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The use of decoy states in quantum key distribution �QKD� has provided a method for substantially increas-
ing the secret key rate and distance that can be covered by QKD protocols with practical signals. The security
analysis of these schemes, however, leaves open the possibility that the development of better proof techniques
or better classical postprocessing methods might further improve their performance in realistic scenarios. In
this paper, we derive upper bounds on the secure key rate for decoy-state QKD. These bounds are based
basically only on the classical correlations established by the legitimate users during the quantum communi-
cation phase of the protocol. The only assumption about the possible postprocessing methods is that double
click events are randomly assigned to single click events. Further, we consider only secure key rates based on
the uncalibrated device scenario which assigns imperfections such as detection inefficiency to the eavesdrop-
per. Our analysis relies on two preconditions for secure two-way and one-way QKD. The legitimate users need
to prove that there exists no separable state �in the case of two-way QKD� or that there exists no quantum state
having a symmetric extension �one-way QKD� that is compatible with the available measurements results.
Both criteria have been previously applied to evaluate single-photon implementations of QKD. Here we use
them to investigate a realistic source of weak coherent pulses. The resulting upper bounds can be formulated
as a convex optimization problem known as a semidefinite program which can be efficiently solved. For the
standard four-state QKD protocol, they are quite close to known lower bounds, thus showing that there are
clear limits to the further improvement of classical postprocessing techniques in decoy-state QKD.
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I. INTRODUCTION

Quantum key distribution �QKD� �1,2� allows two parties
�Alice and Bob� to generate a secret key despite the compu-
tational and technological power of an eavesdropper �Eve�,
who interferes with the signals. Together with the Vernam
cipher �3�, QKD can be used to provide information-
theoretic secure communications.

Practical QKD systems can differ in many important as-
pects from their original theoretical proposal, since these
proposals typically demand technologies that are beyond our
present experimental capability. Especially, the signals emit-
ted by the source instead of being single photons are usually
weak coherent pulses �WCPs� with typical average photon
numbers of 0.1 or higher. The quantum channel introduces
errors and considerable attenuation �about 0.2 dB/km� that
affect the signals even when Eve is not present. Besides, for
telecom wavelengths, standard InGaAs single-photon detec-
tors can have a detection efficiency below 15% and are noisy
due to dark counts. All these modifications jeopardize the
security of the protocols and lead to limitations of rate and
distance that can be covered by these techniques �4�.

A main security threat of practical QKD schemes based
on WCP arises from the fact that some signals contain more
than one photon prepared in the same polarization state. Now
Eve is no longer limited by the no-cloning theorem �5� since
in these events the signal itself provides her with perfect

copies of the signal photon. She can perform, for instance,
the so-called photon number splitting �PNS� attack on the
multiphoton pulses �4�. This attack gives Eve full informa-
tion about the part of the key generated with the multiphoton
signals, without causing any disturbance in the signal polar-
ization. As a result, it turns out that the standard Bennett-
Brassard 1984 �BB84� protocol �6� with WCP can deliver a
key generation rate of order O��2�, where � denotes the
transmission efficiency of the quantum channel �7,8�.

To achieve higher secure key rates over longer distances,
different QKD schemes that are robust against the PNS at-
tack have been proposed in recent years �9–13�. One of these
schemes is the so-called decoy-state QKD �9–11� where Al-
ice varies, independently and at random, the mean photon
number of each signal state that she sends to Bob by employ-
ing different intensity settings. Eve does not know a priori
the mean photon number of each signal state sent by Alice.
This means that her eavesdropping strategy can only depend
on the photon number of these signals but not on the particu-
lar intensity setting used to generate them. From the mea-
surement results corresponding to different intensity settings,
the legitimate users can estimate the classical joint probabil-
ity distribution describing their outcomes for each photon
number state. This provides them with a better estimation of
the behavior of the quantum channel, and it translates into an
enhancement of the achievable secret key rate and distance.
This technique has been successfully implemented in several
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recent experiments �14�, and it can give a key generation rate
of order O��� �9–11�.

While the security analysis of decoy-state QKD included
in Refs. �9–11� is relevant from a practical point of view, it
also leaves open the possibility that the development of bet-
ter proof techniques or better classical postprocessing proto-
cols might further improve the performance of these schemes
in realistic scenarios. For instance, it is known that two-way
classical postprocessing protocols can tolerate a higher error
rate than one-way communication techniques �15,16� or that
by modifying the public announcements of the standard
BB84 protocol it is possible to generate a secret key even
from multiphoton signals �12�. Also, the use of local random-
ization �17� and degenerate codes �18� can as well improve
the error rate thresholds of the protocols.

