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Entanglement in resonances of two-electron quantum dots
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Bound and resonance states of a two-electron quantum dot are studied using a variational expansion with
real basis-set functions. The two-electron entanglement (von Neumann entropy) is calculated as a function of
the quantum-dot size at both sides of the critical size, where the ground (bound) state becomes a resonance
(unbound) state. The use of von Neumann entropy is proposed as a method for the determination of the energy

of a resonance.
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I. INTRODUCTION

The entanglement of a quantum state may be considered
as a resource, which is the point of view of quantum infor-
mation [1], or may serve to further characterize the state, as
the case when the concept is applied to well-known models
[2]. In other few cases, concepts that are motivated by quan-
tum information considerations shed some new light in prob-
lems otherwise unsolved or poorly understood, for example,
the scaling of block entropies is related to the efficient simu-
lability using matrix product states of many-body systems
[3].

The calculation of entanglement in atoms, molecules, and
quantum dots obeys to the aforementioned reasons. Among
the applications oriented to quantum information there are
proposals for using quantum dots as a source on demand of
entangled pairs [4], for entanglement generation in a
quantum-dot structure [5], or entanglement distribution in a
quantum-dot processor [6].

In atomic systems the behavior of the entanglement near
the ionization threshold has been obtained for both ground
and first excited states of the spherical helium atom [7,8].
Carlier et al. [9] studied a one-dimensional two-electron
atom and calculated the entanglement carried by the two-
electron eigenstates. Shi and Kais [10] studied the near-
threshold scaling of the Shannon entropy for the two-
electron atom, and Amovilli and March [11] studied the
Shannon correlation and Jaynes entropy for an exactly solv-
able artificial two-electron atom. Fedorov et al. [12] consid-
ered the entanglement shared by an electron and an ion in a
photoionization and photodissociation setup. Another context
in which the entanglement of quantum states in “atomic sys-
tems” is of interest arises in the implementation of quantum
gates [13].

Interestingly, the works cited above only deal with L?
bound states (the discrete spectrum) or the S-function-nor-
malized continuum states which occur over a continuous
range of energies, bounded below by a threshold for scatter-
ing but not bounded above. However, it is well known that
this is not the whole spectrum for a whole kind of systems
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since there is a part of the spectrum called singular continu-
ous spectrum or resonances [14]. These resonance states can
be observed in two-electron quantum dots [15,16] and two-
electron atoms [17]. The behavior of the entanglement near
the ionization threshold is determined by the characteristics
of the spectrum near the threshold [7,8], so it should be in-
fluenced by the presence of resonance states. However the
cases analyzed so far have not been studied in the region
where the resonance states should be expected. The present
work deals with the behavior of the entanglement near the
ionization threshold in systems with resonance states. To this
end we studied the von Neumann entropy of two closely
related models, a two-electron quantum dot, as considered by
Bylicki er al. [15], and a simplified version of this model
which allows us to obtain more numerical accuracy. As we
shall see our results are general and could be relevant for
realistic problems; this is the reason why we should pay par-
ticular attention to one special model of quantum dot.

The properties of the von Neumann entropy as an en-
tanglement measure are discussed by Ghirardi and Marinatto
[18]. This entropy has been used to study a number of prob-
lems: heliumlike atom [7,8], generation of entanglement via
scattering [19], the dynamical entanglement of small mol-
ecules [20], and entanglement in Hooke’s atoms [21]. Any-
way it is noteworthy that the quantification of entanglement
for identical particles admits other possibilities, see, for ex-
ample, the Slater formation measure [22] which is analogous
to the concurrence introduced by Wootters [23] in the context
of arbitrary states of two qubits.

The model of quantum dot that we consider is one of
spherical symmetry. The electrons are confined in a spherical
square-well potential, and the interactions of the materials
that compound the quantum dot with the electrons are taken
into account by considering that the electrons have an effec-
tive mass, and the Coulombic repulsion between the elec-
trons is affected by a dielectric constant. Of course there are
other ways to include the interactions of the electrons with
the materials of the quantum dot, see, for example, the work
by Liu et al. [24], but this model is used when one is inter-
ested in other issues such as the decoherence of states pre-
pared on the quantum dot.

