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I. INTRODUCTION

The knowledge of dynamic polarizabilities of molecules
is important for the description of a number of physical phe-
nomena such as ac Stark effect, Raman and Rayleigh light
scatterings, Faraday and Kerr effects �1�, long-range inter-
molecular interactions �2�, alignment and orientation of mol-
ecules in laser field �3�, and manipulations �e.g., aligning �4�
and Stark deceleration �5�� with trapped ultracold molecules.

Frequency-dependent polarizabilities of molecules are ac-
tively studied using various methods of computational chem-
istry �6–9�. However, calculation of dynamic polarizabilities
involves contributions of highly excited and continuum
states for which the accuracy of ab initio methods is essen-
tially lower as compared to the ground and low-excited
states.

A comparatively simple and physically transparent way to
bypass these disadvantages is the quantum defect theory
�QDT� well-known in atomic and molecular physics �10�.
Since the main contribution to the one-electron matrix ele-
ments is given by the distances far from the atomic or mo-
lecular core the effective one-electron potential has Coulomb
form. In practice, it allows one to obtain analytical expres-
sion for the optical electron wave function which involves
some parameters �quantum defects, QDs� resulting from the
knowledge of the experimental spectrum. This enables to
account for the influence of the core on the optical electron
and, effectively, for some many-electron effects.

Since the Schrödinger equation for the optical electron is
exactly solvable, the calculation of polarizabilities can be
easily done using Green’s function �GF� technique. The GF
formalism in QDT framework �QDGF� was elaborated for
simple atoms a long time ago �11�; its application to calcu-
lation of dynamical polarizabilities of ground and low-
excited states of alkali-metal atoms showed a good agree-
ment with experiment �12�.

While the highly excited states of molecules are well de-
scribed by QDT, there are several difficulties in quantum-

defect treatment of their ground and low-excited states. The
rare exceptions are, e.g., excimer molecules of noble gas
hydrides whose oscillator strengths are successively calcu-
lated in QDT framework �13�. Since the low-excited molecu-
lar states are reliably described by ab initio methods, it
seems advisable to combine the advantages of both methods.
Such a combined method, the reducing-adding procedure for
QDGF, was proposed in �14� and consists in changing the
wave functions of some low-excited states in spectral expan-
sion of QDGF with wave functions obtained by ab initio
methods.1 For the polarizabilitiy it means a change of some
first-order matrix elements in the sum-over-states expression
by correspondent matrix elements calculated ab initio or by
oscillator strengths taken from experiment. Usage of the ex-
perimental spectroscopic data in the QDT ideology ensures
the proper positions of the poles of the frequency-dependent
polarizabilitiy. This method has proved its efficiency in cal-
culations of scalar, vector, and tensor polarizabilities of ex-
cited atomic states �15� including fine structure of their terms
�16,17�.

In the present work we generalize the above approach to
nonpolar molecules. The proposed theory is applicable to
simple molecules whose electronic terms can be classified in
the united-atom limit scheme. As a rule, the intervals be-
tween the electronic levels of such molecules are much
greater than those between its vibrational levels and, in turn,
the latter are much greater than the intervals between the
rotational levels. This implies that the vibrational and �or�
rotational contributions to the total molecular polarizability
at optical frequencies should not exceed a few percent. This
is not the case for several polyatomic molecules �18� espe-
cially when hyperpolarizabilities are concerned �19�. In this
work we consider only the electronic part of molecular po-
larizability and neglect the nuclear motion.

Note that an attempt to apply QDGF formalism to calcu-
lation of second-order properties of simplest molecules was
made many years ago for H2

+ ion. Its dynamic polarizability
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1It was considered for a long time that QDT description is suc-
cessful only for one electron over complete shells, e.g., for alkali-
metal-like atoms and ions. After an error in earlier QDT has been
corrected in Ref. �14�, the modified QDT is capable to treat optical
electron states in any complex atom. The wave function of such a
state is determined by the QDs of the whole spectral series �not only
by the QD of the given state�.