In this paper, we consider the uncalibrated device scenario
�2� and we assume the typical initial postprocessing step
where double click events are not discarded by Bob, but they
are randomly assigned to single click events �19�. In this
scenario, we derive simple upper bounds �UBs� on the secret
key rate and distance that can be covered by decoy-state
QKD based exclusively on the classical correlations estab-
lished by the legitimate users during the quantum communi-
cation phase of the protocol. Our analysis relies on two pre-
conditions for secure two-way and one-way QKD. In
particular, Alice and Bob need to prove that there exists no
separable state �in the case of two-way QKD� �20,21� or that
there exists no quantum state having a symmetric extension
�one-way QKD� �22� that is compatible with the available
measurements results. Both criteria have been already ap-
plied to evaluate single-photon implementations of QKD
�20–24�. Here we employ them to investigate practical real-
izations of QKD based on the distribution of WCP.

We show that both preconditions for secure two-way and
one-way QKD can be formulated as a convex optimization
problem known as a semidefinite program �SDP� �25�. Such
instances of convex optimization problems appear frequently
in quantum information theory and can be solved with arbi-
trary accuracy in polynomial time, for example, by the
interior-point methods �25�. As a result, we obtain ultimate
upper bounds on the performance of decoy-state QKD when
this typical initial postprocessing of the double clicks is per-
formed. These upper bounds hold for any possible classical
communication technique that the legitimate users can em-
ploy in this scenario afterward, for example, the Scarani-
Acin-Ribordy-Gisin 2004 �SARG04� protocol �12�, adding
noise protocols �17�, degenerate codes protocols �18�, and
two-way classical postprocessing protocols �15,16�. The
analysis presented in this manuscript can as well be straight-
forwardly adapted to evaluate other implementations of the
BB84 protocol with practical signals as, for instance, those
experimental demonstrations based on WCP without decoy
states or on entangled signals coming from a parametric
down conversion source.

The paper is organized as follows. In Sec. II we describe
in detail a WCP implementation of the BB84 protocol based
on decoy states. Next, in Sec. III we apply two criteria for
secure two-way and one-way QKD to this scenario. Here we
derive upper bounds on the secret key rate and distance that
can be achieved with decoy-state QKD as a function of the

observed quantum bit error rate �QBER� and the losses in the
quantum channel. Moreover, we show how to cast both up-
per bounds as SDPs. These results are then illustrated in Sec.
IV for the case of a typical behavior of the quantum channel,
i.e., in the absence of eavesdropping. Finally, Sec. V con-
cludes the paper with a summary.

II. DECOY-STATE QKD

In decoy-state QKD with WCP, Alice prepares phase-
randomized coherent states with Poissonian photon number
distribution. The mean photon number �intensity� of this dis-
tribution is chosen at random for each signal from a set of
possible values �l. In the case of the BB84 protocol and
assuming Alice chooses a decoy intensity setting l, such
states can be described as

�B
k ��l� = e−�l�

n=0

�
�l

n

n!
�nk�B�nk� , �1�

where the signals �nk�B denote Fock states with n photons in
one of the four possible polarization states of the BB84
scheme, which are labeled with the index k� 	0, . . . ,3
. On
the receiving side, we consider that Bob employs an active
basis choice measurement setup. This device splits the in-
coming light by means of a polarizing beam splitter and then
sends it to threshold detectors that cannot resolve the number
of photons by which they are triggered. The polarizing beam
splitter can be oriented along any of the two possible polar-
ization basis used in the BB84 protocol. This detection setup
is characterized by one positive operator value measure
�POVM� that we shall denote as 	Bj
.

In an entanglement-based view, the signal preparation
process described above can be modeled as follows. Alice
produces first bipartite states of the form

��source�AB = �
k=0

3

�
l=0

�

�qkpl�k�A1
�l�A2

��kl�A3B, �2�

where system A is the composition of systems A1, A2, and
A3, and the orthogonal states �k�A1

and �l�A2
record, respec-

tively, the polarization state and decoy intensity setting se-
lected by Alice. The parameters qk and pl represent the a
priori probabilities of these signals. For instance, in the stan-
dard BB84 scheme, the four possible polarization states are
chosen with equal a priori probabilities and qk=1 /4 for all k.
The signal ��kl�A3B that appears in Eq. �2� denotes a purifi-
cation of the state �B

k ��l� and can be written as

��kl�A3B = e−�l/2�
n=0

� ��l
n

�n!
�n�A3

�nk�B, �3�

where system A3 acts as a shield, in the sense of Ref. �26�
and records the photon number information of the signals
prepared by the source. This system is typically inaccessible
to all the parties. One could also select as ��kl�A3B any other
purification of the state �B

k ��l�. However, as we will show in
Sec. III, the one given by Eq. �3� is particularly suited for the
calculations that we present in that section.
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Afterward, Alice measures systems A1 and A2 in the or-
thogonal basis �k�A1

and �l�A2
, corresponding to the measure-

ment operators Akl= �k�A1
�k� � �l�A2

�l�. This action generates
the signal states �B

k ��l� with a priori probabilities qkpl. The
reduced density matrix �A=TrB��AB�, with �AB
= ��source�AB��source�, is fixed by the actual preparation
scheme and cannot be modified by Eve. In order to include
this information in the measurement process, one can add to
the observables 	Akl � Bj
, measured by Alice and Bob, other
observables 	Ci � 1B
 such that 	Ci
 form a complete tomog-
raphic set of Alice’s Hilbert space HA �21�. In order to sim-
plify our notation, from now on we shall consider that the
observed data pklj =Tr�Akl � Bj �AB� and the POVM 	Akl
� Bj
 contain also the observables 	Ci � 1B
. That is, every
time we refer to 	Akl � Bj
, we assume that these operators
include as well the observables 	Ci � 1B
.

