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Stability diagrams of plasma-embedded three-unit-charge systems:
Borromean states and the Efimov effect
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The stability of the ground state of three-unit charge ¢g;=*£1, =11, interacting through a statically
screened Coulomb potential, has been studied as a function of the values of the constituent masses for different
values of the screening parameter. General conditions are given and accurate variational calculations have been
performed to determine the region where the three-body ground state is Borromean. The possible existence of
Efimov states when the screening parameter is equal to the two-body critical screening parameter is discussed.
The critical exponent for the energy in different regions of the stability diagram has been also calculated.
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I. INTRODUCTION

The study of the stability of bound states near the con-
tinuum threshold has attracted much interest since the pio-
neering work of Bethe [1] and Hylleraas [2] confirming the
existence of the H™ anion. Recently, the stability of other
three-body Coulomb systems was studied and it is known
that the stability of these systems depends crucially on the
mass of the constituents [3-5]. It was shown that, for sys-
tems made of three unitary charges *(1,1,-1), there are
stable structures such as (p,p,e”) and (e*,e*,e”) while other
systems are unbound such as (p,e*,e”).

New phenomena appear when these kinds of systems are
embedded in a Debye plasma and the Coulomb interactions
are screened. A simple form to describe such screening is to
replace the long-range Coulomb interaction by the short-
range Yukawa potential exp(—or)/r. The screening param-
eter o simulates different plasma conditions, from =0,
which corresponds to vacuum, to large values of o describ-
ing thermal ionization in plasma.

Previously reported three-body systems in plasma in-
cluded H,", ppu~, Ps~, and H™ [6-9]. In the case of H," it
was found that the ground state is Borromean [6]. An N-body
bound state is called Borromean if all possible subsystems
are unbound. For N=3 it means that the H™-like atom or the
H,*-like molecule is bound but the corresponding H-like
atom is unbound. Most examples are found in nuclear phys-
ics as a consequence that Borromean states present halos
[10], although not every halo nuclei has a Borromean nature.
Another feature of some three-body systems is the existence
of Efimov effect [11]. The Efimov effect is a direct conse-
quence of the different ranges of the interacting potentials
[12,13] and it emerges from the resonant coupling of two-
body interactions. Both phenomena are closely related be-
cause Borromean states also arise in the Efimov effect. We
are going to see that the Borromean state of H," could actu-
ally be an Efimov trimer. Other example of Borromean bind-
ing in atomic and molecular physics is the case of the *He
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atom. The (*He), molecule is unbound, but it is known that
liquid helium is stable, so there must be a number N such
that (*He)y is bound. The last known upper bound for this
number is N=35 obtained by Guardiola and Navarro [14].

The fact that the screened H," is Borromean motivated us
to search an extension of the stability domain where the
ground state is Borromean and look for possible existence of
Efimov states. In this work we present the stability diagram
of the ground state for a system of three-unit charges
*+(1,1,-1) interacting through the Yukawa potential as a
function of the three masses and the screening parameter o.
In Sec. II the model is described. The numerical calculations
were done applying a variational method explained in Sec.
III. In Sec. IV the stability diagrams in the inverse masses
barycentric coordinates are shown for several values of the
screening o. The possible existence of Efimov states is dis-
cussed in Sec. V. In Sec. VI the critical exponent for the
energy is calculated, and finally, in Sec. VII our conclusions
are presented.

II. THREE-BODY HAMILTONIAN

The Hamiltonian for three unitary charges g;=¢,=*1;
g3= + 1 interacting through Yukawa potentials, in atomic
units, is

1 1 1
H=-—Vi-—V;-—V;
2m1 2m2 2m3
P e I e I
+t - - (1)
|"1—"2| |’”2—’"3| |rl_r3|

After the usual center-of-mass reduction
r Rem
(= \r-r
r3 7_:2 - F3

and omitting the term corresponding to the center-of-mass
kinetic energy, the Hamiltonian takes the form
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where r,=|F;—r,| and /Li=,:i:l;; i=1,2. V|V, is the

Hughes-Eckart mass polarization term. The Schrodinger
equation for the system is

HWo(r1,72,712) = Eg(ay, o, mz, )W (r1,19,712), (3)

then Eq. (3) gives the energy E, of the systems
(£m;, £m,, ¥ my;0), where the signs before the masses de-
fine the signs of the unitary charges.

