of the matrix C̃ look like

C̃ij = C̃ij
�0� + C̃ij

�1� = Iij + � 0
�Bt�V12�ij

Ej − Ei

��V21B�ij

Ej − Ei

�V22�ij

Ej − Ei

� .

�143�

The diagonalized matrices V and Ṽ coincide, so we can write

Vdiag = Ṽdiag = �AC̃�tV�AC̃� . �144�

Accordingly, an eigenvector � corresponding to a basic
function � can be defined as

� = AC̃� . �145�

Now we represent the state ng�g in terms of a perturbation
expansion,

�ng
= AC̃�ng

= 	
kg�g

Bkgng
�kg

�0� + 	
k�g

lg�g

��V21�klg

Blgng

Eng

�0� − Ek
�0��k

�0�.

�146�

An expression for �V21 is given by Eq. �135�. Summation
over index k means the summation over all two-electron con-
figurations �j-j coupling scheme� including the negative part
of the Dirac spectrum �not included in the set g�. The em-
ployment of the j-j coupling scheme is not obligatory here.

In case when the investigated state ng is well isolated
nondegenerate level and the set g consists only of this single
state, i.e., g= ��ng

� the matrix B is just a one-dimensional
unit matrix. It is easy to ensure that formula �146� together
with Eq. �125� gives the same result as Eq. �132� �taking into
account only the zeroth- and first-order corrections�.

We again would like to point out the QED effects that are
now taken into account in the framework of the LPA and
which are missing in the relativistic many-body perturbation
theory �RMBPT� �50�: the first is the inclusion of the retar-
dation �see Eq. �135��, the second is the account of the nega-
tive part of the Dirac spectrum �summation over k in Eq.
�146� and over n in Eqs. �130� and �131��, and the third is the
incorporation of a nonzero contribution of ��1� in Eq. �126�
�reference state contribution�.

The amplitude �U� of the scattering process for quaside-
generate levels is given by Eq. �35� where the eigenvectors
are defined by Eq. �146� and the vertex operator is given by
Eqs. �126� and �127�.

C. Transition probability

Based on the scattering amplitude U of the process
I→F with emission of the photon � the transition probabil-
ity between I and F states is given by formula

W = 	

� d3k

�2��3 �2���U�2��EF + � − EI�

=
�2

�2��2	

� d��U�2, �147�

where �=k / �k�. EI, EF are the energies of the initial and final
states, respectively. These energies comprise of the Dirac
energies and the one-photon exchange corrections. For
quasidegenerate levels they are given by the corresponding
eigenvalues of the matrix V �Eq. �134��. The photon fre-
quency �= �k� should be set equal to �=EI−EF. Equation
�147� defines the full transition probability, i.e., integration
over all momenta of the photon �k� and summation over all
polarizations of the photon �� are performed.

The integration over k and summation over  are taken
analytically. In Eq. �147� only the photon wave functions
depend on k and . Accordingly, in a very general way we
can consider the case when
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U�0� = An1n2

�k,�� �148�

=� d3r	̄n1
�r���A�

�k,���r�	n2
�r� , �149�

where A�
�k,��r� is given by Eqs. �37� and �38�. The corre-

sponding expression for the transition probability can be
written as �67�

W�0� =
�2

�2��2	
jm

���Ajm
�E���r,���n1n2

�2 + ��Ajm
�M���r,���n1n2

�2� .

�150�

Here, the notation introduced in Eq. �67� is employed. The
summations run over the angular momenta of the photon �j�
and projections �m�. The four-vector A�M,E��= �V ,A� corre-
sponds to magnetic �M� and electric �E� photons, respec-
tively. In the case of the magnetic photons,

Vjm
�M��r,�� = 0, �151�

A jm
�M��r,�� =�2�

�
gj��r�Y j jm�n� . �152�

With the appropriate choice of the gauge for the electric
photons we can write

Vjm
�E��r,�� = 0, �153�

A jm
�E��r,�� =�2�

�
�� j

2j + 1
gj+1��r�Y j j+1m�n�

−� j + 1

2j + 1
gj−1��r�Y j j−1m�n�� . �154�

In Eqs. �152� and �154� the radial functions

gl�x� = 4�� �

2x
Jl+1/2�x� �155�

involve Bessel functions Jl+1/2�x� that are of the first kind
�68�; Y jlm �l= j−1, j , j+1� denotes the vector spherical har-
monics �69,67� depending on angles n=r / �r�. Formulas �153�
and �154� correspond to the photon wave function given by
Eqs. �37� and �38�, specified within the transverse gauge
�50�.