III. UPPER BOUNDS ON DECOY-STATE QKD

Our starting point is the observed joint probability distri-
bution pklj obtained by Alice and Bob after their measure-
ments 	Akl � Bj
. This probability distribution defines an
equivalence class S of quantum states that are compatible
with it,

S = 	�AB�Tr = �Akl � Bj�AB� = pklj ∀ k,l, j
 . �4�

A. Two-way classical postprocessing

Let us begin by considering two-way classical postpro-
cessing of the data pklj. It was shown in Ref. �21� that a
necessary precondition to distill a secret key in this scenario
is that the equivalence class S does not contain any separable
state. That is, we need to find quantum-mechanical correla-
tions in pklj, otherwise the secret key rate, that we shall de-
note as K, vanishes �27�. As it is, this precondition answers
only partially the important question of how much secret key
Alice and Bob can obtain from their correlated data. It just
tells if the secret key rate is zero or it may be positive.
However, this criterion can be used as a benchmark to evalu-
ate any upper bound on K. If S contains a separable state
then the upper bound must vanish. One upper bound which
satisfies this condition is that given by the regularized rela-
tive entropy of entanglement �28�. Unfortunately, to calculate
this quantity for a given quantum state is, in general, a quite
difficult task, and analytical expressions are only available
for some particular cases �29�. Besides, this upper bound
depends exclusively on the quantum states shared by Alice
and Bob and, therefore, it does not include the effect of im-
perfect devices, for instance, the low detection efficiency or
the noise in the form of dark counts introduced by current
detectors �23�. Another possible approach is that based on
the best separable approximation �BSA� of a quantum state
�AB �30�. This is the decomposition of �AB into a separable
state �sep and an entangled state �ent, while maximizing the
weight of the separable part. That is, any quantum state �AB
can always be written as

�AB = ���AB��sep + �1 − ���AB���ent, �5�

where the real parameter ���AB�	0 is maximal.

Given an equivalence class S of quantum states, one can
define the maximum weight of separability within the class
�BSA

S as

�BSA
S = max	���AB���AB � S
 . �6�

Note that the correlations pklj can originate from a separable
state if and only if �BSA

S =1. Let SBSA
ent denote the equivalence

class of quantum states given by

SBSA
ent = 	�ent��AB � S and ���AB� = �BSA

S 
 , �7�

where �ent represents again the entangled part in the BSA of
the state �AB. Then, it was proven in Ref. �23� that the secret
key rate K always satisfies

K 
 �1 − �BSA
S �Ient�A;B� , �8�

where Ient�A ;B� represents the Shannon mutual information
calculated on the joint probability distribution qklj =Tr�Akl
� Bj�ent�. As it is, this upper bound can be applied to any
QKD scheme �23�, although the calculation of the param-
eters �BSA

S and �ent might be a challenge. Next, we consider
the particular case of decoy-state QKD.

Upper bound on two-way decoy-state QKD

The signal states �B
k ��l� that Alice sends to Bob are mix-

tures of Fock states with different Poissonian photon number
distributions of mean �l. This means, in particular, that Eve
can always perform a quantum nondemolition �QND� mea-
surement of the total number of photons contained in each of
these signals without introducing any errors. The justification
for this is that the total photon number information via the
QND measurement “comes free,” since the execution of this
measurement does not change the signals �B

k ��l�. That is, the
realization of this measurement cannot make Eve’s eaves-
dropping capabilities weaker �31�. If Eve performs such a
QND measurement then the signals �AB= ��source�AB��source�
are transformed as

�AB � �AB = �
n=0

�

rn��n�A1B��n� � ��n�A2
��n� � �n�A3

�n� ,

�9�

where the probabilities rn are given by

rn = �
l=0

�

pl

e−�l�l
n

n!
, �10�

the signals ��n�A1B have the form

��n�A1B = �
k=0

3

�qk�k�A1
�nk�B, �11�

and the normalized states ��n�A2
only depend on the signals

�l�A2
and the photon number n.

From the tensor product structure of �AB, we learn that the
signals �AB can only contain quantum correlations between
systems A1 and B. Therefore, without loss of generality, we
can always restrict ourselves to only search for quantum cor-
relations between these two systems. Additionally, in decoy-
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state QKD Alice and Bob have always access to the condi-
tional joint probability distribution describing their outcomes
given that Alice emitted an n-photon state. This means that
the search for quantum correlations in S can be done inde-
pendently for each n-photon signal. That is, the legitimate
users can define an equivalence class of signal states for each
possible Fock state sent by Alice.

