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Polynomially large ground-state energy gaps are rare in many-body quantum systems, but useful in quantum
information and an interesting feature of the one-dimensional quantum Ising model. We show analytically that
the gap is generically polynomially large not just for the quantum Ising model, but for one-, two-, and
three-dimensional interaction lattices and Hamiltonians with certain random interactions. We extend the analy-
sis to Hamiltonian evolutions and we use the Jordan-Wigner transformation and a related transformation for
spin-3/2 particles to show that our results can be restated using spin operators in a surprisingly simple manner.
These results also yield a new perspective on the one-dimensional cluster state.
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I. INTRODUCTION

A typical many-body quantum Hamiltonian must fit expo-
nentially many energy levels into a polynomial-sized energy
range, so most energy gaps �the difference between two suc-
cessive energy levels� must be exponentially small. It is not
clear a priori why the ground-state energy gap should ever
be larger than the rest. Nonetheless large ground-state energy
gaps are important in adiabatic quantum computing �AQC�
�1� and for stability when approximating graph states using
local Hamiltonians �2,3�. A large ground-state energy gap is
also an interesting feature of the standard example of a
second-order quantum phase transition, namely, the one-
dimensional quantum Ising model �4,5�. In this paper we
expand the result for the one-dimensional quantum Ising
model to identify broader classes of Hamiltonians that ex-
hibit a large ground-state energy gap.

Let us be more precise. Mathematically, we can construct
a Hamiltonian with any given set of 2n energy levels. Theo-
rem I.1, given below, establishes that large ground-state en-
ergy gaps are rare among choices of energy levels.

Theorem I.1 (Large ground-state energy gaps are rare).
Consider uniform random choices of energy levels for a Her-
mitian operator on n two-state particles �qubits� under the
restriction that the ground-state energy is zero and the ener-
gies are contained in the unit interval. The fraction of these
choices with a ground-state energy gap greater than 2−n/2

tends to e−2n/2
for large n.

Proof. The ground-state energy gap is larger than some
��0 provided the 2n−1 nonzero energy levels are selected
from the interval �� ,1�. Thus the fraction of choices of en-
ergy levels with a ground-state energy gap of at least � is
�1−��2n−1. Let us choose �=2−n/2; then we have

�1 − 2−n/2�2n−1 = �1 − 2−n/2��2n−1�2n−1 �1�

��e−1��2n−1 �2�

�e−2n/2
. �3�

�
In fact, since the dimension of the problem is exponen-

tially large in the number of qubits, it is difficult to even
determine the minimum ground-state energy gap for large
systems.

Adiabatic quantum computing is an approach to quantum
computation that depends on having a ground-state energy
gap bounded below by a polynomial in the inverse of the
problem size. In AQC, a problem is encoded as the ground
state of some Hamiltonian HP. It is assumed that it is fea-
sible to prepare a physical system in the ground state of some
simple Hamiltonian H0 and then evolve the Hamiltonian
slowly from H0 to HP. Under the right conditions and if the
evolution is done sufficiently slowly �6�, then at the end of
the evolution the state of the system is the ground state of
HP. Measurement of this final state reveals the solution to
the original problem. As an approach to quantum computing,
AQC is known to be equivalent to standard gated quantum
computing in that each can be efficiently simulated by the
other �7,8�. Also, a simple AQC evolution achieves unsorted
database search in time O��N�, where N is the database size,
just as in Grover’s search algorithm �9�.

For the effective application of AQC, it would be useful to
identify a class of Hamiltonians satisfying the following con-
ditions:

�1� The class should have many degrees of freedom and
allow many interactions between qubits, so that it represents
diverse problem instances for AQC.

�2� The class should include a simple initial Hamiltonian
H0.
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�3� It is convenient if between any two Hamiltonians in
the class there is a path that stays within the class.

�4� All Hamiltonians in the class should have large
ground-state energy gaps.

�5� Finally, the class must include Hamiltonians whose
ground states encode the solution to difficult classical prob-
lems.

Given condition 5, condition 4 is difficult to satisfy. Over-
all there are few analytic results establishing large ground-
state energy gaps for AQC evolutions. We seek to understand
when ground-state energy gaps may be large. One known
example is the one-dimensional quantum Ising model �4,5�.
The key to the analysis of this model is the Jordan-Wigner
transformation that maps it to a quadratic fermionic Hamil-
tonian �10�. We provide background on these Hamiltonians
in Sec. II. It is clear that quadratic fermionic Hamiltonians
satisfy conditions 1–3. In Sec. III we will show that they
meet condition 4 as well. In Sec. IV we identify which lattice
Hamiltonians of one, two, and three dimensions have a de-
generate ground state and show that the ground-state energy
gap grows quickly as we move away from these degenerate
Hamiltonians. We extend these analyses to Hamiltonian evo-
lutions in Sec. V. Finally, in Sec. VI we derive alternate
representations of these Hamiltonians using the Jordan-
Wigner transform and a related transform for spin-3/2 par-
ticles and relate the results to the one-dimensional cluster
state.

