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Accurate calculations of the fine and hyperfine splitting of the 2P state in Li and Be+ isotopes using the
explicitly correlated Hylleraas basis set are presented. Theoretical predictions including the mixing of P1/2 and
P3/2 states, relativistic and quantum electrodynamic effects on hyperfine interactions, are compared with
experimental values. It is concluded that precise spectroscopic determination of the nuclear magnetic moments
requires elimination of nuclear structure effects by combining measurements for two different states.
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I. INTRODUCTION

The calculation of relativistic effects in the atomic struc-
ture is most often performed with the explicit use of the
Dirac equation, as in relativistic configuration interaction �1�,
many-body perturbation theory �2�, relativistic coupled-
cluster �3�, or multiconfiguration Dirac-Fock �4� methods.
For light atomic systems the more accurate approach is based
on the expansion of the energy in the fine-structure constant
�. This method allows for a systematical inclusion of rela-
tivistic and quantum electrodynamics �QED� contributions,
as each correction can be expressed in terms of the expecta-
tion value of some operator with the nonrelativistic wave
function. With the use of explicitly correlated basis func-
tions, the nonrelativistic Schrödinger equations for few elec-
tron systems can be solved very accurately. The high preci-
sion is achieved also for relativistic and QED corrections,
provided more complicated integrals with inverse powers of
interelectronic distances can be performed. Such calcula-
tions, which rely on expansion in �, have been performed for
hydrogen and hydrogenlike ions up to the very high order of
m�8 �5�. Slightly lower precision was achieved for the he-
lium fine structure and for other helium energy levels, all
terms up to m�6 order have been obtained with approximate
inclusion of dominant m�7 corrections �6�. For three- and
four-electron atoms calculations have reached the order m�5

with partial inclusion of m�6 terms, which come from the
electron self-energy. The complete calculation of the m�6

contribution for three-electron systems has not been per-
formed so far.

In this work we present accurate calculation of the fine
and hyperfine splittings in Li and Be+ ions through m�4 and
m�5 orders including the finite nuclear mass corrections.
Lithium fine structure have already been calculated in Hyl-
leraas functions by Yan and Drake in �7�, but in a relatively
small basis and with the neglect of P1/2 and P3/2 mixing,
which we find to play a significant role in the isotope shift.
The hyperfine splitting of P states was calculated in many
works using explicitly relativistic methods �1–4� and with
the nonrelativistic multiconfiguration Hartree-Fock method
in �8,9�. We find by a comparison with our results that the

most accurate previous calculation was that performed by
Yerokhin in �1�. For the comparison with experimental val-
ues we include O��2� relativistic corrections from �1�,
known O��2� QED corrections, and draw a conclusion that a
largest uncertainty comes from the not well-known nuclear
structure effects.

II. FINE AND HYPERFINE OPERATORS

Let us briefly start with the description of the fine and
hyperfine splitting in an arbitrary few electron atom. The fine
structure, neglecting relativistic O��2� corrections, can be
expressed as the expectation value with the nonrelativistic
wave function of the following operator:

Hfs = �
a

Z�

2ra
3s�a� �g − 1�

m2 r�a � p�a −
g

mmN
r�a � p�N�

+ �
a�b

�

2m2rab
3 s�a�gr�ab � p�b − �g − 1�r�ab � p�a� , �1�

where g is the free-electron g factor, which includes here all
QED corrections, Z is the nuclear charge in units of the el-
ementary charge e, m and mN are the electron and nuclear
masses, respectively, and finally s�a is the electron-spin opera-
tor. For convenience of further calculations we express Hfs in
terms of Fa

i and four elementary operators fa
i in atomic units,

namely,

Hfs = − i�
a
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b�a

r�ab

rab
3 � �� b, �5�

f�4a = �
b�a

r�ab

rab
3 � �� a. �6�

The hyperfine structure, neglecting relativistic O��2� cor-
rections, is given by Hhfs operator in Eq. �8�. We will treat
the nucleus as any other particle with mass mN and with the
g factor gN which is related to the magnetic moment � by the
formula