A further simplification arises when one considers the
typical initial postprocessing step where double click events
are not discarded by Bob, but they are randomly assigned to
single click events �19�. For a security proof of QKD not
based on the realization of this particular postprocessing step
see, for example, Ref. �32�. In the case of the BB84 protocol,
this action allows Alice and Bob to always explain their ob-
served data as coming from a single-photon signal where
Bob performs a single-photon measurement 	Tj
 �33�. This
measurement is characterized by a set of POVM operators
which are projectors onto the eigenvectors of the two Pauli
operators �x and �z, together with a projection onto the
vacuum state �vac� which models the losses in the quantum
channel,

T0 =
1

2
�0�B�0�, T1 =

1

2
�1�B�1� ,

T
 =
1

2
� 
 �B�
 �, Tvac = �vac�B�vac� , �12�

with �
 �= ��0�
 �1�� /�2 and where � jTj =1B �33�. In particu-
lar, let pkj

n denote the conditional joint probability distribu-
tion obtained by Alice and Bob after their measurements
	Ak � Tj
, with Ak= �k�A1

�k�, given that Alice emitted an
n-photon state. That is, pkj

n includes the random assignment
of double clicks to single click events. As before, we con-
sider that the observables 	Ak � Tj
 contain as well other ob-
servables 	Ci � 1B
 that form a tomographic complete set of
Alice’s Hilbert space HA1

. We define the equivalence class
Sn of quantum states that are compatible with pkj

n as

Sn = 	�A1B
n �Tr�Ak � Tj�A1B

n � = pkj
n , ∀ k, j
 . �13�

Then, the secret key rate K can be upper bounded as

K 
 �
n	1

rn�1 − �BSA
Sn

�In
ent�A;B� , �14�

where �BSA
Sn

denotes the maximum weight of separability
within the equivalence class Sn, and In

ent�A ;B� represents the
Shannon mutual information calculated on qkj

n =Tr�Ak
� Tj�ent

n �, with �ent
n being the entangled part in the BSA of a

state �A1B
n �Sn and whose weight of separability is maxi-

mum.
The main difficulty when evaluating the upper bound

given by Eq. �14� still relies on obtaining the parameters

�BSA
Sn

and �ent
n . Next, we show how to solve this problem by

means of a SDP �25�. For that, we need to prove first the
following observation.

Observation. Within the equivalence classes Sn of quan-
tum signals given by Eq. �13� Alice and Bob can only detect
the presence of negative partial transposed �NPT� entangled

states �34�. Proof. The signals �A1B
n �Sn can always be de-

composed as

�A1B
n = p�̃A1B

n + �1 − p��̃A1

n
� �vac�B�vac� , �15�

for some probability p� �0,1�, and where �̃A1B
n �HA1

� H2,
and �̃A1

n �HA1
. That is, the state �A1B

n can only be entangled if
�̃A1B

n is also entangled. In order to detect entanglement in the
latter one, Bob projects it onto the eigenvectors of the two
Pauli operators �x and �z. This means, in particular, that the
class of accessible entanglement witness operators W that
can be constructed from the available measurements results
satisfy W=W�. Here � denotes transposition with respect to
Bob’s system. We have, therefore, that Tr�W�̃A1B

n �=Tr�W��,
with �= 1

2 ��̃A1B
n + �̃A1B

n� �. For the given dimensionalities, it was
proven in Ref. �35� that whenever � is non-negative it rep-
resents a separable state, i.e., Tr�W��	0. This means that
Alice and Bob can only detect entangled states �̃A1B

n that
satisfy ��0. Since �̃A1B

n 	0, the previous condition is only
possible when �̃A1B

n� �0. �

Let us now write the search of �BSA
Sn

and �ent
n as a SDP.

This is a convex optimization problem of the following form
�25�:

minimize cTx ,

subject to F�x� = F0 + �
i

xiFi 	 0, �16�

where the vector x represents the objective variable, the vec-
tor c is fixed by the particular optimization problem, and the
matrices F0 and Fi are Hermitian matrices. The goal is to
minimize the linear function cTx subjected to the linear ma-
trix inequality �LMI� constraint F�x�	0. The SDP that we
need to solve has the form �36�,

minimize 1 − Tr��sep
n �x�� ,

subject to �A1B
n �x� 	 0,

Tr��A1B
n �x�� = 1,

Tr�Ak � Tj�A1B
n �x�� = pkj

n , ∀ k, j ,

�sep
n �x� 	 0,

�sep
n� �x� 	 0,

�A1B
n �x� − �sep

n �x� 	 0, �17�

where the objective variable x is used to parametrize the
density operators �sep

n and �A1B
n . For that, we employ the

method introduced in Refs. �23,24�. The state �sep
n which

appears in Eq. �17� is not normalized, i.e., it also includes the
parameter ���A1B

n �. The first three constraints in Eq. �17�
guarantee that �A1B

n is a valid normalized density operator
that belongs to the equivalence class Sn, the following two
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constraints impose �sep
n to be a separable state, while the last