For the nonrelativistic limit the more convenient gauge is
represented by the transformation A→A+���k , t�, V→V
+��k , t� with

��k,t� = ��� − �k��� j + 1

j
Y jm���e−i�t, �156�

where Y jm��� is the spherical harmonics �69�. This transfor-
mation affects only electric photons. Accordingly, in the non-
transverse gauge the four-vector A�E� appears as

Vjm
�E��r,�� = i�2�

�
� j + 1

j
gj��r�Y jm�n� , �157�

A jm
�E��r,�� =�2�

�
�2j + 1

j
gj+1��r�Y j j+1m�n� . �158�

In the work �50� this gauge is referred as “length” gauge.
Comparing Eqs. �147� and �150� we can express the tran-

sition probability in terms of the corresponding scattering
amplitudes Ujm

�E,M� as

W =
�2

�2��2	
jm

��Ujm
�E��r,���2 + �Ujm

�M��r,���2� , �159�

where A�k,� are substituted by Ajm
�M,E�. This expression was

applied for the numerical calculations of the transition prob-
abilities.

The modified amplitudes Ujm
�E,M� are derived within pertur-

bation theory. As we take into account only the corrections
up to zeroth and first orders, i.e.,

Ujm
�E,M� = Ujm

�E,M��0� + Ujm
�E,M��1� + ¯ , �160�

then the squared absolute values of Ujm
�E,M� read

�Ujm
�E,M��2 = �Ujm

�E,M��0��2 + 2 Re�Ujm
�E,M��0�Ujm

�E,M��1�� + �Ujm
�E,M��1��2

+ ¯ . �161�

The last term in Eq. �161� already corresponds to a correc-
tion of second order and can be, accordingly, disregarded in
the calculations. However, this term may serve as an estimate
for the magnitude of the higher-order corrections �i.e., for the
error magnitude�. The contributions of this term are given in
the tables as �W�2+�.

V. NUMERICAL METHODS

In the numerical calculations an ion is considered to be
enclosed into a spherical box with the radius R=60 / ��Z� �in
the relativistic units�, where � is the fine-structure constant
and Z is the nuclear charge. The size of the box reflects the
size of the volume, where the physical processes of the in-
terest �photon emission and interelectron interaction� mainly
occur for the two-electron ions with high and intermediate Z.
Hence, the electron spectrum becomes discrete. The Dirac
spectrum in the external field of the nucleus is constructed in
terms of B splines �70,71�. We used B splines of order 8 and
a grid with 50 kn.

Expression �146� for the eigenvectors �ng
involves the

zeroth- and first-order terms of the perturbation expansion.
The matrix B required for the calculation of the eigenvectors
�ng

was generated perturbatively. For a given set g, these
two perturbation series are independent.

The matrix V employed in the construction of the matrix
B was borrowed from our work �47�, where it was evaluated
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up to the second order with respect to the interelectron inter-
action corrections. The matrix �V21 involved in Eq. �146� is
given by Eq. �135� and includes only the first order of the
interelectron interaction corrections. It was calculated in the
present work.

The spatial integration in the matrix elements of the type
�Eqs. �67� and �90�� is performed in spherical coordinates.
The integration over the angular variables can be performed
analytically, while the integration over the radial variables is
performed numerically. For the numerical integration we em-
ployed Gauss-Legendre quadratures, which yield a numerical
accuracy of our calculations about 0.03%.

VI. NUMERICAL RESULTS AND DISCUSSION

In Tables I–IV we present numerical results for M1, M2,
and E1-transition probabilities for low-lying two-electron
configurations in HCI. The values are given in unit s−1 and
the digits in square brackets refer to the power of 10.