gN =
mN

Zmp

�

�N

1

I
, �7�

where �N is the nuclear magneton and I is the nuclear spin.
Nuclear masses, spins, magnetic-dipole, and electric-
quadrupole moments of Li and Be isotopes are taken from
literature and are all presented in Table I. With the help of
gN Hhfs can be written as
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where Q is the electric-quadrupole moment. For convenience
of further calculations we express Hhfs in terms of Ha, Ha

ij,
Hi, and Hij operators, namely,

Gi = �
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i Ha + �
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ij − iHi, �10�
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Hij = �m2Qhij , �14�

where h operators �in atomic units� are
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III. MATRIX ELEMENTS

Matrix elements of the fine and hyperfine operators are
evaluated with the nonrelativistic wave function. This func-
tion is obtained by solving the Schrödinger equation in the
three-electron Hylleraas basis set. Finite nuclear mass correc-
tions are included by reduced mass scaling and perturbative
treatment of the mass polarization correction. All matrix el-

TABLE I. Data. for lithium and beryllium isotopes. Atomic binding energy of ELi=−7.281 a.u., EBe=−14.669 a.u. The value for the
quadrupole moment of 7Be is a theoretical estimate �16�.

Atomic mass
�amu� Ref. I�

�
�units of �N� Ref.

Q
�fm2� Ref.

rE

�a.u.� Ref.

6Li 6.015122794�16� �19� 1+ 0.822 047 3�6� �20,21� −0.0806�6� �22� 2.540�28� �35�
7Li 7.0160034256�45� �23� 3 /2− 3.256 426 8�17� �20,21� −4.00�3� �24� 2.390�30� �36�
8Li 8.02248624�12� �19� 2+ 1.653560�18� �20,21� +3.14�2� �25� 2.281�32� �35�
9Li 9.02679020�21� �19� 3 /2− 3.43678�6� �25� −3.06�2� �25� 2.185�33� �35�
11Li 11.04372361�69� �19� 3 /2− 3.6712�3� �26� −3.33�5� �26� 2.426�34� �35�
7Be 7.016 929 83�11� �27� 3 /2− −1.39928�2� �29� −6.11 �17� 2.646�14� �33�
9Be 9.012 182 20�43� �27� 3 /2− −1.177 432�3� �30,31� −5.288�38� �32� 2.519�12� �37�
10Be 10.013 533 82�43� �27� 0+ 2.358�16� �33�
11Be 11.021 661 55�63� �28� 1 /2+ −1.681 3�5� �33,34� 2.463�16� �33�
12Be 12.026 921�16� �27� 0+

14Be 14.042 890�140� �27� 0+
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ements are expressed in terms of Hylleraas integrals, which
are obtained with the help of recursion relations �10–13�. The
high accuracy is achieved by the use of a large number of
about 15 000 Hylleraas functions, and we have already dem-
onstrated the advantages of this approach by the calculation
of the isotope shift in Li �14� and Be+ ions �15�.

The nonrelativistic wave function is the antisymmetrized
product of spatial and spin functions of the form

�a
i = A��a

i �r�1,r�2,r�3�	� , �20�

�a
i �r�1,r�2,r�3� = ra

i e−w1r1−w2r2−w3r3r23
n1r31

n2r12
n3r1

n4r2
n5r3

n6, �21�

	 = ���1�
�2� − 
�1���2����3� , �22�

where �z��.�=��.� and �z
�.�=−
�.�. Matrix elements of
each operator, after eliminating spin variables, can take the
standard form