To study the dissociation of three-particle systems, we
need to know the relevant threshold for each choice of the
masses. The threshold is the lowest energy of the possible
two-body subsystems (*m;, ¥ ms;0) and (m,, * ms;0).
The two-particle (reduced) Hamiltonians are

) 1 e i
P LR
2u; r;

i=1,2. 4)
Without loss of generalization we can suppose m;=m,,
which implies that w; = u,. We proved, using the variational
principle, that for a fixed value of o the ground-state energy
of Hamiltonian /") is lower than the ground-state energy of
Hamiltonian £, as follows:
(1) = 40y, = 6@ 4 Loy (L L) )
& =) =&+ (V) - =&, (5)
2 M2 My

where 58), i=1,2 are the ground-states energies of Hamilto-
nians Eq. (4) and (), means the expectation value of this
Hamiltonian in the ground-state function of 4?). Therefore
the subsystem with the largest mass is the relevant threshold
for the three-body system. We can use this information to
choose an appropriate scale for the masses. For m; >m, and
fixed screening o the relevant threshold depends on u,, then
we fixed the scale with the condition u;=1, so the threshold
Ey(o)=Ey(1,0) depends only on o.

If the two-body system supports a bound state the relevant
threshold is given by the two-body ground-state energy, else
the threshold energy is equal to zero. The existence of the
critical coupling for short-range one-body potentials was
proven by Klaus and Simon [15] and it is defined by the
condition &)(5,)=0. &, was obtained numerically in many
references [16—18]. We use a Ritz variational method as de-
scribed in Ref. [16] with Laguerre polynomials up to order
n=1400 to calculate (o) and we obtain &.= 1.1904. Then,
a bounded two-body subsystem does not exist for o/ u=a,,
which implies that possible three-body bound states will be
Borromean states. For the calculation of the ground-state en-
ergies we used a nonorthogonal Hylleraas basis set in order
to apply the Rayleigh-Ritz variational method, which is ex-
plained in Sec. III.

III. RAYLEIGH-RITZ VARIATIONAL METHOD

In order to estimate the ground-state energy, we used the
Rayleigh-Ritz variational method with a nonorthogonal basis
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set [19]. We worked with Hylleraas basis-set functions with
two fixed nonlinear parameters (7, ),

DD = e~k =1, M(N), ik
=0,...,N, (6)

where M(N)=(N+1)3 is the size of the matrices, except in
the case where the two particles are identical (m;=m,) and
the basis-set functions were symmetrized. For this case the
size of the matrices is M(N)=(N+1)2(N+2)/2.

For a given M-function basis set {®;}!, the optimal ap-
proximations to the ground-state energy and the ground-state
wave function are given by the minimum eigenvalue and the
corresponding eigenfunction of the equation

HMeW = \MWNeW) (7)
where
(H(N))kj = <q)k|H|q)_/>, Ml(cjjv) = <q)k|‘bj>, (8)
then
M(N)

EO = Egv) = min{)\i}, '\1’0 = \I’E)N) = 2 Cg)lj]j)(bj, (9)
Jj=1

where {)\,}]]” are the eigenvalues of H") and CE)N) is the eigen-
vector corresponding to EgN ),

For an orthonormal basis set the overlap matrix M is
equal to the identity matrix. In our case, the basis set is not
orthogonal and the generalized eigenvalue problem Eq. (7) is
mapped to an usual eigenvalue problem applying a Cholesky
decomposition to the overlap matrix M [20].

The nonlinear parameters are chosen in such a way that
minimizes the energy in the region of interest for N=4 giv-
ing (y=0.36,6=0.13). All calculations for larger values of N
were done using these values for the parameters y and 6.

In some regions of the parameter space the Hylleraas ba-
sis set could have numerical problems. In order to test our
results, we also calculate the ground-state energy using a
linear combination of ten exponential functions of the form
exp(—a;r;— Bir,—vir12), i=1,...,10. Then we use the Ritz
variational method together with the pivot method for global
optimization [21] to get the values of the 30 nonlinear varia-
tional parameters.