PHYSICAL REVIEW A 79, 032506 �2009�

1050-2947/2009/79�3�/032506�9� ©2009 The American Physical Society032506-1

http://dx.doi.org/10.1103/PhysRevA.79.032506


�20� and two-photon ionization cross section �21� were cal-
culated using the spheroidal functions to describe the two-
center potential of the molecular core. The difference be-
tween this potential and the spherically symmetric Coulomb
potential is due to higher multipolar moments of the molecu-
lar core. Due to a short-range nature of these multipolar po-
tentials and the spectroscopic information contained in QDs,
the radial part of GF was assumed to have Coulomb form
with a good accuracy �21�.

With the help of the above-mentioned reducing-adding
procedure we construct here the QDGF of optical electron in
many-electron nonpolar molecules and apply it to the calcu-
lation of their dynamic polarizabilities. Our benchmark cal-
culations for the simplest H2 molecule demonstrate a good
agreement with ab initio calculations and with experimental
data. As further applications of the developed technique the
dynamic polarizabilities are calculated for alkali-metal
dimers Li2, Na2, and Rb2. Atomic units are used throughout.

II. GENERAL FORMALISM

Since the QDGF formalism for spherically symmetric po-
tential describing an optical electron in atoms was presented
in detail in Ref. �14�, in this section we give only the main
equations of this formalism in a form generalized with an
account for nonspherical symmetry of the molecular core
potential.

The G�E ,r ,r�� of the optical electron satisfies the
Schrödinger equation

�Ĥ − E�G�E,r,r�� = ��r − r�� , �1�

Ĥ = −
1

2
�2 + U�r� −

Z

r
, �2�

where E is the electron’s virtual energy and U�r� is the non-
Coulomb part of the molecular core potential. For nonpolar
molecules this part of the potential is formed by higher mul-
tipole moments of the core so that U�r� can be considered as
a short-range potential: U�r�=0 for r�rc, where rc is mo-
lecular core radius. We neglect here any relativistic effects
�responsible, e.g., for spin-orbit coupling, etc.�

In QDT framework Rydberg molecular states are charac-
terized by the electron orbital momentum l and its projection
m onto the molecular axis so that the electron part of their
energy is given by the Rydberg formula

Enlm = −
1

2�nlm
2 � −

1

2�n − �lm�2 . �3�

The integer number n enumerates the spectral lm series. For
labeling the electronic states of diatomics we will use the
united-atom notation which implies n� l+1. Note that the
axial symmetry of the molecular potential results in m de-
pendence of the QDs �lm in molecular states unlike the QDs
�l �14� of spherically symmetric atomic states.

Keeping in mind that further calculation of polarizability
will use ab initio description for low-excited states and
QDGF for Rydberg and continuum states, we assume the
above symmetry considerations to separate the radial and

angular variables in Eq. �1� for r�rc and decompose the
three-dimensional GF

GQD�E,r,r�� = �
lm

glm
QD�E,r,r��Ylm�r�Ylm

� �r�� �4�

over spherical harmonics to obtain the equation for the radial
QDGF glm

QD�E ,r ,r�� for r�rc, as follows:

	 1

2r2

d

dr

r2 d

dr
� −

l�l + 1�
2r2 +

Z

r
+ E�glm

QD�E,r,r��

=
1

rr�
��r − r�� . �5�

The solution of Eq. �5� can be given �14� in terms of
Whittaker functions as follows:

glm
QD�E,r,r�� =

�

Zrr�

��l + 1 − ��
��l + 1 + ��

W�,l+1/2
2Zr�

�
�

� ��l + 1 + ��
��2l + 2�

M�,l+1/2
2Zr�

�
�

+
sin 	��lm + l�
sin 	��lm + ��


lm�E�
�lm���

W�,l+1/2
2Zr�

�
�� ,

�lm��� = �2q�
k=0

q−1

�k + �lm + ���k + 1 − �lm − ���−1

,

� = 1/�− 2E , �6�

where ��·� is the Euler’s gamma function. The integer num-
ber q is chosen to eliminate the “extra” poles corresponding
to the �nlm� states either occupied by the core electrons or
those with n� l+1. The entire function 
lm�E� of energy can
be restored from its values at discrete set of points corre-
sponding to the experimental energy levels �3�


lm�Enlm� = �lm�n�, n � l + 1. �7�

Condition �7� ensures that QDGF �6� has poles at proper
�experimental� points Enlm. Figure 1 shows 
10�E� and
�10�E� functions corresponding to p� state of H2 molecule;
these functions were used in calculation of H2 polarizability
in Sec. III. As it should be expected, both the curves coincide
near the threshold E=0.