II. BACKGROUND ON THE FERMIONIC COMMUTATION
RELATIONS

For a detailed exposition on properties of the fermionic
commutation relations �FCRs�, see, e.g., �11–13�. Here we
only highlight some essential points, mostly without proof,
that are needed to develop the results in following sections.

The FCRs on a set of linear operators �cj : j=1, . . . ,n� are

�cj,ck
†� = � j,k, �cj,ck� = 0, �4�

where the bracket notation indicates the anticommutator
�x ,y�=xy+yx and � jk equals the identity operator if j=k and
zero otherwise. The superscript dagger denotes the Hermitian
adjoint. A consequence of the FCRs is that �cj ,cj

† : j
=1, . . . ,n� are creation and annihilation operators that anti-
commute.

Suppose we have a Hamiltonian of the form

H = 	
j=1

n

Cjcj
†cj , �5�

where the coefficients Cj are positive and real. All the terms
in H commute and the jth term has eigenvalues 0 and Cj.
Now, take the sum of elements in each possible subset �in-
cluding the empty set� of �Cj : j=1, . . . ,n�. The 2n resulting
values are the eigenvalues of H. In particular, the ground-
state energy of H is zero and the ground-state energy gap is
the least nonzero coefficient Cj. To decide whether an arbi-
trary value is an eigenvalue of H for arbitrary coefficients is
nondeterministic polynomial-time �NP�-complete however,
as it is equivalent to the subset-sum problem �also known as
the knapsack problem� �11�.

We can write many Hamiltonians in the form of Eq. �5�
using Theorem II.1 �below�, originally due to Lieb et al.
�10�. Suppose we have a quadratic fermionic Hamiltonian H
defined as

H = 	
j,k=1

n

Aj,k�cj
†ck − cjck

†� + Bj,k�cj
†ck

† − cjck� �6�

for some set of real coefficients Aj,k and Bj,k. For conve-
nience, we gather the coefficients Aj,k and Bj,k into real n
�n matrices that we label A and B. If B=0, then H repre-
sents a Hubbard model with no on-site interactions, for in-
stance, electrons in metals �14� or graphene �15�. If A and B
are tridiagonal, then H represents, under the Jordan-Wigner
transform �10�, a one-dimensional chain of spin-1/2 particles
with nearest-neighbor interactions. If A and B have three
nonzero super- and subdiagonals, then H represents a chain
of spin-3/2 particles with nearest-neighbor interactions �16�.
Also, we can see using the FCRs that different choices of A
and B may represent the same Hamiltonian. In particular, for
any given Hamiltonian, A can be chosen to be symmetric and
B antisymmetric.

Theorem II.1 establishes that we can write Eq. �6� in the
form of Eq. �5�, added to a multiple of the identity operator.
Thus we can easily find the first few eigenvalues of H and in
particular the ground-state energy gap.

Theorem II.1 (Lieb et al. [10]). Consider a quadratic fer-
mionic Hamiltonian as in Eq. �6�, where A is an n�n real
symmetric matrix, B is an n�n real antisymmetric matrix,
and the operators �ck :k=1, . . . ,n� satisfy the FCRs. Then we
can find �2 diagonal and X unitary so that X�A−B��A+B�
=�2X, and Y unitary so that Y�A+B��A−B�=�2Y. Define
the operators �� j : j=1, . . . ,n� by

� j =
1

2	
k=1

n

�Xjk + Y jk�ck + �Xjk − Y jk�ck
†. �7�

Then �� j : j=1, . . . ,n� satisfy the FCRs and

H = 	
j=1

n

2� j� j
†� j − 
	

j=1

n

� j�I2n, �8�

where � j denotes the jth entry on the diagonal of the matrix
� and I2n is the identity operator.