one implies that the entangled part of �A1B
n is a valid but not

normalized density operator. Its normalization factor is given
by 1−���A1B

n �. If xsol denotes a solution to the SDP given by
Eq. �17� then

�BSA
Sn

= Tr��sep
n �xsol�� , �18�

and the state �ent
n is given by

�ent
n =

�A1B
n �xsol� − �sep

n �xsol�

1 − �BSA
Sn . �19�

B. One-way classical postprocessing

The classical postprocessing of the observed data can be
restricted to one-way communication �37�. Depending on the
allowed direction of communication, two different cases can
be considered. Direct reconciliation �DR� refers to commu-
nication from Alice to Bob; reverse reconciliation �RR� per-
mits only communication from Bob to Alice �38�. In this
section, we will only consider the case of DR. Expressions
for the opposite scenario, i.e., RR, can be obtained in a simi-
lar way. In Ref. �22� it was shown that a necessary precon-
dition for secure QKD by means of DR �RR� is that the
equivalence class S given by Eq. �4� does not contain any
state having a symmetric extension to two copies of system
B �system A�.

A state �AB is said to have a symmetric extension to two
copies of system B if and only if there exists a tripartite state
�ABB�	0, with Tr��ABB��=1, and where HB�HB�, which
fulfills the following two properties �39�:

TrB���ABB�� = �AB, �20�

P�ABB�P = �ABB�, �21�

where the swap operator P satisfies P�ijk�ABB�= �ikj�ABB�. A
graphical illustration of a state �AB which has a symmetric
extension to two copies of system B is given in Fig. 1. This
definition can be easily extended to cover also the case of
symmetric extensions of �AB to two copies of system A and
also of extensions of �AB to more than two copies of system
A or of system B.

The best extendible approximation �BEA� of a given state
�AB is the decomposition of �AB into a state with a symmet-
ric extension that we denote as �ext and a state without sym-
metric extension �ne, while maximizing the weight of the
extendible part, i.e.,

�AB = ���AB��ext + �1 − ���AB���ne, �22�

where the real parameter ���AB�	0 is maximal �22,40�.
Note that this parameter is well defined since the set of ex-
tendible states is compact.

Equation �22� follows the same spirit such as the BSA
given by Eq. �5�. Now, one can define analogous parameters
and equivalence classes as in Sec. III A. In particular, the
maximum weight of extendibility within an equivalence
class S is defined as �BEA

S =max	���AB� ��AB�S
. That is,
the correlations pklj =Tr�Akl � Bj�AB� can originate from an
extendible state if and only if �BEA

S =1. Finally, one defines
SBEA

ne as the equivalence class of quantum states given by
SBEA

ne = 	�ne ��AB�S and ���AB�=�BEA
S 
, where �ne denotes

the nonextendible part in the BEA of the state �AB. Then, it
was proven in Ref. �22� that the one-way secret key rate K→
satisfies

K→ 
 �1 − �BEA
S �Ine�A;B� , �23�

where Ine�A ;B� represents the Shannon mutual information
now calculated on the joint probability distribution qklj
=Tr�Akl � Bj�ne� with �ne�SBEA

ne .

Upper bound on one-way decoy-state QKD

The analysis contained in Sec. III A to derive Eq. �14�
from Eq. �8� also applies to this scenario and we omit it here
for simplicity. We obtain

K→ 
 �
n	1

rn�1 − �BEA
Sn

�In
ne�A;B� , �24�

where �BEA
Sn

denotes the maximum weight of extendibility
within the equivalence class Sn given by Eq. �13�, and
In

ne�A ;B� represents the Shannon mutual information calcu-
lated on qkj

n =Tr�Ak � Tj�ne
n �, with �ne

n being the nonextendible
part in the BEA of a state �A1B

n �Sn and whose weight of
extendibility is maximum.

The parameter �BEA
Sn

and the nonextendible state �ne
n can

directly be obtained by solving the following SDP:

minimize 1 − Tr��ext
n �x�� ,

subject to �A1B
n �x� 	 0,

Tr��A1B
n �x�� = 1,

Tr�Ak � Tj�A1B
n �x�� = pkj

n , ∀ k, j ,

�A1BB�
n �x� 	 0,

P�A1BB�
n �x�P = �A1BB�

n �x� ,

TrB���A1BB�
n �x�� = �ext

n �x� ,

�A1B
n �x� − �ext

n �x� 	 0, �25�

where the state �ext
n is not normalized, i.e., it also includes

the parameter ���A1B
n �. The first three constraints coincide

A BAB

A B

B'

ABAB'

σ
ABB'

≥ 0

AB

σ

σ

σ
σ

≅

FIG. 1. Graphical illustration of a quantum state �AB which has
a symmetric extension to two copies of system B.
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with those of Eq. �17�. They just guarantee that �A1B
n �Sn.