E �a. u.�

�10�E�

�10�E�

�0.7 �0.6 �0.5 �0.4 �0.3 �0.2 �0.1

�14

�12

�8

�6

�4

�2

0

FIG. 1. 
10�E� and �10�E� functions for p� state of H2 mol-
ecule. The vertical dashed asymptote of �10�E� corresponds to the
“extra” 1p� pole at E=−0.597 a.u. In the earlier QDT one has

�E�=��E�.
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The frequency-dependent dipole polarizability tensor of a
system consisting of ps equivalent optical electrons in quan-
tum state �s� can be expressed through the one-electron GF
as follows:

ij��� = ps�s�DiĜ�Es + ��Dj + DjĜ�Es − ��Di�s� . �8�

Here i , j=x ,y ,z; the electron dipole moment D=r or r�. The

GF �r�Ĝ�E��r��=G�E ,r ,r�� can be expressed in terms of
spectral expansion over discrete �d� and continuous �c� states

G�E,r,r�� = �
d

�d
��r���d�r�
E − Ed

+� dEc

�c
��r���c�r�
E − Ec

. �9�

Normally the polarizabilities calculated for the ground
state �d�= �0�. As it was mentioned above, for a realistic de-
scription of molecular electron’s dynamics the wave func-
tions of highly excited and continuum states can be chosen in
QDT approximation while those of the first N low-excited
states �including the ground one� can be substituted by ab
initio wave functions obtained with the help of computa-
tional chemistry �CC� methods

�r�c� = �Eclm
QD �r� , �10�

�r�d� = �nlm
QD�r�, d � N , �11�

�r�d� = �d
CC�r�, 0 � d � N . �12�

The number N of the substituted states should be determined
from convergence of the numerical values. If no states are
substituted, then formally we have N=0 and none of �r �d�
wave functions �12� equal to �d

CC�r�.
Such substitution in the spectral expansion �9� leads to

reduced-added QDGF

G�E,r,r�� = GQD�E,r,r�� − �
d=0

N−1
�d

QD��r���d
QD�r�

E − Ed

+ �
d=0

N−1
�d

CC��r���d
CC�r�

E − Ed
. �13�

Again, N=0 means the absence of the reducing-adding pro-

cedure so that the sums in Eqs. �13� and �14� vanish and G
=GQD for N=0.

The reduced-added QDGF �13� was used in calculations
of molecular polarizabilities below according to Eq. �8� with
G=G. Since more reliable results can be obtained by using
the reported theoretical �calculated ab initio� or experimental

�e.g., from measured oscillator strengths� values �0�D̂i�d�, 0
�d�N, of the transition dipole moments, we give the cor-
responding expression for the diagonal components of the
polarizability tensor

ii��� = ii
QD��� − p0 �

nlm�15�
N first levels


 ��0�D̂i�nlm��2

E0 − Enlm − �

+
��0�D̂i�nlm��2

E0 − Enlm + �
� + p0�

d=0

N−1 
 ��0�D̂i�d��2

E0 − Ed − �

+
��0�D̂i�d��2

E0 − Ed + �
� . �14�

Here i=x or y for the perpendicular and i=z for parallel
polarizability; the mean polarizability ̄= 1

3 �2xx+zz� deter-
mines the refractivity index of a gas of molecules and is also
frequently reported in literature. The first term in Eq. �14�,
QD, is calculated according to Eq. �8� with G=GQD. As it is
seen from Eq. �14�, one needs ab initio calculation for the
initial �ground� state wave function �0

CC�r� to evaluate its

TABLE I. Convergence of the reducing-adding procedure �sub-
stitution of N first-excited states according to Eq. �14�� for H2.