All the integrals needed for the evaluation of the matrix
elements were obtained as analytic expressions [22]. In order
to evaluate these integrals and the Cholesky decomposition
of the overlap matrix correct up to 16 decimal places, we
developed an efficient code in multiprecision FORTRAN [23],
an extension of standard FORTRAN 90 that allows to work
with an arbitrary number of significant figures. Once the in-
tegrals were obtained, the eigenvalue problem is solved us-
ing a standard double precision FORTRAN code.

IV. STABILITY DIAGRAM

In this section we present stability diagrams for the
ground state. A stability line is defined as the line that divides
a domain where a (bound) ground state exists from a domain
where no three-body bound states exist.
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FIG. 1. Triangle of inverse masses.

As in previous works, for Coulombic interactions [3,4],
the stability diagrams are presented in barycentric coordi-
nates in the inverse masses, defined as

1/ m;
a; = N
1/m1 + 1/m2 + 1/m3

i=1,2,3. (10)

Note that only two of these parameters are independent since
a1+a2+a3=l. (11)

Barycentric coordinates are useful for Coulombic interac-
tions because the Coulomb potential is a homogeneous func-
tion and therefore all masses can be scaled leaving the sta-
bility diagram unchanged. This is not true for the Yukawa
potential and the stability lines are in this case invariant
against the simultaneous transformation m;— Bm;, o— o/ .
Taking B=1/u,; we obtain that a system with (u,,0) pre-
sents the same stability diagram that the system with
(1, u,0). Then, also for Yukawa interactions, we can fix w,
=1 without loss of generality and we can study the stability
diagrams in barycentric coordinates for different values of o.

The stability diagram for a given value of o is represented
by an equilateral triangle, as shown in Fig. 1. Because of Eq.
(11) a given value of the masses together with the condition
m1=1 is mapped to a point inside the triangle. Each side
represents a system with one mass equal to infinity. Conse-
quently a vertex is a system with two infinite equal masses.
The symmetry axis (dashed line) in the middle of the triangle
represents the case when the two particles of the same charge
are identical. Then important systems such as He, H,*, ppu~,
1, e"e"et, etc. are represented by a point on this line.

Since two of the charges are equal, the stability diagram
will be symmetric with respect to the symmetry axis shown
in the figure. Two properties of the stability lines for Cou-
lombian systems [3] remain true:

(i) The stability line is crossed at most one time when
going from a lower vertex to the symmetry axis. The proof
given in Ref. [3] does not depend of the interaction potential
as it only regards the kinetic energy.

(ii) The instability domain is convex. Let us call x,:nll’.
Since the scale transformation in the inverse masses x space
is a projection of the plane a;+ a,+az=1 onto the plane x;
+x3:,u[1=1, it preserves straight lines. So a proof of con-
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vexity for the x/s is also valid for the «s. Suppose two
points {x/} and {x;} belong to the stability line. The threshold
for the system is £y(o), then Ey(x;)=Ey(x])=Ey(0). Accord-
ing to this for any point on the line x(7)={(1- 7)x;+ nx;} the
threshold is the same. Furthermore,

H(n) =H(1 = mx;+ n7x]), (12)

=(1- nH &) + 7H(x}), (13)

and from the variational principle, using W((7) as the test
function,

Ey(n) = (1 = n)Ey(x;) + nEo(x]) = Ey(0). (14)

So the instability domain is always convex.