The following three constraints impose �ext
n to have a sym-

metric extension to two copies of system B, while the last
one implies that the nonextendible part of �A1B

n is a valid but
not normalized density operator. Its normalization factor is
1−���A1B

n �. This SDP does not include the constraint �ext
n

	0 because non-negativity of the extension �A1BB�
n , together

with the condition TrB���A1BB�
n �=�ext

n , already implies non-

negativity of �ext
n . If xsol represents a solution to the SDP

given by Eq. �25� then we have that

�BEA
Sn

= Tr��ext
n �xsol�� , �26�

and the state �ne
n is given by

�ne
n =

�A1B
n �xsol� − �ext

n �xsol�

1 − �BEA
Sn . �27�

IV. EVALUATION

In this section we evaluate the upper bounds on the secret
key rate both for two-way and one-way decoy-state QKDs
given by Eqs. �14� and �24�. Moreover, we compare our re-
sults with known lower bounds �LBs� for the same scenarios.
The numerical simulations are performed with the freely
available SDP solver SDPT3–3.02 �41�, together with the
parser YALMIP �42�.

A. Channel model

To generate the observed data, we consider the channel
model used in Refs. �10,43�. This model reproduces a normal
behavior of the quantum channel, i.e., in the absence of
eavesdropping. Note, however, that our analysis can as well
be straightforwardly applied to other quantum channels, as it
only depends on the probability distribution pkj

n that charac-
terizes the results of Alice’s and Bob’s measurements. This
probability distribution is given in Table I, where the condi-
tional yields Yn have the form

Yn = Y0 + �1 − �1 − ��n� , �28�

with Y0 being the background detection event rate of the
system, and where � represents the overall transmittance,
including the transmission efficiency of the quantum channel
and the detection efficiency. The parameter en denotes the

quantum bit error rate of an n-photon signal. It is given by

en =
edet�1 − �1 − ��n� + 1

2Y0

Yn
, �29�

where edet represents the probability that a photon hits the
wrong detector due to the misalignment in the quantum
channel and in the detection apparatus.

The parameter � can be related with a transmission dis-
tance l measured in km for the given QKD scheme as �
=10−�l/10, where � represents the loss coefficient of the op-
tical fiber measured in dB/km. The total decibel loss of the
channel is given by �l.

B. Illustration of the upper bounds

As discussed in Sec. III, the reduced density matrix of
Alice that we shall denote as �A1

n is fixed and cannot be
modified by Eve. This state has the form �A1

n

=TrB���n�A1B��n��=�k,k�=0
3 �qkqk��nk� �nk�kA1

�k�� where
��n�A1B is given by Eq. �11�. In the standard BB84 protocol,
the probabilities qk satisfy qk=1 /4. We obtain, therefore, that
�A1

n can be expressed as

�A1

n =
1

4

1 0 2−n/2 2−n/2

0 1 2−n/2 �− 1�n2−n/2

2−n/2 2−n/2 1 0

2−n/2 �− 1�n2−n/2 0 1
� . �30�

To include this information in the measurement process, we
consider that Alice and Bob have also access to the results of
a set of observables 	Ci � 1B
 that form a tomographic com-
plete set of Alice’s Hilbert space HA1

. In particular, we use a
Hermitian operator basis 	C1 , . . . ,C16
. These Hermitian op-
erators satisfy Tr�Ci�=4�i1 and have a Hilbert-Schmidt sca-
lar product Tr�CiCj�=4�ij. The probabilities Tr�Ci
� 1B�A1B

n �=Tr�Ci�A1

n �, with �A1

n given by Eq. �30�.
The resulting upper bounds on the two-way and one-way

secret key rates are illustrated, respectively, in Figs. 2 and 3.
They state that no secret key can be distilled from the corre-
lations established by the legitimate users above the curves,
i.e., the secret key rate in that region is zero. These figures
include as well lower bounds for the secret key rate obtained
in Refs. �8,10,16�. Note, however, the security proofs in-
cluded in Refs. �8,10� implicitly assume that Alice and Bob
can make public announcements using two-way communica-

TABLE I. Conditional joint probability distribution pkj
n =Tr�Ak � Tj�A1B

n �, where the index k� 	0, . . . ,3

labels, respectively, the four possible polarization states of the BB84 protocol �0,1 , + ,−�, and the operators
Tj are given by Eq. �12�. It satisfies �k,jpkj

n =1.