0�
�a.u.�

xx �a.u.�

N=0 N=1 N=2 N=3

0.0 4.2975 4.5927 4.5856 4.5833

0.06 4.3451 4.6449 4.6378 4.6354

0.12 4.4964 4.8108 4.8034 4.8010

0.18 4.7793 5.1214 5.1136 5.1110

0.24 5.2574 5.6479 5.6392 5.6364

0.30 6.0791 6.5563 6.5462 6.5431

0.36 7.6592 8.3139 8.3016 8.2978

TABLE II. Static polarizabilities �in a.u.� of H2 molecule.

Method xx zz ̄

Expt. �47� 6.303 4.913 5.376

Exact variational �22� 6.3805 4.5777 5.1786

Double perturbation �23� 6.349 4.912 5.433

Sum-over states �24� 6.41 4.57 5.18

Sum-over states with account for
nonadiabatic effects �25� 6.3866 4.5786 5.1812

Variation perturbation �26� 6.3873 4.5786 5.1815

Full CI �27� 6.4104 4.5282 5.1556

Full CI �28� 6.3992 4.5765 5.1841

MC-SCF �29� 6.416 4.597 5.203

James-Coolidge wave functions �30� 6.3866 4.5786 5.1812

SOPPA �31� 6.4495 4.5676 5.1949

QMC �32� 6.42 4.53 5.16

TDGI �32� 6.4310 4.5944 5.2066

MP4�SD� �33� 6.407 4.585 5.192

TDDFT �34� 5.1816

Finite-difference Hartree-Fock �35� 6.4487

Sum-over states �36� 6.3943 4.5825 5.1864

Variationally stable �38� 6.3838 4.5769 5.1792

CISD �37� 6.3970 4.5749 5.1891

TD-CISD �37� 6.3989 4.5845 5.1893

QDGF �this work� 6.3822 4.5926 5.1892
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matrix elements with the QD states even without reducing-
adding substitution.

III. BENCHMARK: H2 MOLECULE

The molecular hydrogen is one of the simplest molecules
with well-studied properties, so it is a good benchmark for
testing any methods before their application to more com-
plex systems. The polarizability of H2 has been calculated
for several decades up to now by various methods. Good
accuracy achieved by semianalytical variational approaches
�22–26� was validated by various computational methods
�27–38� among whose configuration interaction �CI� �27,28�,
multiconfigurational self-consistent field �MC-SCF� �29�,
second-order polarization propagator approximation
�SOPPA� �31�, quantum Monte Carlo �QMC�, time-depended
gauge invariant �TDGI� �32� time-depended density-
functional theory �TDDFT� �34�, and CI with single and
double excitations �TD-CISD� �37� �for more detailed review
of H2 polarizability calculations see, e.g., Refs. �36–38�. and
reference therein�. In this section we present our calculations
of H2 polarizabilities and compare them to other theoretical
and experimental values available.

The ground X 1�g
+ state configuration of hydrogen mol-

ecule includes two equivalent electron in 1s� orbital that

implies p0=2 in Eq. �14�. This wave function was calculated
in GAUSSIAN98 package �39� by relativistic Hartree-Fock
�RHF� method �40� with the 6-31G� basis set �41�. The ion-
ization threshold was determined by interpolation the data
presented in Refs. �42,43� at the equilibrium internuclear
separation 1.401 a.u. of the neutral H2 molecule. To build the
QD-related functions �lm��� and 
lm��� which enter Eq. �6�
we used the excited-state energies reported in Refs. �44,45�
for 1�u and 1�u correspondingly. Due to the dipole selection
rules for homonuclear diatomics, only 1�u

+ states contribute
into the parallel dipole polarizability zz and only 1�u states
into the perpendicular polarizability xx.

The reducing-adding procedure �14� consisted in substi-
tuting the transition moments to low-excited states by their
values taken from Refs. �45,46� at the equilibrium internu-
clear separation. For xx it was sufficient to substitute only
N=1 state; for zz the convergence was achieved at N=3.
The further increasing of N changes the results by not more
than 0.2%. The convergence of the reducing-adding proce-
dure for H2 is shown in Table I.