A necessary condition to enable Borromean binding can
be derived as follows. Since W is the ground-state eigen-
function of the three-body system, from the variational theo-
rem applied to Hamiltonian Eq. (2) with u,=1, we obtain

e_o'rlz
Ey=(H)y, = E(0) + E(pa, 0) + < >
\PO

r2
1
- —(ViVo)y,, (15)
ms

—0r|2

1
> ~—(V\ Vo),
a2 [w, M3

(16)

e

Ey—&y(0) = Eg(p,0) + <

For a system to have a Borromean ground state we must
have o>, then the threshold is £y(0)=0 and Ey(u,,0)
= &y(0) vanishes. Then for a Borromean ground state

e—U’rlz

1
Ey<0 and E02< > - —(ViVoy,. (17)
v, M3 0

12
Therefore

(V,\Vhy, > 0 (18)

is a necessary condition for the existence of a Borromean
state. Condition of Eq. (18) shows the importance of corre-
lation terms in test functions in order to describe Borromean
binding. Note that for uncorrelated test functions of the form
b12=(r1)$(ry) we have (V,V,), =0. After the calculation
of the ground-state variational energy of the system, the sta-
bility line is implicitly defined by equation
{50(0) it <G
Eo(1, uy,m3,0) = Ey,, where Ey =

0 if o=a..

(19)

From simple variational calculations a useful analytical
bound can be obtained, at the expense of loosing some ac-
curacy. For the side 2-3 (m; =) there exists a critical value
(%Z)*(a') at which the system becomes unstable. For this
critical value there is a corresponding a;(o). Figure 2 shows
the stability diagram for o=1.1, denoting a;(1.1) with a blue
dot. Since the variational stability line is a rigorous lower
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FIG. 2. (Color online) Stability diagram for o=1.1 calculated
with a basis set of size N=14. The dash-dotted line is the straight
line corresponding to m3=1.2 and u, ranging from O to 1. The blue

dot is the point [a;=">2, ay=ay, a3 =aii(1.1)=0.780].
bound, according to Fig. 2 all systems with a;> a;(0) are
stable for a fixed screening o. Then from Eq. (10) it can be

seen that all systems fulfilling

1
%(ﬂ+1)<< . —1> (20)
nmy\myp a;3(o)
are stable. This result is applicable to any value of o down to
o=0, although it is more accurate for 0= &,. In Fig. 3 we

show the function of(a;). For the critical screening we get
a3(7,)=0.880, then all systems fulfilling

@<ﬂ+1> <0.136 1)
ny\ny

have a Borromean ground state at the critical screening.

In Fig. 2 it can be seen that the symmetry axis is stable for
o=1.1. If the screening is increased, the stable domain is
reduced until the region of stability is the upper vertex (a

1.5
6(3)
C
1251 15
L 4 C
1 - —
G075 .
0sH .
025 [ |® %000 |
| / — o(a 3), N=14

| d | |
%.5 0.6 0.7 0.8 0.9 1

0

FIG. 3. The function o(a3) for which systems (m;=,m,,m;
=1) become unstable, obtained from variational calculations. Also,
the point a;k(az 0), obtained with global optimization for the Cou-

lomb limit and the point 0'5.3 ) where all three-body systems are
unstable.
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° o,=0880

— N=14,6 = 1.1906
-=- GO, Coulomb

2 1

FIG. 4. (Color online) Stability diagram for o=1.1906 = &, cal-
culated with a base of size N=14 (for symmetrical systems results

are up to N=17). The blue dot is the point [alz%,azzal,%
= a;(1.1906)=0.880]. The stability line for the Coulomb limit o
=0 calculated with a global optimization algorithm [21] is also

shown.

symmetric molecule with two infinitely heavy nuclei and one
light particle). Figure 4 shows the reduction of the stability
domain for the critical screening. In Fig. 5 we plot the sta-
bility line o(as) for which symmetrical systems become un-
stable. It can be seen that all systems, symmetrical or not, are

unstable for o> 0£,3)=1.369. A previous estimation for this

value 0'£H2+)= 1.373(4), obtained for H," using a nonadiabatic
quantum Monte Carlo study, was reported in Ref. [6]. This
result agrees with our calculations within statistical error.

In Sec. VI we use the finite-size scaling method (FSS) to
obtain the critical behavior of these systems. It is shown that
a more accurate value for the stability line can be obtained
using the scaling properties of the truncated basis set. The
stability line obtained with FSS is also shown in Fig. 5. This
line indicates that all symmetrical systems with three equal
masses, such as Ps™, are Borromean at o=0,. Then, FSS
gives us a strong numerical evidence for the existence of
Borromean systems.