In Tables I and II we consider transition probabilities be-
tween the �1s2s� 3S1 configuration and the ground �1s1s� 1S0

configuration and between �1s2p3/2� 3P2 configuration and
�1s1s� 1S0 configuration with emission of magnetic M1 and
M2 photons, respectively. By W we denote the transition
probability evaluated in this work. The frequency of the
emitted photon is set equal to �=EI−EF, where EI, EF are
the energies of the initial and final states, respectively. In the
case of the nondegenerate levels they comprise of the Dirac
energies together with one-photon corrections. Accordingly,
we do not include the radiative corrections. The contribu-
tions of the negative-energy states to the amplitude are in-
cluded according to Eqs. �130� and �131� when performing
summation �n� over the entire Dirac spectrum. Investigation
of the contribution due to the negative-energy part of the
continuum was performed in �27,52,72�. For Z�18 the set g
contains configurations in the j-j coupling scheme built on
1s and 2s electrons for �1s2s� 3S1 configuration and on 1s
and 2p3/2 electrons for �1s2p3/2� 3P2 configuration. For Z
�10, due to the poor convergence of the perturbation theory,
the set g contains 4000 configurations. Whenever available
we compare our results with data obtained in other works.
The work �48� presents the first relativistic calculation of
transition probabilities for the �1s2s� 3S1→ �1s1s� 1S0 transi-
tion. The paper by Johnson et al. �50� provides a comprehen-
sive review, where the transition probabilities are tabulated
for all Z values. However, this work is performed neglecting
QED effects such as retardation and the contribution arising
from the derivative in the vertex operator. The work �52� is
performed within the framework of the two-time Green’s-
function method, which is a full QED approach too. How-
ever, in this work only the nondegenerate two-electron con-
figurations are considered. Digits in square brackets indicate
the accuracy of the measured values.

In Tables III and IV we present numerical results for
E1-transition probabilities between �1s2p� 3P1 , 1P1 and
ground �1s1s� 1S0 two-electron configurations. This provides
the first exact QED calculation of the transition probabilities
for the quasidegenerate configurations. The calculation is
performed within the transverse and “nontransverse” gauges
for the emitted photons: WT and WN, respectively. The pho-

TABLE I. M1-transition probabilities �s−1� between �1s2s� 3S1 and �1s1s� 1S0 configurations. The digits
in square brackets denote the power of 10.

Z W Ref. �48� Ref. �50� Ref. �52� Expt.

6 4.867�11��1� 4.856�1� 4.860�1� 4.857�11��1�a

10 1.097�7��4� 1.087�4� 1.092�4� 1.105�18��4�b

18 4.798�18��6� 4.709�6� 4.787�6�
26 2.078�6��8� 2.002�8� 2.075�8�
30 8.987�21��8� 8.981�8� 8.993�8�
50 1.727�2��11� 1.726�11� 1.729�11�
54 3.852�5��11� 3.846�11� 3.856�11� 3.92�12��11�c

70 5.980�10��12� 5.968�12� 5.983�12�
90 9.468�23��13� 9.439�13� 9.469�13�

100 3.193�1��14� 3.181�14�
aSchmidt et al. �73�.
bWargelin et al. �74�.
cMarrus et al. �4�.

TABLE II. M2-transition probabilities �s−1� between
�1s2p3/2� 3P2 and �1s1s� 1S0 configurations.

Z W Ref. �50� Ref. �52�

5 5.016�4��3� 5.014�3�
10 2.258�3��6� 2.257�6�
18 3.145�1��8� 3.141�8�
26 6.515�2��9� 6.510�9�
30 2.104�1��10� 2.104�10� 2.105�10�
50 1.365�1��12� 1.365�12� 1.366�12�
54 2.560�3��12� 2.560�12�
70 2.148�1��13� 2.146�13� 2.148�13�
90 1.720�1��14� 1.718�14� 1.721�14�
100 4.165�3��14� 4.156�14�
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ton propagator was specified in the Coulomb gauge. In the
case of quasidegenerate levels the energies EI, EF include
also interelectron interaction corrections of the second order.
We considered one- and two-photon exchange corrections to
the energy levels, taken from �47�, and one-photon exchange
corrections to the eigenvector �ng

in Eq. �146�. The contri-
butions of the negative-energy states to the amplitude are
included in Eq. �146� in the summation over k �over the
complete Dirac spectrum but the set g� and in the matrix V
�see Eq. �134�� in the two-photon exchange corrections. In
the columns WN,T

1 ph we give the transition probabilities calcu-
lated with only one-photon exchange correction taken into
account, i.e., WN,T is recalculated where set �V�2�=0 in Eq.
�135�. The columns WN,T