�i�H�jS 
 ���i�r1,r2,r3��H�2� j�r1,r2,r3� + 2� j�r2,r1,r3�

− � j�r2,r3,r1� − � j�r3,r2,r1� − � j�r3,r1,r2�

− � j�r1,r3,r2� �23�

and what we call the Fermi form

�i�Ha�jF 
 ���i�r1,r2,r3��2H3�� j�r1,r2,r3� + � j�r2,r1,r3��

− �H1 − H2 + H3��� j�r2,r3,r1� + � j�r3,r2,r1��

− �H2 − H1 + H3��� j�r1,r3,r2� + � j�r3,r2,r1�� ,

�24�

with the assumption that the norm is �i=1
3 �i � iS=1. The ma-

trix element of the fine-structure Hamiltonian becomes

�HfsJ = �− i�
a

s�a · F� a�
J

= �ijk�i�Fa
j �kF� 1

2 , J = 1/2

− 1
4 , J = 3/2�

�25�

and the fine splitting is

Efs = �Hfs3/2 − �Hfs1/2 = − 3
4�ijk�i�Fa

j �kF. �26�

The matrix elements of the hyperfine-structure Hamiltonian
takes the form

�HhfsJ = �I� · G� +
3IiIj

I�2I − 1�
Hij

6
� = AJI� · J�

+
BJ

6

3�IiIj��2�

I�2I − 1�
3�JiJj��2�

J�2J − 1�
, �27�

where AJ and BJ are magnetic-dipole and electric-quadrupole
hyperfine constants. They are all expressed in terms of stan-
dard and Fermi matrix elements, namely,

AJ =
1

J�J + 1�
�J� · G� J, �28�

A1/2 = − 1
3 �k�Ha�kF − 2

3�ijk�i�Hj�kS + 2
3 �i�Ha

ij�jF,

A3/2 = 1
3 �k�Ha�kF − 1

3�ijk�i�Hj�kS − 1
15�i�Ha

ij�jF,

BJ =
2

�2J + 3��J + 1�
�JiJjHijJ, �29�

B1/2 = 0,

TABLE II. Matrix elements in atomic units of operators involved in the fine and hyperfine splitting of P
states, infinite mass, and the mass polarization correction with the coefficient −m / �m+mN�. �k�ha�kF corre-
sponds to ac from Ref. �1�, �i�ha

ij�jF to 10asd, �ijk�i�h1
j �kS to 2al, and �i�hij�jS to bq /2. Numerical uncertainties

are due to extrapolation to the infinite basis set and reflect the numerical convergence.

Operator Li�2P� Mass pol. corr. Be+�2P� Mass pol. corr. Ref.

�ijk�i�f1a
j �kF −0.125 946 353 2�18� 0.376 388�3� −0.969 131 4�8� 3.043 395 �9�

�ijk�i�f2a
j �kF 0.022 524 89�15� 0.339 008 2�2�

�ijk�i�f3a
j �kF 0.038 473 58�12� −0.213 52�3� 0.360 851 6�2� −1.549 82�12�

�ijk�i�f4a
j �kF −0.224 640 68�6� 0.570 582�6� −1.659 492 5�2� 4.53262�13�

�k�ha�kF −0.214 620 4�19� 2.376 4�5� −1.083 916 1�8� 12.232�12�
−0.214 67 −1.084 2 �1�
−0.214 78�5� �38�

�i�ha
ij�jF −0.134 775 3�5� 0.357 1�17� −1.026 978�3� 2.775 0 �8�

−0.134 77 −1.026 9 �1�
�ijk�i�h1

j �kS −0.126 256 153�17� 0.400 67�5� −0.970 443 9�3� 3.116 48 �5�
−0.126 250 −0.970 32 �1�

�ijk�i�h2
j �kS 0.044 419 16 �19� 0.398 663 5 �7�

�i�hij�jS −0.113 097�2� 0.334 9�9� −0.918 134�3� 2.628�3�
−0.113 085 −0.918 10 �1�

FINE AND HYPERFINE SPLITTING OF THE 2P… PHYSICAL REVIEW A 79, 032510 �2009�

032510-3



B3/2 = − 1
5 �i�Hij�jS.

Numerical values for all matrix elements involved in these
calculations are presented in Table II. They have been ob-
tained by extrapolation to infinite basis set and uncertainties
reflect the numerical convergence. Matrix elements of the
fine-structure operators have been derived previously by Yan
and Drake in �7� and later by us in �15�. Small differences
with results of �7� come from the not very large number of
basis functions used in that work. The hyperfine operators
have been previously obtained in several works, i.e., �1,9,39�
and we compare our result with the most accurate one from
�1� with which we agree well.