Comparison of QDGF calculations for parallel, perpen-
dicular, and mean static polarizabilities of molecular hydro-
gen to other calculations and experiment is given in Table II.
Our values are in good agreement �within 0.4%� with the
presented results.

TABLE III. Dynamic polarizability zz of H2 in a.u.

�
�a.u.� QDGF

Ref.
�36�

Ref.
�26�

Ref.
�31�

Ref.
�32�

Ref.
�24�

0.0 6.3822 6.3943 6.3873 6.4495 6.42 6.4067

0.07 6.5052 6.5136

0.072 6.5124 6.5164 6.5812 6.55 6.5467

0.08 6.5439 6.5511

0.0834 6.5584 6.5618 6.6276 6.59 6.59

0.1 6.6390 6.6432

0.1045 6.6637 6.6659 6.7338 6.69 6.6967

0.13 6.8298 6.8282

0.1363 6.8781 6.8776 6.9501 6.90

0.15 6.9997 6.9872

0.1535 7.0258 7.0235 7.0990 7.04 7.0567

0.19 7.4299 7.4107

0.1979 7.5366 7.5256 7.6136 7.52 7.5567

0.23 8.0589 8.0219

0.2354 8.1633 8.1412 8.2437 8.09

0.25 8.4739 8.4254 8.4481 8.5568 8.37

0.3 10.0029 9.8861 9.9160 10.0649 9.68

0.35 12.7310 12.5902 12.6126 12.8558

0.3748 15.1443 14.9610 15.3084 15.1

0.4 19.2819 19.0694 18.9847 19.5639

0.45 58.2152 58.2120 54.3276 62.0977

0.48 −77.3505 −76.6628

0.51 −12.0085 −12.6516

0.54 23.3734 23.7352

0.57 25.6037 34.1702

TABLE IV. Dynamic polarizability xx of H2 in a.u.

�
�a.u.� QDGF

Ref.
�36�

Ref.
�26�

Ref.
�31�

Ref.
�32�

Ref.
�24�

0.0 4.5927 4.5825 4.5786 4.5676 4.53 4.5667

0.07 4.6641 4.6532

0.072 4.6683 4.6562 4.6445 4.60 4.6467

0.08 4.6866 4.6754

0.0834 4.6950 4.6834 4.6715 4.62 4.67

0.1 4.7417 4.7298

0.1045 4.7558 4.7457 4.7331 4.68 4.7367

0.13 4.8513 4.8384

0.1363 4.8788 4.8715 4.8576 4.79

0.15 4.9448 4.9313

0.1535 4.9631 4.9576 4.9427 4.87 4.9467

0.19 5.1914 5.1762

0.1979 5.2510 5.2503 5.2328 5.13 5.2367

0.23 5.5399 5.5238

0.2354 5.5970 5.6017 5.5800 5.43

0.25 5.7660 5.7496 5.7738 5.7493 5.57

0.3 6.5563 6.5427 6.5713 6.5367

0.35 7.9185 7.9177 7.9320 7.8834

0.3748 9.0206 9.0182 8.9633 8.98

0.4 10.7426 10.7849 10.6930 10.6421

0.45 20.5823 20.7920 19.4400 20.0551

0.48 101.4130 103.6960

0.51 −14.7166 −13.7345

0.54 7.4775 10.7884

0.55 129.8770 341.0165
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The QDGF results for dynamic polarizabilities are pre-
sented in Tables III and IV together with results of other
calculations. When comparing these values it should be kept
in mind that the positions of the excited levels �and therefore
the poles, i.e., resonances in the frequency dependencies
���� are different in various sources. We used the energy
levels from Refs. �45,46� as did the authors of Ref. �36�. The
first resonance occurs at �=0.4858 a.u. for xx and at �
=0.4687 a.u. for zz; the second resonance occurs at �
=0.5509 a.u. for xx and at �=0.5458 a.u. for zz. These
resonances are seen in the Fig. 2 as poles of the frequency
dependence of the mean polarizability ̄���.

IV. RESULTS AND DISCUSSION: ALKALI-METAL
DIMERS

In this section we present the results of calculation of
dynamic polarizability for alkali-metal dimers Li2, Na2, and
Rb2. In the united-atom model all these molecules in the
ground X 1�g

+ states contain two s� electrons over the core
molecular orbitals �p0=2�.