pkj
n Tj=0 Tj=1 Tj=+ Tj=− Tj=vac

k=0
Yn�1−en�

8
Ynen

8
Yn

16
Yn

16
1−Yn

4

k=1
Ynen

8
Yn�1−en�

8
Yn

16
Yn

16
1−Yn

4

k=2
Yn

16
Yn

16
Yn�1−en�

8
Ynen

8
1−Yn

4

k=3
Yn

16
Yn

16
Ynen

8
Yn�1−en�

8
1−Yn

4

CURTY et al. PHYSICAL REVIEW A 79, 032335 �2009�

032335-6



tion and only the error correction and privacy amplification
steps of the protocol are assumed to be realized by means of
one-way communication. We consider the uncalibrated de-
vice scenario and we study two different situations in each
case: �1� no errors in the quantum channel, i.e., Y0=0 and
edet=0 and �2� Y0=1.7�10−6 and edet=0.033. This last sce-
nario corresponds to the experimental parameters reported by
Gobby-Yuan-Shields �GYS� in Ref. �44�. Figures 2 and 3 do
not include the sifting factor of 1/2 for the BB84 protocol,
since this effect can be avoided by an asymmetric basis
choice for Alice and Bob �45�. Moreover, we consider that in
the asymptotic limit of a large number of transmitted signals
most of them represent signal states of mean photon number
�0. That is, the proportion of decoy states used to test the
behavior of the quantum channel within the total number of
signals sent by Alice is neglected. This means that p0 in Eq.
�10� satisfies p0�1 and

rn =
e−�0�0

n

n!
. �31�

C. Discussion

In the case of no errors in the quantum channel �case �1�
above�, the lower bounds for two-way and one-way QKDs
derived in Refs. �8,10,16� coincide. Furthermore, for low
values of the total decibel loss, the upper bounds shown in
the figures present a small bump which is specially visible in
this last case. The origin of this bump is the potential contri-
bution of the multiphoton pulses to the key rate.

Let us now consider the cutoff points for decoy-state
QKD in the case of errors in the quantum channel �case �2�
above�. These are the values of the total decibel loss for
which the secret key rate drops down to zero in Figs. 2 and 3.
We find that they are given, respectively, by �51.1 dB
�lower bound two way after 3 B steps�, �57.4 dB �upper
bound two way�, �44.9 dB �lower bound one way�, and
�53.5 dB �upper bound one way with RR�. These quantities
can be related with the following transmission distances:
179.2, 209.2, 149.6, and 190.6 km. Here we have used �
=0.21 dB /km and the efficiency of Bob’s detectors is 4.5%
�44�. It is interesting to compare the two-way cutoff point of
209.2 km with a similar distance upper bound of 208 km
provided in Ref. �16� for the same values of the experimental
parameters. Note, however, that the upper bound derived in
Ref. �16� relies on the assumption that a secure key can only
be extracted from single-photon states. That is, it implicitly
assumes the standard BB84 protocol. If this assumption is
removed and one also includes in the analysis the potential
contribution of the multiphoton signals to the key rate �due,
for instance, to the SARG04 protocol �12�� then the cutoff
point provided in Ref. �16� transforms from 208 to 222 km,
which is above the 209.2 km presented here.

Figure 3 shows a significant difference between the be-
havior of the upper bounds for one-way classical postpro-
cessing with RR and DR. Most importantly, the upper
bounds on K→ for the case of DR can be below the lower
bounds on the secret key rate derived in Refs. �8,10�. Note,
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FIG. 2. Upper bounds on the two-way secret key rate K given
by Eq. �14� in logarithmic scale in comparison to known lower
bounds for the same scenario given in Ref. �16�. The figure includes
two cases: �1� no errors in the quantum channel, i.e., Y0=0 and
edet=0. In this case, the UB is represented by a thin solid line, while
the LB is represented by a thin dashed line. �2� Y0=1.7�10−6 and
edet=0.033, which correspond to the GYS experiment reported in
Ref. �44�. In this case, the UB is represented by a thick solid line,
while the LB after 3 B steps is represented by a thick dashed line.
We assume asymmetric basis choice to suppress the sifting effect
�45�.
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FIG. 3. Upper bounds on the one-way secret key rate K→ given
by Eq. �24� in logarithmic scale in comparison to known lower
bounds for the same scenario given in Refs. �8,10�. The figure in-
cludes two cases: �1� no errors in the quantum channel, i.e., Y0=0
and edet=0. In this case, the UB RR is represented by a thin solid
line, while the LB is represented by a thin dashed line. �2� Y0

=1.7�10−6 and edet=0.033, which correspond to the GYS experi-
ment reported in Ref. �44�. In this case, the UB RR is represented
by a thick solid line, while the LB is represented by a thick dashed
line. The two lines on the left-hand side of the graphic represent
upper bounds for the case of DR �case �1� short-dashed line; case
�2� dash-dotted line�. The inset figure shows an enlarged view of the
upper bounds for a total decibel loss ranging from 0 to 5 dB. We
assume asymmetric basis choice to suppress the sifting effect �45�.
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however, that the scenario considered here is slightly differ-
ent from the one assumed in the security proofs of Refs.
�8,10�. In particular, the analysis contained in Sec. III B for
the case of DR does not allow any communication from Bob
to Alice once the conditional probabilities pkj

n are determined.
This means, for instance, that Bob cannot even declare in
which particular events his detection apparatus produced a
“click.” However, as mentioned previously, Refs. �8,10� im-
plicitly assume that only the error correction and privacy
amplification steps of the protocol are performed with one-
way communication. If the analysis performed in Sec. III B
is modified such that Bob is now allowed to inform Alice
which signal states he actually detected, then it turns out that
the resulting upper bounds in this modified scenario coincide
with those derived for the case of RR. To include this initial
communication step from Bob to Alice in the analysis, one
can use the following procedure. Let the projector �A1B be
defined as