IV. SECOND-ORDER CONTRIBUTION

The hyperfine Hamiltonian Hhfs mixes 22P1/2 with 22P3/2
which leads to additional contributions to fine and hyperfine
splittings �40�. Since this mixing is not very large one can
use the second-order perturbative formula which involves
off-diagonal matrix elements

�E�P1/2�m1m2

= �
m

�P1/2,m1�Hhfs�P3/2,m�P3/2,m�Hhfs�P1/2,m2
E�P1/2� − E�P3/2�

,

�E�P3/2�m1m2

= �
m

�P3/2,m1�Hhfs�P1/2,m�P1/2,m�Hhfs�P3/2,m2
E�P3/2� − E�P1/2�

.

�30�

To calculate them one can use Clebsch-Gordan coefficients
and Racah algebra �41�. In the simpler approach presented

here, we introduce the operator K, such that �J ,m�K� �J ,m�

=0 for J=1 /2,3 /2, but does not change L nor S, namely,

K� = S� − J��1

2
−

5

8J�J + 1�	 =� S� + 1
3J�, J = 1/2

S� − 1
3J�, J = 3/2.

� �31�

Then the off-diagonal matrix elements can be transformed to
the form

�PJ,m�Hhfs�PJ�,m� = Ii�PJ,m�Gi�PJ�,m�

+
3IiIj

I�2I − 1�

�PJ,m�Hij�PJ�,m�
6

= IiX�J,m�Ki�J�,m� +
3IiIj

I�2I − 1�
Y

6

� �J,m��LiLj��2��J�,m� �32�

with X and Y coefficients being

X = �k�Ha�kF +
�ijk

2
�i�Hj�kS +

1

4
�i�Ha

ij�jF, �33�

Y = − 3
5 �i�Hij�jS. �34�

The second-order correction to energy due to Hhfs in Eq. �30�
neglecting the small Y2 term becomes

�E�P1/2� = −
X2

Efs
IiIj�KiKjJ=1/2 −

XY

Efs

�
IkIiIj

I�2I − 1�
�Kk�LiLj��2�J=1/2

= −
X2

Efs

2

9
�I�2 + I� · J�� +

XY

Efs

2I + 3

9I
I� · J� , �35�

TABLE III. Finestructure splitting of 2P states in Li and Be+ isotopes in MHz with �=2Rc�2=6 579 683 921 MHz. �Efs is the isotope
shift with respect to 7Li and 9Be. It is not clear whether the experimental value of Orth et al. �42� for the 7Li fine structure includes �Efs due
to their diagonal and off-diagonal parametrization of hyperfine matrix elements.

6Li 7Li 8Li 9Li 11Li Ref.

Efs
�0� 10 053.7072�83� 10 053.707 2�83� 10 053.707 2�83� 10 053.707 2�83� 10 053.707 2�83�

Efs
�1� −2.786 8�6� −2.389 1�5� −2.089 3�4� −1.856 8�4� −1.517 7�3�

�Efs 0.012 17 0.159 16 0.036 93 0.177 23 0.202 21

�Efs −0.544 7�1� 10 051.477�8� 0.177 6�1� 0.550 4�1� 0.91 5�2�
−0.396 10 051.235�12� 0.298 0.529 0.851 �7,43�

Expt. 0.863�79� 10 053.184�58� �42,44�
Expt. −0.155�77� 10 053.39�21� �45,46�

7Be+ 9Be+ 10Be+ 11Be+ 14Be+

Efs
�0� 197 039.150�81� 197 039.150�81� 197 039.150�81� 197 039.150�81� 197 039.150�81�

Efs
�1� −27.320�3� −21.270�2� −19.141�2� −17.391�2� −13.6492�15�

�Efs 0.045 56 0.032 25 0.000 0.118 34 0.000

�Efs −6.037�1� 197017.727�21� 2.097�1� 3.965�1� 7.589�1�
−6.049 2.13 3.878 �43�
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�E�P3/2� =
X2