RMBPT display results of our recalcula-
tion of the WN,T values within RMBPT. In the columns
�WN,T

�2+� an estimate for the interelectron interaction correc-
tions of higher orders �see the end of Sec. IV C� is given.
The blank fields in the columns �WN,T

�2+� express that the cor-
responding values are smaller than the level of accuracy of
the calculation. In the last two columns we give the results of
Drake �49� �the application of the unified method� and the
RMBPT calculations by Johnson et al. �50�. While in �49�
the transverse gauge was used, the calculations performed in
�50� for �1s2p� 3P1 , 1P1 configurations utilized a nontrans-
verse gauge. Digits in square brackets again denote powers
of 10.

The diagonalization of the matrix V11 �Eq. �137�� implies
that we partly take into account the photon exchange correc-
tions to all orders. This violates the gauge invariance and,
accordingly, explains the deviation between WN and WT. This
deviation also helps us to estimate the contribution of the
higher-order terms in the expansions �Eqs. �146� and �135��.
This contribution is larger for small Z values, where the con-
vergence of the perturbation theory in the interelectron inter-
action is poorer.

The difference between the data in the columns WN,T and
WN,T

RMBPT determines the nonradiative QED corrections. For
small Z values the considered configurations are strongly
mixed. The transition probabilities for 3P1 levels are very
sensitive to the mixing matrix B which explains the large
value of the QED corrections for the small Z values. Note
that the transition probability for the 3P1 level is by several
orders of magnitude smaller than for the 1P1 level. This
means that the relative correction to the decay of the 3P1
level due to the change in the matrix B is essentially larger
than the correction to the decay of the level 1P1. For a large
numbers of Z values the mixing of the configurations is small
and QED corrections appear mainly as QED corrections to
��V21�klg

in the function �ng
�see Eq. �146��.

The perturbation expansion employed for the construction
of the matrix V �Eq. �134�� and the one applied in the diago-
nalization of V �Eq. �146�� are different. The comparison of

TABLE III. E1-transition probabilities �s−1� between �1s2p� 3P1 and �1s1s� 1S0 configurations.

Z WN
1 ph WT

1 ph WN
RMBPT WT

RMBPT WN �WN
�2+� WT �WT

�2+� Ref. �49� Ref. �50�

10 3.096�9� 2.917�9� 5.211�9� 4.963�9� 5.351�140��9� 0.003�9� 5.095�9� 0.15�9� 5.356�9� 5.356�9�
18 1.391�12� 1.370�12� 1.793�12� 1.772�12� 1.799�6��12� 1.777�12� 0.011�12� 1.800�12� 1.799�12�
26 3.925�13� 3.898�13� 4.482�13� 4.419�13� 4.421�61��13� 4.396�13� 0.011�13� 4.425�13� 4.421�13�
30 1.160�14� 1.154�14� 1.258�14� 1.254�14� 1.251�7��14� 1.246�14� 0.002�14� 1.252�14� 1.251�14�
40 6.846�14� 6.826�14� 7.047�14� 7.041�14� 7.013�34��14� 6.997�14� 0.007�14� 7.017�14� 7.011�14�
50 2.104�15� 2.101�15� 2.132�15� 2.133�15� 2.123�9��15� 2.120�15� 0.001�15� 2.123�15� 2.120�15�
60 4.838�15� 4.832�15� 4.874�15� 4.879�15� 4.855�19��15� 4.850�15� 0.002�15� 4.853�15� 4.845�15�
70 9.472�15� 9.463�15� 9.523�15� 9.538�15� 9.497�26��15� 9.489�15� 0.003�15� 9.480�15� 9.460�15�
80 1.672�16� 1.671�16� 1.680�16� 1.683�16� 1.674�6��16� 1.673�16� 1.672�16� 1.668�16�
92 3.007�16� 3.005�16� 3.020�16� 3.027�16� 3.008�12��16� 3.006�16� 2.994�16�

TABLE IV. E1-transition probabilities �s−1� between �1s2p� 1P1 and �1s1s� 1S0 configurations.