This paper is organized as follows: in Sec. II we present
the models and give a brief account of the numerical results
that shows the presence of resonance states in them. In Sec.
IIT we discuss the general aspects of the von Neumann en-
tropy. In Sec. IV we present the numerical results about the
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von Neumann entropy and energy of a resonance. Finally, in
Sec. V we discuss our results and present our conclusions.

II. MODELS
A. Two-electron quantum dot

The electrons in the quantum dot are confined by the po-

tential
V( ) —V(), r<R (l)
"= 0, r=R,

where V,, is the depth of the square well and R is its radius.
So, the Hamiltonian of the system, in a.u., is

1

2m*

1
2m

;’ (2)

H=- V2 - VZ 4+ V(r) + V(ry) +
1 2 €|r2 -I

*

where m™ is the effective mass, € is the dielectric constant,
and r; is the position operator of electron i=1,2. The model
given by Egs. (1) and (2) describes a quantum dot built of a
narrow-gap semiconductor nanocrystal of radius R, sur-
rounded by a wide-gap semiconductor (or a dielectric me-
dium) with the conduction-band offset equal to V;. For more
details about the precise physical conditions simulated by the
model considered here see Refs. [15,25,26]. In order to com-
pare with the results of Bylicki ef al. [15], we used the same
parameters considered in this reference, namely, m*=0.1m,,
€=5, and V;=0.0198 a.u.~0.54 eV.

The discrete spectrum and the resonance states of the
model given by Egs. (1) and (2) can be obtained approxi-
mately using L? variational functions [15,27]. So, if |¢//j(1 ,2)
are the exact eigenfunctions of the Hamiltonian, we look for
variational approximations

M
,(1,2)) = [¢(1,2)) = X |y,
i=1

) = ()

i i

j=1,... K, (3)

where the |®;) must be chosen adequately and M is the basis-
set size.

Since we are interested in the behavior of the system near
the ground-state ionization threshold, we choose as a basis
set the s-wave singlets given by

@) = [ny.np30) = (¢n1("1)¢n2("2))s3}{),o(91,92))ﬁ, 4)

where n,=n;, [=n,, x, is the singlet spinor, and the
ygyO(Q],Qz) are given by

-1 !
yf),o(Ql,Qz) = (/—) E (- l)mYlm(Ql)Yl—m(QZ)v (5)
V21 + m=—[

i.e., they are eigenfunctions of the total angular momentum
with zero eigenvalue and the Y, are the spherical harmonics.
The radial term (¢, (r1)$,,(r2)), has the appropriate symme-
try for a singlet state,

PHYSICAL REVIEW A 79, 032509 (2009)

L |\‘ I T I T I T ]
\
\
0— o) —
\
\
-0.01—
EO
-0.02—
-0.03— = —
S
L 1‘~-___:
20.04 1 | 1 | 1 | 1
(] 50 100 150 200
R

FIG. 1. (Color online) The ground-state energy for the one- and
two-electron quantum dots vs R for m*=0.1, e=5, and V,
=0.0198 a.u.. The solid line is the exact ground-state energy for
one electron. The dashed line is the ground-state energy for the
two-electron problem obtained with the variational approximation
with N=14. The square and circle dots correspond to the values
found in Refs. [15,25]. R, and Ey, for the two-electron system are
given by the point where both curves intersect.

d)nl(rl)d)nz(rZ) + ¢nl(r2)¢n2(rl)
[2(1 + <”1|”2>2)]1/2 '

(¢nl(rl)¢n2(r2))x =

where

<nl |I’l2> = f r2¢nl(r) ¢112(r)drv (7)
0

with the ¢’s being chosen to satisfy {n;|n,)=1. The numeri-
cal results are obtained by taking the Slater-type forms for
the orbitals

a2n+3 1/2
rne—ar/Z' (8)
(2n +2)!