Efs
IiIj�KiKjJ=3/2 +

XY

Efs

IkIiIj

I�2I − 1�

� �Kk�LiLj��2�J=3/2

=
X2

Efs

1

9
�I�2 − I� · J� − �IiIj��2��JiJj��2�� +

XY

Efs

��−
�2I + 3�

90I
I� · J� +

1

18

3�IiIj��2�

I�2I − 1�
� �JiJj��2�� ,

�36�

where we omitted the magnetic octupole coupling, the so-
called CJ coefficient. Resulting corrections to the fine and
hyperfine splittings are

�Efs =
X2

Efs

I�I + 1�
3

, �37�

�A1/2 = −
2

9

X2

Efs
+

2I + 3

9I

XY

Efs
, �38�

�A3/2 = −
1

9

X2

Efs
−

2I + 3

90I

XY

Efs
, �39�

�B3/2 = −
2I�2I − 1�

9

X2

Efs
+

1

3

XY

Efs
. �40�

V. RESULTS

Numerical results for the fine splitting in Li and Be+ iso-
topes are shown in Table II. Efs

�0� is the leading contribution
with the exact electron g factor, but in the infinite nuclear
mass limit, Efs

�1� is the finite nuclear mass correction and �Efs
is the P1/2− P3/2 mixing term. The higher-order relativistic

TABLE IV. Hyperfine splitting of the 2P states in Li isotopes in MHz. Results of Yerokhin �1� are corrected by inclusion of �A and �B,
and by the use of more accurate electric-quadrupole moments for 6Li and 7Li. Results of Orth et al. �42,47� for A and B constants in 7Li are
shifted by �A and �B, as these authors parametrized results of their measurement by diagonal and off-diagonal parts separately. Uncertainties
of final theoretical predictions are due to higher-order corrections and the approximate treatment of the nuclear structure contribution. Not
shown are uncertainties due to inaccuracies of magnetic-dipole and electric-quadrupole moments.

6Li 7Li 8Li 9Li 11Li Ref.

A1/2
nrel 17.404 70�4� 45.96337�11� 17.504 24�4� 48.50752�11� 51.815 18�12�

�A1/2 −0.004 05 −0.027 29 −0.004 37 −0.030 69 −0.035 00

−0.004 01 −0.027 0 �40�
A1/2

rel 0.003 53 0.009 32 0.003 55 0.009 84 0.010 51 �1�
A1/2

qed −0.001 08 −0.002 86 −0.001 09 −0.003 01 −0.003 22

A1/2
fns −0.001 36 −0.003 39 −0.001 23 −0.003 27 −0.003 88

A1/2 17.401 7�4� 45.939 2�11� 17.501 1�4� 48.480 4�11� 51.783 6�13�
17.401 8�5� 45.939�1� �1�

Expt. 17.371�18� 45.887 �25� �42,47�
Expt. 17.386�31� 46.010�25� �48�
Expt. 17.394�4� 46.024�3� �49�

A3/2
nrel −1.152 35�2� −3.042 14�4� −1.158 31�2� −3.209 24�4� −3.427 19�4�

�A3/2 −0.002 03 −0.014 25 −0.002 03 −0.015 84 −0.018 07

−0.002 01 −0.014 1 �40�
A3/2

rel −0.001 84 −0.004 85 −0.001 85 −0.005 12 −0.005 46 �1�
A3/2

qed 0.001 08 0.00 86 0.001 09 0.003 01 0.003 22

A3/2
fns 0.001 36 0.00 39 0.00 23 0.00 27 0.003 88

A3/2 −1.153 7�4� −3.055 0�11� −1.159 8�4� −3.223 8�11� −3.443 6�13�
−1.155 0�5� −3.058�1� �1�

Expt. −1.157�8� −3.069�14� �42,47�

B3/2
nrel −0.004 28 −0.212 59 0.166 88 −0.162 63 −0.176 98

�B3/2 −0.004 05 −0.084 14 −0.024 85 −0.093 91 −0.107 13

−0.004 02 −0.083 4 �40�
B3/2

rel 0.000 00 0.000 02 −0.00001 0.000 01 0.000 01 �1�
B3/2 −0.008 33 −0.296 71�8� 0.142 02�2� −0.256 53�9� −0.284 10�11�

−0.008 33 −0.296 69�2� �1�
Expt. −0.014�14� −0.305�29� �42,47�
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and QED corrections are not known as they have not yet
been evaluated. Finally �Efs is the isotope shift with respect
to 7Li and 9Be+. Our result for this isotope shift in the fine
structure �Efs of Li differs significantly from the previous
calculations in �7� due to the inclusion of the important
second-order contribution �Efs. However, it differs also from
all the experimental values �see Table III�.

Numerical values of all significant contributions to the
hyperfine constants of the 22P1/2 and 22P3/2 states in Li and
Be+ isotopes are shown in Tables IV and V. A1/2

nrel according
to Eq. �8� involves the exact electron g factor, and thus in-
cludes the leading QED corrections. The relativistic correc-
tions Arel and Brel have been calculated by Yerokhin in �1� in
terms of GM1 and GE2 functions. GM1 is defined by

AJ = �
Z3

8

m

mp

�

�NI

1

3J�J + 1�
GM1, �41�

where relativistic corrections to GM1 are equal to 0.000 015
for 22P1/2, −0.000 039 for 22P3/2 states of Li, and
0.000 00153 for 22P1/2, −0.000161 for 22P3/2 states of Be+.
These number include also the so-called negative-energy
contributions. GE2 is related to BJ coefficient by

B3/2 = �m2Q
Z3

60
GE2, �42�

where relativistic corrections to GE2 for 22P3/2 are equal to
−0.000004 in Li and −0.000013 in Be+. These relativistic
corrections can in principle be evaluated within nonrelativis-
tic QED �NRQED� approach �51� but so far we have not
been able to obtain analytic formula for all Hylleraas
integrals involved in matrix elements. The next to leading
radiative �QED� correction A1/2

qed �beyond the anomalous mag-
netic moment� is proportional to the Fermi contact interac-
tion and is known from hydrogenic atoms. In terms of the Ha
operator it is

Ha
qed = Ha

2

g
Z�2�ln 2 −

5

2
	 . �43�

The last significant contribution is the finite-nuclear-size cor-
rection, the extended electric and magnetic distribution
within nucleus. It is given by the formula

Ha
fns = Ha�− 2Z�mrZ� , �44�

where

rZ =� d3rd3r��E�r��M�r���r� − r��� . �45�

Using exponential parametrization of electric and magnetic
form factors

�E�r� =
3�3

�rE
3 e−2�3r/rE, �46�

�M�r� =
3�3

�rM
3 e−2�3r/rM , �47�

the Zemach radius rZ is

rZ =
35�rE + rM�4 + 14�rE

2 − rM
2 �2 − �rE − rM�4

32�3�rE + rM�3
. �48�

For all but 11Be nuclei we assume rE=rM, thus

rZ =
35rE

16�3
= 1.263rE, �49�

and take charge radii from the recent isotope shift measure-
ments in Li �35� and Be+ �33� supplemented with isotope
shift calculations in �15�. For the Gaussian distribution one
obtains �1� rZ=1.30rE which demonstrates a weak depen-
dence of rZ on an arbitrarily assumed shape of the charge
distribution, with one exception. The 11Be nucleus has a
single neutron halo, which means that rM is much larger than
rE and the nuclear finite size becomes much larger. We em-
ploy here the result of direct calculations from �52�, which is

Ha
fns = Ha�− 0.000717� . �50�

At the same time the nuclear polarizability correction is also
much larger and of the opposite sign to the finite-size effect.
Since it is very difficult to estimate, it will be neglected here.
The final results for A1/2, A3/2, and B3/2 include the uncer-

TABLE V. Hyperfine splitting of 2P states in Be+ isotopes in
MHz. Results of Yerokhin �1� are corrected by inclusion of �A and
�B. Uncertainties of final theoretical predictions are due to higher-
order corrections and the approximate treatment of the nuclear
structure contribution. Not shown are uncertainties due to inaccura-
cies of magnetic-dipole and electric-quadrupole moments.