�A1B = 1A1
� �1B − �vac�B�vac�� . �32�

Then, one can add to Eq. �25� one extra constraint

�A1B
n post�x� =

�A1B�A1B
n �x��A1B

Yn
, �33�

and substitute the condition �A1B
n �x�−�ext

n �x�	0 by

�A1B
n post�x� − �ext

n �x� 	 0. �34�

Equation �33� refers to the normalized state that is postse-
lected by Alice and Bob once Bob declares which signals he
detected. Equation �34� indicates that the BEA has to be
applied to this postselected state. Finally, each term in the
summation given by Eq. �24� has to be multiplied by the
yield Yn, i.e., the probability that Bob obtains a “click” con-
ditioned on the fact that Alice sent an n-photon state.

Our numerical results indicate that the upper bounds
given by Eqs. �14� and �24� are close to the known lower
bounds available in the scientific literature for the same sce-
narios. However, one might expect that these upper bounds
can be further tightened in different ways. For instance, by
substituting in Eqs. �14� and �24� the Shannon mutual infor-
mation with any other tighter upper bound on the secret key
rate that can be extracted from a classical tripartite probabil-
ity distribution measured on a purification of the state �ent

n �in
the case of two-way QKD� or of the state �ne

n �one-way
QKD�. Moreover, as they are, Eqs. �14� and �24� implicitly
assume that the legitimate users know precisely the number
of photons contained in each signal emitted. However, in
decoy-state QKD, Alice and Bob have only access to the
conditional joint probability distribution describing their out-
comes given that Alice emitted an n-photon state, but they do
not have single shot photon number resolution of each signal
state sent.

As a side remark, we would like to emphasize that to
calculate the upper bounds given by Eqs. �14� and �24� it is
typically sufficient to consider only a finite number of terms
in the summations. This result arises from the limit imposed
by the unambiguous state discrimination �USD� attack �31�.

This attack does not introduce any errors in Alice’s and
Bob’s signal states. Moreover, it corresponds to an
entanglement-breaking channel �46� and, therefore, it cannot
lead to a secure key both for the case of two-way and one-
way QKDs �20,22�. The maximum probability of unambigu-
ously discriminating an n-photon state sent by Alice is given
by �31�

PD
n = � 0 n 
 2

1 − 21−n/2 n even

1 − 2�1−n�/2 n odd.
� �35�

For typical observations, this quantity can be related with a
transmission efficiency �n of the quantum channel, i.e., an �n
that provides an expected click rate at Bob’s side equal to
PD

n . This last condition can be written as

�n = 1 − �1 − PD
n �1/n. �36�

Whenever the overall transmission probability of each pho-
ton satisfies �
�n then any pulse containing n or more pho-
tons is insecure against the USD attack. After a short calcu-
lation, we obtain that the total number of n-photon signals
that need to be considered in the summations of Eqs. �14�
and �24� can be upper bounded as

n 
 � � 1

log 2��2�1 − ��� � n even

� 1

2 log 2��2�1 − ��� � n odd.� �37�

V. CONCLUSION

In this paper, we have derived upper bounds on the secret
key rate and distance that can be covered by two-way and
one-way decoy-state QKDs. Our analysis considers the un-
calibrated device scenario and we have assumed the typical
initial postprocessing step where double click events are ran-
domly assigned to single click events. We have used two
preconditions for secure two-way and one-way QKDs. In
particular, the legitimate users need to prove that there exists
no separable state �in the case of two-way QKD� or that there
exists no quantum state having a symmetric extension �one-
way QKD� that is compatible with the available measure-
ments results. Both criteria have been previously employed
in the scientific literature to evaluate single-photon imple-
mentations of QKD. Here we have applied them to investi-
gate a realistic source of weak coherent pulses, and we have
shown that they can be formulated as a convex optimization
problem known as a SDP. Such instances of convex optimi-
zation problems can be solved efficiently, for example, by
means of the interior-point methods.

As a result, we have obtained fundamental limitations on
the performance of decoy-state QKD when this initial post-
processing of the double clicks is performed. These upper
bounds cannot be overcome by any classical communication
technique �including, for example, SARG04 protocol, adding
noise protocols, degenerate codes, and two-way classical
postprocessing protocols� that the legitimate users may em-
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ploy to process their correlated data afterward. Moreover,
our results seem to be already close to well-known lower
bounds for the same scenarios, thus showing that there are
clear limits to the further improvement of classical postpro-
cessing techniques in decoy-state QKD.

The analysis presented in this paper could as well be
straightforwardly adapted to evaluate other implementations
of the BB84 protocol with practical signals, for example,
those experimental demonstrations based on WCP without
decoy states or on entangled signals coming from a paramet-
ric down conversion source.
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