¢n(r ) = |:
It is clear that in terms of the functions defined in Eq. (4) the
variational eigenfunctions take the form

|¢§v)(1’2)>= E Csli])ﬂzl|nl’n2;l>’ (9)

nynyl
where N=n;=n,=1=0. Then the basis-set size is given by

N ny  ny
M= > El:l(N+1)(N+2)(N+3), (10)

n1=0 ny=0 =0 6

so we refer to the basis-set size using both N and M. The
matrix elements of the kinetic energy, the Coulombic repul-
sion between the electrons, and other mathematical details
involving the functions |n,n,;[) are given in Refs. [28,29].

Figure 1 shows the ground-state energies of the one- and
two-electron quantum dots against the dot radius. The cross-
ing point of both curves defines the critical radius R, and the
threshold energy E, for the two-electron dot. Values ob-
tained in Refs. [15,25] are added for comparison.

032509-2



ENTANGLEMENT IN RESONANCES OF TWO-ELECTRON ...

-0.003 -0.003
-0.004 -0.004
E E
-0.005 -0.005
36 38
(a) (b) R

FIG. 2. The energy levels for the (a) full Coulombic repulsion
potential with N=14 and (b) the spherical Coulomb potential with
N=50. For R>R,, the lowest eigenvalue corresponds to the
ground-state energy; for R <R, the behavior of the eigenvalues at
energies close to E, is evident.

B. Simplified version of a quantum dot

It is possible to simplify the model given by Eq. (2) by
taking
1 r 1
2 T<1P1(COS(912)) -, (11)

op—r| T r>

where r—=min(r;,r,) and r~=max(r;,r,). The approxima-
tion given by Eq. (11) is known as the “spherical” Coulomb
potential since there are no angular variables in the potential.
Then, an adequate basis set for s waves depends only on
(ry,ry), allowing to reach larger values of N in the basis
functions defined in Egs. (6) and (8). In this case, the basis-
set size is given by

ill

N
M(N) =2, >, 1:%(N+1)(N+2). (12)

n1=0 ny=0

For this approximation, we used up to N=50 instead of the
value N=14 for the full Coulombian potential.

As shown in Fig. 2, bound states and resonances are simi-
lar for both models (see Sec. II C). Moreover, the spherical
model has the same near-threshold behavior as the model
with full Coulombic repulsion between the electrons. The
details about the numerical solution of the simplified model
can be found in Ref. [30].

C. Resonance states

Resonance states have isolated complex eigenvalues,
E.=E,—il'/2, >0, whose eigenfunctions are not square
integrable. These states are considered as quasibound states
of energy E, and inverse life time I'. For the Hamiltonian Eq.
(2), the resonance energies belong to the interval (&,0),
where ¢, the threshold energy, is the ground-state energy of
the one-electron quantum dot.

As we have already mentioned, the resonance states can
be analyzed using the spectrum obtained with a basis of L?
functions. The levels above the threshold have several
avoided crossings that “surround” the real part of the energy
of the resonance state. The presence of a resonance can be
made evident looking at the eigenvalues obtained numeri-
cally. Figure 2 shows the typical spectrum obtained from the
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variational method, in this case, for a quantum dot with V,
=0.54 eV and for both models.

III. VON NEUMANN ENTROPY

If p~¢ is the reduced density operator for one electron,
then the von Neumann entropy is given by

S==Tr(p"" log, p), (13)
where the reduced density operator is
pe(r 1)) = Trp| WX (14)

In Eq. (14) the trace is taken over one electron, and | W) is the
total two-electron wave function. As the two-electron wave
function is not available we instead use the variational ap-
proximation Eq. (9). As has been noted in previous works
(see [7], and references therein), when the total wave func-
tion factorizes in spatial and spinorial components, it is pos-
sible to single out both contributions. Then the analysis of
the behavior of the von Neumann entropy is reduced to ana-
lyze the behavior of the spatial part S since the spinorial
contribution is constant. In this case, if ¢(r,r,) is the two-
electron wave function and the p(r,,r;) is given by

p(ry,ry) =f @*(r}, 1)) @(r(,1)dr;, (15)
then the von Neumann entropy S can be calculated as
S=-2 N log; \,, (16)

where the \; are given by

f p(ry,r)) ¢ (r))dr] = N;p,(ry). (17)