Proof. See the Appendix. �
Theorem II.1 was used initially by Lieb et al. �10� to find

the spectrum of the one-dimensional XY model and subse-
quently has been used, for instance, in the analysis of the
one-dimensional model of free electron transport �12�. Qua-
dratic fermionic Hamiltonians as in Eq. �6� have also sparked
recent interest because of their application to quantum com-
plexity theory. If one takes a set of gates defined by U
=exp�iHt� for some t and a constant quadratic fermionic
Hamiltonian H in the form of Eq. �6�, then one obtains a set
of gates that resembles a universal set, but in fact may be
classically simulated �17�. Broader sets of gates that can be
classically simulated have been identified �18,19�. To classi-
cally simulate an evolving Hamiltonian, it has been shown
�8� that Hamiltonian evolutions may be efficiently approxi-
mated by discretizing the evolution into a sequence of short,
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constant Hamiltonians. Theorem II.1 has also been used to
find efficient sets of quantum gates for computing properties
of quadratic fermionic Hamiltonians in the form �6� �20�.
Further, the relationship between a vanishing energy gap and
discontinuity in the ground state has been studied for these
Hamiltonians �21�.

The Jordan-Wigner transformation applied to the Hamil-
tonian evolution

H�s� = �1 − s�	
j=1

n

� j
z + s	

j=1

n−1

� j
x� j+1

x �9�

transforms H�s� into a quadratic fermionic Hamiltonian in
the form of Eq. �6�, thus providing a means for determining
the spectrum for any s� �0,1�. In fact, this evolution exhib-
its a second-order quantum phase transition and a ground-
state energy gap that decreases as ��1 /n� �4,5�, which is
surprisingly large. The notation ��1 /n� means that the
ground-state energy gap is larger than � /n for n greater than
some n0 and some constant factor �.

Since �A+B�†=A−B and since the singular values of a
matrix M are the square roots of the eigenvalues of M†M, we
see that � j from Eq. �8� is a singular value of A+B. Further,
Cj in Eq. �5� can be defined to be 2� j. Thus, if A+B is
nonsingular, then twice the least singular value is the ground-
state energy gap of H. If A+B is singular, then H has a
degenerate ground state and the least nonzero singular value
is the energy gap between the ground-state subspace and the
higher energy levels of the Hamiltonian. In any case, since
A+B has only n dimensions, in contrast to H which has 2n,
we might expect that often the least singular value of A+B is
not exponentially small in n. Then the ground-state energy
gap of H would not be exponentially small. In Sec. III we
state and prove more precise formulations of this claim.

III. QUADRATIC FERMIONIC HAMILTONIANS
WITH RANDOM INTERACTIONS

To establish that the ground-state energy gaps are large
for quadratic fermionic Hamiltonians, we provide two theo-
rems. In Theorem III.1 �below�, we take a particular distri-
bution of coefficient matrices A and B under the restriction
�A+B�2	1, where �A+B�2 denotes the largest singular value
of A+B and establish that the ground-state energy gap is
��1 /n�. Then, in Theorem III.3, we show that the ground-
state energy gap is ��1 /�n� for Gaussian-distributed inter-
action coefficients.

Theorem III.1 (Ground-state energy gaps of quadratic fer-
mionic Hamiltonians with bounded coefficients). Choose a
real diagonal n�n matrix 
 uniformly at random with en-
tries in the unit interval and choose U and V according to any
probability distribution over orthogonal n�n matrices. Then
C=U
V† represents a distribution over all real matrices with
�C�2	1. Take A to be the symmetric part of C and B to be
the antisymmetric part of C, i.e., A= �C+C†� /2 and B= �C
−C†� /2, and let H be defined as in Eq. �6�. The probability
that the ground-state energy gap of H is greater than 2x /n,
for any x�0, tends to e−x for large n.

Proof. If the ground-state energy gap H is greater than

2x /n, then the singular values of C are contained in the in-
terval �x /n ,1�. The fraction of choices for 
 where this is
true is


1 −
x

n
�n

= 

1 −
x

n
�n/x�x

, �10�

which tends to e−x for large n. �
To determine the ground-state energy gap for Gaussian-

distributed interaction coefficients, we first need the follow-
ing theorem about random matrices due to Edelman ��22�,
Corollary 3.1�.

Theorem III.2 (Edelman [22]). Let C be an n�n matrix
whose elements have independent Gaussian distributions
with mean zero and unit variance. We denote such distribu-
tions as N�0,1�. Let � be the least singular value of C. Then
for large n, n�2 converges in distribution to

��x� =
1 + �x

2�x
e−�x/2+�x�. �11�

Since n
2 has a probability distribution that is asymptoti-
cally independent of n, it follows that 
=��1 /�n�. Also, Eq.
�11� implies that 
�0 with probability 1. Similar results for
other ensembles of random matrices are known �23�. Let us
now apply Theorem III.2 to quadratic fermionic Hamilto-
nians.