It is known [5,24] that for Coulomb interactions (o=0) all
systems that lie in the symmetry axis are stable. But, as we
can see in Figs. 4 and 5, at the critical screening this is no

S o,
£ |e—e FSS
1.35 ? — Variational
FLis7E
L3 ¢
6 ELI66E
125F O F
0
V28 e e o
E Cc
£/
]
1.15%
i
i | | L |
0

L
0.2 1\ 0.4 0.6 0.8 1
ps %

FIG. 5. (Color online) Stability line o(a3) for symmetrical sys-
tems. Inset shows a very narrow domain near a3=0, where an in-
stability gap appears on the symmetry axis.
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longer true. Then, there is a value of the screening parameter
0< "< a, below which the symmetry axis becomes stable.
The variational estimation for this value is o =1.1661. In-
creasing o, an instability gap appears on the symmetry axis,
i.e., a very small fraction of systems near a3;=0 are stable
while the systems around a;~0.02 are not. The systems
from the upper vertex down to a;~0.02 are stable; although
for the Coulomb interaction it was suggested [5] that when
the charge of the particles is varied the stability region splits
into two islands; for our model a very small increase in o
makes the lower domain disappear. Since this could be a
numerical misleading, a deeper analysis on whether this do-
main exists or not should be made. As an starting point we
can address that, as can be seen in Fig. 5, the mass polariza-
tion term vanishes at this value, consequently the stability
line derivative vanishes at the point where the gap appears.
This was also observed for Coulomb interaction [25], but the
variable was the relative charge of the particles.

V. EFIMOV EFFECT FOR THREE-UNIT CHARGES

The Efimov effect is present in many three-body systems,
although the most widespread version is the one with three
identical bosons [11,12,26-29]. Recently, the first experi-
mental Efimov state on cold cesium atoms was reported [30].
This result has motivated new research on the subject. In
particular, Lee et al. [31] claimed that the observed state is
not an Efimov state but a Borromean molecular state.

The effect consists in the appearance of a universal set of
three-body bound states at a point where the two-body scat-
tering length a diverges. The divergence of the scattering
length occurs when a two-body bound state enters the con-
tinuum threshold by tuning some Hamiltonian parameter.
Then, the divergence of a is actually a near-threshold phe-
nomenon that, in our case, corresponds to setting the screen-
ing to the critical value &,. The set of three-body states ful-
fills the well-known geometric relationship [11,26]

Eﬂ — ,—27/sg
E, =e , (22)
with s,=1.006 24.

Near the divergence of a these states are expected to hit
the continuum threshold. The continuum threshold for a>0
is the two-body bound-state energy, while for a <O it corre-
sponds to three unbound particles. The universal asymptotic
function for the number of bound states, first obtained by
Efimov [11], is

N Sl (23)
T 1
where [ is a natural length scale, related to the range of the
interactions. The natural length scale is chosen of order %‘
This formula shows that other possibility to obtain infinite
bound states is in the scaling limit /— 0, although we will
focus on the divergence of a.

For systems of two identical fermions interacting with a
different particle, some results were obtained [26,27]. One of
the differences between this system and the one with bosons
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is that the universal constant =™ becomes a function of %
Moreover, the effect disappears for :Z—l <13.6 because the

. . m .
scaling constant e™% diverges. When e the scaling con-

stant approaches 1. All these previous works do not take into
account repulsive interactions between particles, as we do,
but the universal behavior should not be affected by the re-
pulsion term.

In this work we obtain numerical evidence of this effect,
Fig. 6 shows the energy curves in scaled variables for
my/m3=10, 198, and m,/m,=1836.15. The scaling constants
obtained for these states are e™0=~00, 1.76, and 1.45 and for
m,/m;=100 we obtained ¢™*0~2.0. Moreover, the effect ap-
pears only if the particles 1 and 2 are identical. For distin-
guishable particles there are three different scattering lengths
(aij, i,j=1,2,3), corresponding to the three possible two-
body subsystems. As discussed in Ref. [26], the Efimov ef-
fect does not appear if only one scattering length diverges. In
general, more than one scattering length should diverge in
order to see the effect. The scattering for the two-body sub-
system a;, is irrelevant, since they are repulsive particles
interacting through a short-range potential. Therefore, there
are two relevant scattering lengths a3 and a,3, which diverge
when the two-body screenings ¢;,=0/ u;, i=1,2 are equal to
the critical value &... The condition w;=1 gives 61=0, S0 a3
diverges only for 0=G,. In order to make both scattering
lengths diverge, u, must also be unity. We show in Fig. 7 the
number of bound states against o for H2+, my=my=m,, and
ms=m,. This result supports the assumption that this mol-
ecule presents Efimov effect when the screening is critical.