In the heliumlike atom, the behavior of the von Neumann
entropy as a function of the nuclear charge Z for s-wave
states is quite simple to describe. The ground-state entropy is
discontinuous at the threshold; conversely an excited-state
entropy is continuous at the threshold. These behaviors are
described by the critical exponents associated to each en-
tropy w, which is zero for the ground state and nonzero for
the excited states [7,8]. The behavior of the entropy near the
critical charge Z,. is given by

S(2) =S~ (Z=Z)*. (18)

When the two-electron atom loses an electron the state of
the system can be described as one electron bounded to the
nuclear charge and one unbounded electron at infinity. As a
consequence the spatial wave function can be written as a
symmetrized product of one-electron wave functions so S
=S.=1. But what happens when the system has resonance
states? A resonance state keeps its two electrons “bounded”
before the ionization for a finite time given by the inverse of
the imaginary part of the energy. Of course the life time of a
bounded state is infinite. So, if the von Neumann entropy for
an ionized system is equal to one, what is its value for a
resonance state with a finite life time? Before addressing this
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FIG. 3. (Color online) The von Neumann entropy for the ground
state vs the radius R for the Coulombian model for different basis-
set sizes N. All the curves give similar values for R>R,.. For R
<R, the critical value S.=1 can be observed for the largest basis-
set sizes available, N=12 and 14.

question, it is interesting to take a closer look at the ground-
state entropy.

IV. ENTROPY AND ENERGY OF A RESONANCE

In this section we analyze the behavior of the entropy of a
resonance and we suggest a method for calculation of the
real part of the resonance energy E,. Figure 3 shows the
behavior of the von Neumann entropy for the ground state vs
the radius of the quantum dot for different sizes of the varia-
tional basis set. The steep change near the critical radius is
due to the ionization of the system and suggests a disconti-
nuity of the entropy at the critical radius. We performed a
finite-size scaling analysis on the data and found a null criti-
cal exponent, which is the same critical behavior of the two-
electron atom described in Ref. [7], corresponding to the
existence of an L? wave function at the threshold, as ex-
pected for a two-identical fermion system [31].

For values of R smaller than R,, the system has no bound
states, and the Ritz-variational method gives a L? approxima-
tion of scattering and resonances energies, as shown in Fig.
2. Then, in order to calculate the entropy of the resonance,
we calculated the entropies for all negative eigenvalues of
the variational solution. We numbered the eigenvalues in in-
creasing order, irrespective of whether they were bound
states or not. Figure 4 shows the von Neumann entropy vs R
for the ground state and the negative-eigenvalue states for
both systems.

As shown in Fig. 3 the ground-state entropy S, is very
small below the threshold and jumps to its critical value,
S.=1, at the threshold. The entropies for the first, second,
and third states (S;,S,,S3,...) behave differently. At thresh-
old their value is 1, and for smaller values of R they present
a single minimum. After the minimum is reached the entropy
of any of these states goes to S=1 when R decreases. As can
be seen from Fig. 4, when the value of the entropy of the
ground state, S, jumps to its value after the ionization, the
entropy for the first state, S;, drops almost to the value of S,
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FIG. 4. (Color online) The von Neumann entropy vs R for suc-
cessive eigenvalues. The curves correspond to the entropy for the
first, second, and third states (S;,S,,S3,...), the minima are ordered
from right to left, the first minimum correspond to S, the second to
S,, and so on. (a) The full Coulombian potential with N=14, and (b)
the spherical Coulomb potential with N=50. The inset in (b) shows
a magnification from the first ten entropies.

prior to the jump. For larger values of R there are similar
interchanges between S; and S,, and so on. These results lead
us to conclude that the von Neumann entropy follows the
resonance of the quantum dot. In Fig. 4 we sketched quali-
tatively the envelope following the minima of the curves
S1,55,.... This envelope is quite stable against N and pro-
vides a method to obtain the real part of the energy of the
resonance state; if R} is the radius where S;(R) gets its mini-
mum then the real part of the energy is E,=E,R}")=E},
where E; is the ith energy level of the L? spectrum. Follow-
ing this recipe we obtain the values shown in Fig. 5 as (red)
dots.