A. Li2

The ground-state wave function of lithium dimer was cal-
culated using Hartree-Fock �HF� method �with Møller-

Plesset correlation energy correction� �40� with the 6-31G�

basis set. The QD-related functions were built using the
spectroscopic data from the Ref. �49�. for the equilibrium
internuclear separation 5.051 a.u. Tables V and VI contain
the values of parallel and perpendicular dynamic polarizabil-
ities calculated according to Eq. �14� without reducing-
adding procedure �QD, the second column� and with substi-
tution of the transition moment to the first-excited state by
the moments reported in the literature �columns 3–6�. Sub-
stitution of the second-excited state results in only slight
�about 0.8%� modification so we have N=1 for lithium

TABLE V. Parallel polarizability zz��� �in a.u.� of Li2 �the first resonance at �=0.067 489 a.u.� calcu-
lated using different sources for dipole transition moments.

�
�a.u.�

�X 1�g
+�Dz�1

1�u� from

QDT Ref. �52� Ref. �50� Ref. �51� Ref. �54�

0.0 406.84 302.13 317.30 303.48 306.16

0.003 407.67 302.75 317.95 304.10 306.79

0.006 410.17 304.62 319.91 305.98 308.68

0.009 414.41 307.80 323.25 309.18 311.90

0.012 420.49 312.36 328.03 313.76 316.52

0.015 428.57 318.41 334.37 319.84 322.65

0.018 438.87 326.14 342.47 327.60 330.48

0.021 451.69 335.76 352.55 337.25 340.22

0.024 467.44 347.57 364.93 349.11 352.18

0.027 486.64 361.97 380.04 363.58 366.77

0.03 510.03 379.53 398.44 381.21 384.55

0.033 538.58 400.97 420.91 402.75 406.27

0.036 573.71 427.36 448.57 429.25 432.99

0.039 617.40 460.19 482.97 462.22 466.24

0.042 672.61 501.71 526.47 503.92 508.29

0.045 743.88 555.35 582.66 557.78 562.60

0.048 838.61 626.70 657.41 629.44 634.86

0.051 969.72 725.61 760.98 728.76 735.00

0.054 1161.87 870.83 913.00 874.59 882.04

0.057 1469.10 1103.84 1156.77 1108.57 1117.91

0.06 2039.36 1539.83 1612.21 1546.28 1559.06

0.063 3603.59 2789.38 2907.36 2799.90 2820.72

Α �a. u.�

Ω �a. u.�
0.2 0.3 0.4 0.5

�80

�60

�40

�20

20

40

60

FIG. 2. Mean polarizability ̄��� of H2 molecule. Dashed as-
ymptotes show the poles coming from zz���. Dot-dashed asymp-
tote corresponds to the first resonance of xx���. Circles show the
experimental values extracted from the refractivity measurement
�48�.
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dimer. In Table VII the calculated static �at �=0� polarizabil-
ities xx, zz, and ̄ are compared to the ab initio calculations
and to the experiment. The slight discrepancy seen in Table
VII can be explained by the difference between the transition
moment values reported in various sources. Indeed, with
transition moments substituted by their values given in Refs.
�50,51�, our static polarizabilities are in very good agreement
with those reported in these references.

B. Na2

For calculation of the ground-state wave function of so-
dium dimer we used the same method of that for lithium. The
QD-related functions were built with the help of Na2 Ryd-
berg spectra given using the spectroscopic data from the Ref.
�58�. The results of the polarizability calculation are pre-
sented in Table X. The columns with N=0 contain the results
without reducing-adding procedure, i.e., without substitution
of the transition moments. Good convergence is achieved
after substitution of N=1 excited states for both perpendicu-
lar and parallel polarizabilities. The results in the corre-
sponding columns are calculated using the ab initio transi-
tion moments reported in Ref. �59�. Unlike the case of Li2
there is no experimental oscillator strengths for Na2 available
in literature, to our knowledge. The first resonances occur at
�=0.09257 a.u. for xx and �=0.0669 a.u. for zz.