VI. NEAR-THRESHOLD BEHAVIOR

Another interesting issue is the asymptotic behavior of the
ground-state energy near the critical line. We can define a
critical exponent « for the energy [32] as follows:

Ey(N) = Eq~=e(Ne=N)% NN (24)

where \ represents one of the parameters of the Hamiltonian
(mq, msor o), Ey is the threshold energy, and | means that
the limit is taken inside the bound-state region.

The existence of a bound state at the critical point is re-
lated to the critical exponent «. For a large class of Hamil-
tonians, Simon [33] showed that the critical exponent « is
equal to 1 if and only if the Hamiltonian has a normalizable
eigenfunction at the threshold. If the Hamiltonian does not
support a bound state at the threshold, then o> 1. The exis-
tence of a normalizable (localized) state at the critical point
characterizes the near-threshold scattering properties.

In order to calculate the critical exponent, we use FSS
[32] to obtain the critical screening o, and the critical expo-
nent a. This method has been successfully applied to calcu-
late the exponent for the energy of several one-, two-, and
three-particle systems (see [32] and references therein), in
the calculation of critical exponents for the near-threshold
entanglement of two-electron systems [34,35], and for the
study of the stability of hydrogen-antihydrogen-like quasi-
molecules [36]. In the FSS approach, the ansatz is to assume
that there is a scaling function such that
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FIG. 6. The lower eigenvalues
! obtained from a Rayleigh-Ritz
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(0N = (O)Fo(NIN =", (25)

where (O);\N ) is the order N expectation value of the operator
O evaluated in the truncated basis set. It is further assumed
that the scaling exponent v is unique for all the operators and
a different scaling function F, exists for each operator. We
want to study the critical exponent of the energy, then O will
be the Hamiltonian. As explained in Ref. [32], we calculate

10— T T 7
s m|/m3=1836 y
87
- 6F
=1
=1
2 |
Na)
Z
ol = N=17
—= N=14
r|.—2.691In(0.2 (5/|(5—8C|)
ob— LT 1T T b
0.8 0.9 1.1 1.2 13
(@)

FIG. 7. (Color online) Number of bound states as a function of
o for two different basis-set sizes, N=14 and 17, for H2+ (m;=mj,
=m,,,m3=m,). The number of bound states is maximum near &..
The dash-dotted red line is the universal function number of bound
states Eq. (23) calculated using the values so/ m=2.69 and &,
=1.1904.

sgn(1-6,/0) |1~ /o]

0 0.5 ! variational method with N=17 for
symmetric system for (a) m;/m;
=10, (b) m;/m3=198, and (c)
my/m3=m,/m,=1836.15 as a
function of the scaled screening o.
Clearly there are no Efimov trim-
ers for m;/m3=10 [27].

the energy and the expectation value (%} for two different
basis-set sizes N and N’. Then, the function

In(ENV/EN)

FasNNY = oH_ . IH
In(EYE) = In((— =y MH==))

(26)

is independent of N and N’ at A=\, and gives the value of
the critical exponent «,

I',(\;N,N') = a. (27)

For the case of two identical particles, u,=1, the param-
eter \ is chosen equal to m% As it is shown in Eq. (2), this is
the coupling of the Hughes-Eckart term. The asymptotic be-
havior of the energy, for fixed o, is then

Eo(m3',0) = E(0) ~ = efm3' = [m ()]}, (28)