Z WN
1 ph WT

1 ph WN
RMBPT WT

RMBPT WN �WN
�2+� WT �WT

�2+� Ref. �49� Ref. �50�

10 8.607�12� 8.071�12� 8.538�12� 8.107�12� 8.538�14��12� 0.007�12� 8.103�12� 0.27�12� 8.851�12� 8.851�12�
18 1.069�14� 1.052�14� 1.061�14� 1.048�14� 1.061�1��14� 1.047�14� 0.007�14� 1.071�14� 1.070�14�
26 4.611�14� 4.578�14� 4.551�14� 4.529�14� 4.553�2��14� 4.526�14� 0.01�14� 4.570�14� 4.566�14�
30 7.857�14� 7.815�14� 7.747�14� 7.723�14� 7.754�7��14� 7.720�14� 0.016�14� 7.773�14� 7.763�14�
40 2.234�15� 2.227�15� 2.211�15� 2.209�15� 2.215�4��15� 2.210�15� 0.002�15� 2.216�15� 2.212�15�
50 5.096�15� 5.085�15� 5.064�15� 5.066�15� 5.074�10��15� 5.065�15� 0.004�15� 5.071�15� 5.057�15�
60 1.013�16� 1.012�16� 1.009�16� 1.010�16� 1.011�2��16� 1.010�16� 1.010�16� 1.006�16�
70 1.819�16� 1.817�16� 1.813�16� 1.816�16� 1.816�3��16� 1.814�16� 1.813�16� 1.805�16�
80 3.010�16� 3.007�16� 3.002�16� 3.009�16� 3.008�6��16� 3.006�16� 0.001�16� 3.000�16� 2.986�16�
92 5.046�16� 5.043�16� 5.034�16� 5.049�16� 5.045�11��16� 5.041�16� 0.001�16� 5.001�16�
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the columns WN,T and WN,T
1 ph reveals the importance of two-

photon corrections to the matrix V for the convergence of the
series of the perturbation theory. If we enlarge the set g by
excited configurations, the values for WN,T

1 ph would approach
the ones for WN,T. However, in order to achieve good agree-
ment for small Z, we would have to include about 4000
significant configurations in the set g. The matrix V is well
investigated for the purpose of evaluating the energies of the
configurations �14,47�, so the evaluation of the mixing ma-
trix B in higher orders is a more efficient technique rather
than any enlargement of the set g. The technique presented
for the calculation of the transition probabilities is a rigorous
QED procedure, which allows for systematic improvements
of the accuracy of the calculation by taking into account
corrections of higher orders.

The accuracy of the presented calculations is determined
by the accuracy of the numerical methods by the contribution
of the omitted orders of the perturbation theories and by the
radiative corrections which are not considered here. The rela-
tive accuracy of the numerical calculation is set to 0.03%.
Contribution of the omitted orders of the perturbation theo-
ries can be estimated as difference between the values calcu-
lated within the different gauges, i.e., difference between the
WN and WT columns. However, this is a very rough estima-
tion because one of the gauges may present better conver-
gence than the other. Partly, the contribution of the omitted
orders of the perturbation theories can be estimated by the
values in columns �WN,T

�2+�; they show that the nontransverse
gauge gives considerably better convergence. To estimate the
order of magnitude of the radiative corrections we suppose
that they have the same order as the other QED effects, i.e.,
as the difference between the values in WN,T and WN,T

RMBPT

columns, respectively. Accordingly, the values of the transi-
tion probabilities calculated within the nontransverse gauge
�WN� present the most accurate data for the transition prob-
abilities. The estimate of inaccuracy of the data is indicated
by digits in round brackets.

Concluding, we can state that at present this paper pro-
vides the most extensive and the most accurate calculations
of the transition probabilities in HCI with intermediate
nuclear-charge numbers Z. The inclusion of radiative correc-
tions into the LPA �which is underway� would yield the most
rigorous and powerful approach to the calculation of the
transition probabilities for HCI with an utmost precision.
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APPENDIX: ADIABATIC S MATRIX

Adiabatic S matrix is a modified common S matrix where
adiabatic exponent e−a�t� is inserted in every vertex.
The adiabatic parameter a is an infinitesimal quantity �a
→ +0�. The presence of the adiabatic exponent switches off
interaction with the electromagnetic field at t= ��. In this
appendix we show that the singularities present in the com-
mon S matrix �see Sec. II� vanish completely in the adiabatic

S matrix. The singularities arise when one makes insertions
into the outer electron lines of the Feynman graphs.