Table IX contain a comparison of our static polarizability
calculation with other theoretical and experimental results.
Our zz values exceed significantly the DFT �B3PW91� re-
sults �while xx are in good accordance with other calcula-
tions�. It was pointed out in Ref. �56�, that DFT gives good
results for the perpendicular polarizability and underesti-
mates the parallel one. Overall, our QDGF method with sub-

stitution of only one excited state for both the polarizability
components gives results with an accuracy comparable to
other methods �in particular, CCSD�T��.

C. Rb2

To calculate the ground-state wave function we used
LANL2DZ basis set, which included D95V basis set �62� on
first-row atoms, and Los Alamos National Laboratory
electron-correlated pseudopotentials plus double-zeta basis
sets on Na-Bi �63�. For reconstruction of the QD-related
functions we use Rb2 spectrum from Ref. �64�. Calculation
of xx required substitution of N=2 excited states while zz
was calculated with N=1. The transition moments for sub-

TABLE VII. Static polarizabilities �in a.u.� of Li2 molecule.

Method xx zz ̄

Multideterminant ket with
polynomial factor �50� 174 318 222

As above, without polynomial
factor �50� 170 314 218

TDGI �51� 160 303 207.67

CI���+CPP �55� 163.9 301.8 209.87

CCSD�T� �56� 169.2 309.7 216.03

QDGF �this work with transition
moments from Refs. �52,53� 168.42 302.13 212.99

As above, Ref. �50� 174.38 317.30 222.02

As above, Ref. �51� 169.99 303.48 214.49

As above, Ref. �54� 169.19 306.16 214.85

Experiment �57� 229.45�20.24

TABLE VI. Perpendicular polarizability xx��� �in a.u.� of Li2 �the first resonance at �=0.0931 a.u.�
calculated using different sources for dipole transition moments.

�,
a.u.

�X 1�g
+�Dz�1

1�u� from

QDT Ref. �53� Ref. �50� Ref. �51� Ref. �54�

0.0 153.04 168.42 174.38 169.99 169.19

0.006 153.67 169.10 175.09 170.69 169.89

0.012 155.57 171.20 177.26 172.81 171.99

0.018 158.84 174.81 181.00 176.45 175.62

0.024 163.67 180.14 186.52 181.32 180.97

0.03 170.33 187.49 194.14 189.25 188.35

0.036 179.27 197.34 204.35 199.20 198.26

0.042 191.13 210.43 217.91 212.42 211.41

0.048 206.97 227.91 236.02 230.06 228.97

0.054 228.49 251.66 260.64 254.04 252.83

0.06 258.66 284.94 295.14 287.65 286.28

0.066 303.07 333.96 345.94 337.14 335.53

0.072 373.66 411.90 426.72 415.83 413.83

0.078 501.48 553.03 573.01 558.33 555.64

0.084 799.17 881.77 913.80 890.27 885.96

0.09 2248.95 2483.00 2573.76 2507.10 2494.87
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stitution were taken from Ref. �65�. The results for the dy-
namic polarizabilities are presented in Table X in a form
similar to those in Table VIII for Na2. The first resonances
occur at �=0.0668 a.u. for xx and �=0.0492 a.u. for zz.

Our static value of Rb2 polarizability is compared in Table
XI to other calculations �56,66�. Our results differ from those
of Ref. �56� which overestimates the experimental value be-
cause the calculations of Ref. �56� used an internuclear sepa-

ration greater than the experimental value for Rb2 molecule.
As it was for Na2, our results differ from those calculated
using DFT and agree well with CCSD�T� calculations �66�.

TABLE X. Dynamic polarizability �in a.u.� of Rb2 �for N�0 the
transition dipole moments are substituted from Ref. �65��.