In this equation we take into account the possible depen-
dence of the critical exponent with the screening. This de-
pendence is expected mostly because the threshold two-body
energy also has a critical point at o=a,, &(o)~—e(o
—&.)%. For values o< &, the threshold is negative and there
is a normalizable wave function for the two-body system.
For screening values o> &.. the threshold energy is zero, so a
change in the critical behavior of the three-body system
could be detected in the exponent « as a function of the
screening o. This dependence of the critical exponent « as
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5 T T
e N=16| _

B8 N=15
L N=14| _
ol 3 -
2, .

o ! !
11.15 1.175 1.2 1.225 1.25
o

FIG. 8. (Color online) The critical exponent of the energy «
against the screening o for symmetrical systems obtained from the
FSS method with N=14, 15, and 16. The blue dashed line repre-
sents the two-body critical line o=, which separates usual from
Borromean states.

a function of o, is shown in Fig. 8. The peak at o=a, could
be due to the change from usual to Borromean behavior of
the near-threshold ground state.

When u, # 1, particles 1 and 2 are distinguishable and the
parameter used in Eq. (26) was A= ,ugl, the screening and the
mass m3 were kept fixed. Figure 9 shows the energy expo-
nent « as a function of the mass mj5 for different choices of
the screening o. The values of u, for the stability line are
shown for some points. It can be seen that the exponent
changes from 2 to 1 when going from fully asymmetric con-
figurations to nearly symmetric configurations w,==1. This
behavior is likely to happen because the value a=1 is ex-
pected for uy=u; [13], otherwise a>1.

VII. CONCLUSIONS

The stability diagram for three-unit charges in a Debye
plasma was investigated. The stability domain for the
ground-state energy was obtained for several values of the
screening parameter. We showed that the stability diagram
for the screened-Coulomb three-body Hamiltonian presents
regions with “usual” bound states and regions with Bor-
romean bound states. We presented rigorous variational
bounds for the region of Borromean binding. Our calcula-
tions also give numerical evidence for the possible existence
of Efimov states.

Among other systems, we proved that ppu~, pdu™, ptu”,
and dru~ (and changing u~—e~) present Borromean bind-
ing when the particles interact through a Yukawa potential.
There is also strong evidence, obtained using the FSS
method, that the Ps™ has a Borromean ground state. Accord-
ing to this, all three-body systems with two identical par-
ticles (=m;, £m,, = m3) and m3/m; =1 have a Borromean
ground state at o=0,.

Numerical evidence of the existence of Efimov states was
given. The simultaneous divergence of the scattering lengths
a3 and a,3 gives rise to the effect for symmetrical systems
at the critical two-body coupling .~ 1.1904. The effect is
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FIG. 9. The critical exponent of the energy « as a function of
the mass m5 for asymmetrical systems for different screening values
obtained with FSS method. Results for base size up to N=14 are
shown. The values of u, for the stability line are shown for some
points.

detected for % =100 and is lost for ::17; = 10. A result on this
matter was reported [27] for identical fermions on general
grounds with no repulsive interaction. Here we find a good
agreement with this reference including the repulsive inter-
action. This agreement supports the theory which states that
the interaction between identical particles in a H,*-like sys-
tem is irrelevant as long as it is of shorter range than 1/7%.
The reason of this is that the two-body bound-state density is
delocalized, then the short-range interaction between identi-
cal particles vanishes [12,13]. In particular we showed that
not even the sign of the interaction is relevant for the appear-
ance of the effect.

The critical exponent of the system was also calculated.
The numerical results are not conclusive, but they show the
main aspects of the near-threshold phenomena. A change of
critical behavior from the Borromean to the non-Borromean
region was observed in the critical exponent « of the energy.
Discrepancies between the different approaches to the criti-
cal point show that more analyses and new methods are
needed to clarify this matter. Another change in the critical
behavior was found when the symmetry between identical
particles (m;=m,) is broken (m; # m,) in the non-Borromean
domain. The symmetric systems have a critical exponent «
=1, as it is discussed in Ref. [13]. Asymmetrical systems
have a critical exponent a>1 according to the present re-
sults. More evidence is needed on this subject, but we sug-
gest that the reason for symmetrical systems to have an ex-
ponent a=1 is the fermionic symmetrization, which is
broken when the particles are not identical.
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