In the present paper we will consider the one-electron
ions and the insertions of the self-energy operator. In the
lowest order of QED perturbation-theory S-matrix element
corresponding to the process of elastic photon scattering on
the one-electron ions is given by the Feynman graph in Fig.
1. We consider the case when electron in the ground state a0
absorbs photon �k ,�, then emits photon �k� ,��, and decays
back to the ground state. According to energy conservation
law �=��. This graph gives no singularities, accordingly,
the adiabatic S-matrix element coincides with the common
S-matrix element,

S�0,0� = Sa

�0,0� = �− 2�i����� − ��e2	
n

Aa0n
�k,��Ana0

�k,�

�� + 
a0
− 
n

.

�A1�

The superscripts at the S matrices indicate the number of
insertions of the self-energy operator into the upper and
lower external electron lines. Here there are no insertions.

In the next orders of perturbation theory we have to make
insertions of the self-energy operators into the electron lines.
The insertions into the internal lines yield no singularities.
They result in the energy shift of the excited atomic states

FIG. 15. The Feynman graphs representing the process of elastic
photon scattering on the one-electron ion. Multiple insertions of the
self-energy operator into the lower outer electron line are made in
the framework of the adiabatic approximation. The break in the
electron lines denotes the possible multiple insertions.
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and were investigated in �45�. For simplicity of the deriva-
tion we omit them. Accordingly, we consider the insertions
into the outer electron lines.

The N insertions of electron self-energy operators into the
lower electron line are depicted in Fig. 15. After integration
over time the variables with employment of equality,

�
−�

+�

dte−a�t�+iat = i� 1

a + ia
+

1

− a + ia
� , �A2�

the corresponding adiabatic S-matrix element is given by

Sa

�0,N� = � d3rud3rd1
¯ d3rd2N

d�nd�d1
¯ d�dN

d�s1
¯ d�sN

d�1 ¯ d�N	̄a0
�ru�

��− ie���uA�u

�k�,����ru�
i

2�
	

n

	n�ru�	̄n�rd1
�

�n − 
n�1 − i0�
�− ie���d1A�d1

�k,��rd1
��i�2

�� 1


a0
+ �� − �n + ia

+
1

− 
a0
− �� + �n + ia

�� 1

�n − � − �d1
+ ia

+
1

− �n + � + �d1
+ ia

�
�

i

2�
	
d1

	d1
�rd1

�	̄d1
�rd2

�

�d1
− 
d1

�1 − i0�
�− ie���d2

i

2�
	
s1

	s1
�rd2

�	̄s1
�rd3

�

�s1
− 
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I�d2

�d3
���1�,rd23

��− ie���d3	a0
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��i�2

�� 1

�d1
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− �1 + ia
+

1

− �d1
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�� 1

�s1
+ �1 − �d2

+ ia
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�− ie���d2N

i

2�
	
sN

	sN
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�

�sN
− 
sN
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I�d2N
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��− ie���d2N+1	a0
�rd2N+1

��i�2

�� 1

�dN
− �sN

− �N + ia
+

1

− �dN
+ �sN

+ �N + ia
�� 1

�sN
+ �N − 
a0

+ ia
+

1

− �sN
− �N + 
a0

+ ia
� . �A3�

In order to make the derivations shorter we will neglect the negative-energy part of the Dirac spectrum �i.e., we suppose that

n�0, 
d�0� since negative-energy terms do not generate singularities.

Consider separately the integral over � variables and designate it as F. The integrand of F includes all the terms of Eq. �A3�
depending on the � variables: the fractions in the square brackets and the denominators originating from the electron propa-
gators. Integration over �n and �s1,. . .,N

yields

F =� d�d1
¯ d�dN
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Integrations in Eq. �A4� can be performed recursively with the use of equality,

� d�dN

2�

i
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��dN−1
− 
dN−1

�1 − i0����dN
− 
sN−1
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where lima,a�→0 Ra,a�
=0. After integration we get the following expression for Eq. �A4�:

F = 2�

i �2N+1� 1
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¯
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, �A6�

where lim
a→0

Ra
=0. Function F is singular at a→0 when 
dk

=
a0
and k=1, . . . ,N. The term in square brackets in Eq. �A6� can

be written as

� 1

� − �� + 2�N + 1�ia
+

1

− � + �� + 2�N + 1�ia
� =
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−
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=
1