�
�a.u.�

xx zz

N=0 N=2 N=0 N=1

0.0 476.39 402.13 994.93 830.45

0.002 996.35 831.74

0.004 1000.65 835.60

0.005 479.03 404.35

0.006 1007.9 842.13

0.008 1018.26 851.47

0.010 487.12 411.16 1031.93 863.79

0.012 1049.2 879.37

0.014 1070.48 898.58

0.015 501.25 423.04

0.016 1096.27 921.91

0.018 1127.25 949.96

0.020 522.74 441.17 1164.87 984.12

0.022 1208.52 1023.72

0.024 1261.46 1071.89

0.025 552.53 466.18

0.026 1325.25 1130.05

0.028 1402.75 1200.87

0.030 594.39 501.38 1498.07 1288.15

0.032 1617.22 1397.51

0.034 1769.42 1537.54

0.035 652.96 550.62

0.036 1969.48 1722.06

0.038 2242.8 1974.77

0.040 736.93 621.19 2636.85 2339.98

0.042 3251.85 2911.26

0.044 4342.1 3926.12

0.045 863.08 727.19

0.050 1068.28 899.53

0.055 1451.88 1221.61

0.060 2404.69 2021.34

0.065 8611.63 7229.85

TABLE VIII. Dynamic polarizability �in a.u.� of Na2 �for N=1
the transition dipole moments are substituted from Ref. �59��.

�
�a.u.�

xx zz

N=0 N=1 N=0 N=1

0.0 196.01 209.10 555.23 399.72

0.003 556.34 400.51

0.006 196.85 209.99 559.68 402.92

0.009 565.34 406.97

0.012 199.40 212.71 573.47 412.80

0.015 584.28 420.54

0.018 203.78 217.38 598.05 430.41

0.021 615.21 442.70

0.024 210.92 224.23 636.27 457.80

0.027 661.99 476.23

0.03 218.98 233.61 693.33 498.69

0.033 731.66 526.15

0.036 230.67 246.09 778.86 559.97

0.039 837.65 602.10

0.042 246.05 262.54 912.11 655.45

0.045 1008.53 724.53

0.048 266.45 284.35 1137.20 816.72

0.051 1316.25 945.01

0.054 293.97 313.81 1580.73 1134.51

0.057 2007.82 1440.48

0.06 332.33 354.90 2809.58 2014.87

0.063 4849.90 3476.56

0.066 388.65 415.28

0.072 478.50 511.64

0.078 642.91 688.06

0.084 1037.95 1112.09

0.09 3276.71 3515.89

TABLE IX. Static polarizabilities �in a.u.� of Na2.

Method Reference xx zz ̄

CI���+CPP �55� 197.2 375.5 256.63

CCSD�T� �56� 209.7 389.9 269.77

B3PW91 �60� 205.73 351.78 254.41

CCSD�T� �60� 206.07 377.71 263.28

CI���+CPP �61� 201.6 370.1 257.77

QDGF This work 209.10 399.72 272.64

Expt. �57� 269.9�20.2

TABLE XI. Static polarizabilities �in a.u.� of Rb2.

Method Ref. xx zz ̄

CCSD�T� �66� 419.9 815.2 551.7

B3LYP �66� 394.4 761.1 516.63

CCSD�T� �56� 445.4 916.1 602.0

QDGF This work 402.13 830.45 544.90

Expt. �57� 533�40
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D. Cauchy moments

Far away from the resonances the frequency dependence
of polarizability can be expressed in terms of Cauchy mo-
ments S�−2k−2� as

��� = �
k=0

�

S�− 2k − 2��2k.

Although the set of Cauchy moments reduces the amount of
data needed to present the ��� curve, they are normally
calculated with an error greater than the error of the ���
data �36�. Nevertheless, we present in Table XII the Cauchy
moments for all the molecules considered above up to k=2
for parallel and perpendicular polarizabilities. Since S�−2�
=�0� and the static polarizabilities are presented in the
tables above, Table XII contains S�−4� and S�−6� only.

V. CONCLUDING REMARKS

The QDGF with the reducing-adding procedure of the
low-excited states provides an exact account for the high-
excited and continuum electronic states. As an application,
we present simple and efficient semianalytical methods for
calculation of electric frequency-dependent dipole polariz-
ability for simple homonuclear diatomics �alkali-metal
dimers�. Our benchmark calculation of polarizability of mo-
lecular hydrogen shows that the accuracy of the proposed
method is comparable to that of the existing methods of
computational quantum chemistry.
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