There is another way to see that the envelope of the en-
tropy minima follows the resonance energy. Figure 6 shows
the values of the energy E!" for different basis-set sizes. The
number of negative eigenvalues changes when the basis-set
size is increased, for example, in the case of the spherical
Coulomb model, at R=R,, this number grows from 11 for
N=14 up to 38 for N=50. Despite the fact that the number of
eigenvalues changes with N, and then the position of the
minima, the values obtained for E, give approximately the
same curve E,(R). This behavior is observed in both model,
even with the few negative eigenvalues present in the full
Coulombian repulsion system for N= 14. In other words, the
calculation of the von Neumann entropy using L’ basis-set

0 0
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FIG. 5. (Color online) The energy levels for the (a) full Cou-
lombian repulsion potential with N=14 and (b) the spherical Cou-
lomb potential with N=50. The red points are the resonance ener-
gies E, calculated using the minimum-entropy method described in
Sec. IV.
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FIG. 6. (Color online) E, vs R for different basis-set sizes and
models. N=12 and 14 correspond to the model with full Coulom-
bian repulsion, and N=30 and 50 to the spherical Coulomb
approximation.

real functions provides a method to get the energy of a reso-
nance without resorting to the use of a stabilization method.

V. CONCLUSIONS

We have performed a detailed study of bound and reso-
nance states of a two-electron spherical quantum dot using a
variational expansion with real basis-set functions. We found
that the von Neumann entropy detects the resonance states of
two-electron quantum dots. This information is encoded in
the entropy of the eigenfunctions with negative eigenvalue in
the Ritz-variational expansion when these are calculated us-
ing an L? basis set above the ionization threshold. We calcu-
lated an envelope for the minima of the functions S;,S,...
which follows the resonance state. Our guess is that this
envelope is the von Neumann entropy of the resonance, i.e.,
the von Neumann entropy of the L? eigenstate that can be
obtained performing complex scale transformation [14] of
the Hamiltonian. Work is in progress to show this assump-
tion in a model that accepts complex scale transformations.

Another important result of this work was the develop-
ment of a method for the calculation of a resonance energy
E, with real eigenfunctions without using stabilization meth-
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ods which need a free parameter. This method uses the
minima of the entropies to obtain the real part of the eigenen-
ergy of the resonance.

We performed our calculations in two related models. The
two-electron quantum dot with Coulomb interaction and the
two-electron quantum dot with spherical Coulomb interac-
tion. The values of E, obtained with the approximate model
are in good agreement with the exact Coulomb system, so for
this kind of quantum dot, the spherical approximation for the
repulsive interaction seems to be appropriate to calculate the
energy and the von Neumann entropy.

Finally, we found that the amount of entanglement in the
ground state is very small and all the s-wave excited states
seems to have almost the same entanglement in the region
where the quantum dot effectively bound the two electrons.
Moreover the entanglement is rather insensitive to the size of
the quantum dot at least up to R=50 a.u. when YV,
=0.54 eV. As pointed out, among others, by He and Zunger
[32] the degree of entanglement is one of the most important
quantities for successful quantum gates operations, so the
knowledge of the entanglement for different structures gives
an indication of its utility to implement quantum information
tasks. Despite the fact that He and Zunger considered hetero-
quantum-dot and homo-quantum-dot molecules, the amount
of entanglement for the ground state of their systems is quite
similar to the amount that we calculated for the single two-
electron quantum dot. Also it is remarkable that there are, in
both models, excited states whose entanglement is equal to 1.
Changing the interdot distance provides a way to optimize,
to some extent, the amount of entanglement of the ground
state.

The use of quantum dots with tailored resonance states
has been proposed to enhance the efficiency of photodetec-
tors [16]. This possibility makes it necessary to know how
the entanglement of the resonance states behaves and how it
must be calculated, and our work points in this direction.
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