2�N + 1�2�

i
�� � − ��

2�N + 1�� = 2�

i
���� − ��� . �A8�

Let us restrict ourselves to the case when 
dk
=
a0

for every k=1, . . . ,N �the derivations for the cases when some of 
dk
�
a0

can be performed by analogy�. Accordingly, we write Eq. �A6� as

F = 2�

i �2N+1� 1
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a0
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With employment of Eq. �A9� we can write Eq. �A3� as

Sa

�0,N� = �− 2�i���� − ���e2

� 	
n

Aa0n
�k�,���Ana0

�k,�

�� + 
a0
− 
n + �2N + 1�ia�

1

N!
 �̂a0a0

�
a0
�

2ia

�N

+ Ra
. �A10�

Employing the asymptotic �a→ +0� equality,

	
N=0

�
1

�x + Nia�N!
 �

ia
�N

=
1

x + �
exp �

ia
� , �A11�

where �x�� ��� we can write
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N=0

�

Sa,N
�0,N� = �− 2�i���� − ���e2

��	
n

Aa0n
�k�,���Ana0

�k,�

� + 
a0
+ �̂a0a0

�
a0
� − 
n

+ Ra�
�exp �̂a0a0

�
a0
�

2ia

� . �A12�

Although the condition �x�� ��� is necessary for Eq. �A11�,
we employ Eq. �A11� for Eq. �A10� for any �. This is con-
sidered as an analytical continuation of Eq. �A10� to the area
close to the resonance and, accordingly, the entire complex
plane ���. This analytical continuation was discussed in �17�.

If we insert the self-energy operator into the upper �Nu
times� and lower �Nd times� outer electron lines, the similar
derivations yield

Sa

�Nu,Nd� = �− 2�i���� − ���e2 1

Nu!
� �̂a0a0

�
a0
�

2ia

�Nu

�	
n

Aa0n
�k�,���Ana0

�k,�

�� + 
a0
− 
n + �2N + 1�ia�

1

Nd!

�� �̂a0a0
�
a0

�

2ia

�Nd

+ Ra
, �A13�

The value of N in the denominator can be set equal to Nu or
Nd without changing the final result since it influences only
the terms Ra

which disappear in the asymptotics �a

→ +0�. Finally, we get

Sa
= 	

Nu,Nd=0

�

Sa

�Nu,Nd� �A14�

=�− 2�i���� − ���e2

�	
n

Aa0n
�k�,���Ana0

�k,�

� + 
a0
+ �̂a0a0

�
a0
� − 
n

�A15�

�exp �̂a0a0
�
a0

�

ia

� . �A16�

As the regularized self-energy matrix element for the ground
state �a0� has no imaginary part, the absolute value of the
exponent in Eq. �A16� reads

�exp �̂a0a0
�
a0

�

ia

�� = 1. �A17�

Accordingly, the absolute value of the amplitude is given by

�U� = e2�	
n

Aa0n
�k�,���Ana0

�k,�

� + �a0
− 
n

� . �A18�

The regularized self-energy matrix element in the denomina-
tor is a correction to the energy of the ground state: �a0

=
a0
+ �̂a0a0

�
a0
�.

In Eq. �A9� we considered only the case when 
dk
=
a0

for
every k=1, . . . ,N. The cases when some of 
dk

�
a0
corre-

spond to the insertions of the second and higher orders self-
energy corrections of the “loop-after-loop” type. The case
when all 
dk

�
a0
gives the correction to the wave function

of the ground-state electron a0.
The presented derivations show that the employment of

the adiabatic theory allows for the insertions into the outer
electron lines within the LPA. They also justify the introduc-

tion of the vertex functions �a0
, �̄a0

��A0
, �̄A0

for two-
electron ions� in Sec. III. The energies of the ground state
can be considered to be the full energies, i.e., with all the
corrections included.

Finally, we would like to note that the goal of employ-
ment of the adiabatic approach was the justification of the
LPA backgrounds. Formally, the ground state can be investi-
gated within the same matrix formulation of the LPA as the
excited states which allows us to employ the general tech-
nique developed in Sec. IV.
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