7Be+ 9Be+ 11Be+ Ref.

A1/2
nrel −140.069 6�3� −117.859 2�3� −504.874 5�8�

�A1/2 −0.009 61 −0.006 83 −0.105 20

A1/2
rel −0.096 8 −0.081 5 −0.349 �1�

A1/2
qed 0.008 26 0.006 95 0.029 75

A1/2
fns 0.010 85 0.008 69 0.055 50

A1/2 −140.157�3� −117.932�3� −505.245�16�
−117.926�4� �1�

Expt. −140.17�18� −118.00�4� −505.41�5� �33�
Expt. 118.6�36� �50�

A3/2
nrel −1.215 33�2� −1.024 81�2� −4.395 48�8�

�A3/2 −0.003 90 −0.002 76 −0.052 60

A3/2
rel 0.02 3 0.01 1 0.073 5 �1�

A3/2
qed −0.008 26 −0.006 95 −0.029 75

A3/2
fns −0.010 85 −0.008 69 −0.055 50

A3/2 −1.218�3� −1.026�3� −4.460�16�
−1.018�3� �1�

B3/2
nrel −2.636 19�1� −2.281 54�1�

�B3/2 −0.025 43 −0.018 03

B3/2
rel 0.000 20 0.000 17 �1�

B3/2 −2.661 42�3� −2.299 40�3�
−2.299 25�17� �1�
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tainty coming from the higher order corrections, which we
estimate to be 25% of Aqed and the uncertainty due to the
approximate treatment of the nuclear structure which we es-
timate to be 25% of Afns for all A coefficients, while for the
B coefficients we assume the final uncertainty to be the sum
of 10% of Brel and 0.1% of �B.

VI. CONCLUSIONS

In comparison to experimental values we observe signifi-
cant discrepancies for the isotope shift in the fine structure
�see Table III�. Although the theoretical fine structure of 7Li
is consistent with experimental values, the differences can be
associated to O��2� relativistic corrections, the isotope shift,
as it has already been noted in �7,43�, differs significantly
between different experiments and theoretical predictions. In
view of the recent determination of the nuclear charge radii
from the isotope shift of 2S1/2−2P1/2 transition in Be+ ions, it
is important to resolve these discrepancies. In this respect,
we note the recent critical examinations �53� of all experi-
mental values of the fine structure and isotope shift measure-
ments in 6Li and 7Li. Considering hyperfine splittings we
observe good agreement with the previous calculations of
Yerokhin in �1�, particularly for the A1/2 coefficients. Slight
discrepancies with experiments for the A coefficients of the
2P state indicate that the magnetic moment obtained from
the hyperfine structure �hfs� measurement for the 2S state
may not be as accurate as claimed. This is because the treat-
ment of the nuclear structure corrections by the elastic
charge and magnetic form factors is very approximate, and

the accuracy of this approximation is not known. We think
that the more accurate approach shall employ the effective
nuclear Hamiltonian using the so-called chiral perturbation
theory. Then the nuclear structure correction to the atomic
hfs consists of the leading Low correction, Zemach correc-
tions from individual nucleons, and the nuclear vector polar-
izability �54�. Unfortunately, the explicit calculations for nu-
clei with more than three nucleons is difficult and has not
been performed so far. Certainly the nuclear vector polariz-
ability correction is significant for halo nuclei, and it would
be worth to calculate it. At present, without detailed knowl-
edge of nuclear structure, the determination of magnetic mo-
ments from atomic spectroscopy measurements can be un-
certain. Therefore, better accuracy can be achieved when two
measurements are combined in such a way, that this nuclear
structure correction, proportional to the Fermi interaction
cancels out, for example in A1/2+A3/2 of the P state of Li and
Be+. Theoretical accuracy for this combination is limited
only by higher-order QED corrections and knowing both A
constants, we shall be able to derive magnetic moments with
relative precision of about 1�10−5 without referencing to
magnetic moments of stable isotopes, or with precision of
the magnetic moment of the reference nucleus.
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