Theorem III.3 (Ground-state energy gaps of quadratic fer-
mionic Hamiltonians with Gaussian coefficients). Let C be
an n�n matrix with independent N�0,1� coefficients, let A
be the symmetric part of C, and let B be the antisymmetric
part of C, so

A =
C + C†

2
, B =

C − C†

2
, �12�

and C=A+B. Define

H = 	
j,k=1

n

Aj,k�cj
†ck − cjck

†� + Bj,k�cj
†ck

† − cjck� �13�

and let � be the ground-state energy gap of H. Then, for
large n, n�2 /4 converges in distribution to ��x� defined in
Eq. �11�.

Proof. By Theorem III.2, if � /2 is the least singular value
of C, then n�2 /4 converges in distribution to ��x� for large n.
Theorem III.2 also implies that C is nonsingular with prob-
ability one, so � is the ground-state energy gap. �

Since n�2 /4 has a probability distribution that is asymp-
totically independent of n, �=��1 /�n�. Recalling Theorem
I.1, we see this is a remarkable property: since there must be
2n distinct energy levels in an energy range of O�n2�, most of
the energy gaps must be exponentially small.

In fact the Hamiltonians in Theorem III.3 are also nonde-
generate with probability 1. Degeneracies occur if two dis-
tinct subsets of singular values of C have the same sum.
Such linear dependencies are measure-zero events, and since
the joint probability density function for the singular values
of C exists and is continuous �22�, the probability of any
measure-zero event is zero.
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Figure 1 illustrates the difference between the distribution
of the ground-state energy gaps and the rest of the gaps for
1000 randomly generated ten-qubit Hamiltonians, and indeed
the ground-state energy gaps are typically much larger than
the other gaps.

In the next section we will move on from random inter-
actions and instead analyze Hamiltonians of interactions on
one-, two-, and three-dimensional lattices.

IV. LATTICE INTERACTIONS IN ONE, TWO,
AND THREE DIMENSIONS

The one-dimensional quantum Ising model is expressed
with A and B matrices ��10�, p. 413�

A =
1

2�
0 1 1

1 0 1

1 0 �

� � 1

1 1 0
� ,

B =
1

2�
0 1 − 1

− 1 0 1

− 1 0 �

� � 1

1 − 1 0
� , �14�

where omitted entries are zero. The ground state of this
Hamiltonian can be found in polynomial time with AQC
�4,5�. In fact, this holds for more general choices of A and B,
including any instance of the one-dimensional XY model. An
essential property of the definitions in Eq. �14� is that each
row is a cyclic shift of the previous row. Such matrices are
called circulant. For n qubits, it is easy to check that there
are n degrees of freedom in choosing a symmetric circulant
matrix A and antisymmetric circulant matrix B.

Circulant coefficient matrices other than the XY model
include scenarios such as non-nearest-neighbor interactions
on a one-dimensional chain of interacting fermions. The re-
striction that A and B are circulant imposes the requirement
that the interaction strengths depend only on relative posi-
tions and it imposes periodic boundary conditions.

Theorem IV.1 (Ground-state energy gaps for circulant A
and B matrices). Let

H = 	
j,k=1

n

Aj,k�cj
†ck − cjck

†� + Bj,k�cj
†ck

† − cjck� , �15�

where A is a real circulant n�n symmetric matrix and B is a
real circulant antisymmetric n�n matrix. Let C=A+B and

label the entries in the first column of C as Ĉ, which deter-
mine the rest of the matrix entries of C.

�i� The ground state is degenerate if Ĉ lies in one of n
linear subspaces.

�ii� One �or two, for n even� of those linear subspaces is
n−1 dimensional and the rest are n−2 dimensional.

�iii� Under an orthogonal perturbation away from these
subspaces, the ground-state energy gap grows as ���n�.

Proof. The ground-state energy gap of H is twice the least
singular value of C, so let us find the singular values of C.
Circulant matrices form a commutative ring ��24�, p. 201�, so
if A and B are circulant, then so are C and C†. Circulant
matrices also have the nice property that they are diagonal-
ized by the discrete Fourier transform matrix ��25�, p. 124�

Fn =
1
�n�

e�0·0�2�i/n e�0·1�2�i/n
¯

e�1·0�2�i/n e�1·1�2�i/n
¯

e�2·0�2�i/n e�2·1�2�i/n
¯

]

e„�n−1�·0…2�i/n e„�n−1�·1…2�i/n
¯

� . �16�

So C and C† commute and thus the singular values of C,
which are the square roots of the eigenvalues of C†C, are
equal to the magnitudes of the eigenvalues of C. Further,
since the first column of Fn is constant, the first column of
the equation FnC=�Fn yields the following expression for
the eigenvalues of C:

FnĈ =
1
�n�

�1

�2

�3

]

�n

� . �17�

Evidently H has a degenerate ground state if �k=0 for some
k. Let us define vectors fk

R and fk
I from the real and imaginary

parts of the kth row of Fn. Since C is real, setting the real and
imaginary parts of �k to zero yields the following two equa-
tions:

0 = Re��k� = �nfk
RĈ , �18�
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FIG. 1. �Color online� The ground-state energy-gap distribution
is compared to the distribution for the other energy gaps, in reduced
units. All the energy levels are computed for 1000 random n=10
�ten-qubit� Hamiltonians. Each Hamiltonian is chosen randomly as
described in Theorem III.3. As predicted by Theorem III.3, the
ground-state energy gaps are much larger than the other gaps.
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0 = Im��k� = �nfk
IĈ . �19�

Since the first element of fk
R is 1 /�n and the first element of

fk
I is zero, the only way these two equations are dependent is

if Eq. �19� is trivially zero. That only occurs for k=1, and if
n is even, for k= �n /2�+1; in those cases, �k is zero if and

only if Ĉ lies in the �n−1�-dimensional subspace defined by

Eq. �18�. Otherwise, �k=0 if and only if Ĉ lies in an
�n−2�-dimensional subspace defined by Eqs. �18� and �19�.
The first two parts of the theorem are thus proved.

Now let us assume that Ĉ lies in the kth degenerate sub-

space �i.e., �k=0� and consider a perturbation �Ĉ that is
orthogonal to that subspace. We want to know how fast the
ground-state energy gap grows, so we need to find ���k�.

If �Ĉ is orthogonal to the subspace, then �Ĉ=�fk
R+�fk

I

for some � and �. Then we can substitute into Eq. �17� and
multiply both sides by �n. Using the double-angle formula
for sine, we see that fk

R and fk
I are orthogonal, yielding

Re���k� = ��n�fk
R�2, �20�

Im���k� = ��n�fk
I�2. �21�

For k�1 and k� �n /2�+1, it can be shown using trigonom-
etry identities that �fk

R�2= �fk
I�2=1 /2, and so we have

���k� =
�n

2
��2 + �2. �22�

Otherwise we have �fk
R�=1, �fk

I�=0, and so

���k� = �n��� . �23�

Thus the final part of the theorem is proved. �
It should be noted that while circulant matrices yield to

elegant analysis, similar results could be obtained for inter-
action matrices derived from other boundary conditions. For
instance, if C is symmetric Toeplitz tridiagonal �Toeplitz ma-
trices are those with constant diagonals�, then its eigenvalues
may be found analytically ��26�, p. 158�. Analyses of the
two- and three-dimensional interaction grids would then
build on the one-dimensional analysis in exact analogy to the
circulant case.

Now let us consider the case of a two-dimensional lattice
of interacting fermions with periodic boundary conditions.
The A and B matrices then have a block structure such as

A =�
A0 I I

I A0 I

· · ·

I A0 I

I I A0

� ,

B =�
0 B0 B0

B0 0 B0

· · ·

B0 0 B0

B0 B0 0
� , �24�

where B0 and A0 are as in Eq. �14�. Notice that B is antisym-
metric even though it is block symmetric because B0 is an-
tisymmetric. Evidently, each block is circulant and A and B
are circulant in the blocks. Such matrices are called “block
circulant with circulant blocks” �BCCB�. Let us assume that
the blocks are p� p and there are q blocks per row, so n
= pq.

Theorem IV.2 (Ground-state energy gaps for BCCB A and
B matrices). Let A and B be n�n BCCB matrices with p
� p blocks and q blocks per row, so pq=n. Assume A is real
symmetric and B is real antisymmetric. Define the quadratic
fermionic Hamiltonian H with A and B as in Eq. �6�. Let

C=A+B and label the first column of C as Ĉ. Then the

ground state is degenerate if Ĉ lies in one of n linear sub-
spaces. A perturbation in A or B from these subspaces results
in a ���n� increase in the ground-state energy gap.

Proof. It is easy to check that C=A+B is BCCB. Then
TCT† is diagonal �27�, where

T = �Fp

Fp

�

�Py�Fq

Fq

�

� , �25�

and Py is a permutation matrix that reorders the columns
as (1, p+1, 2p+1, . . . , �q−1�p+1, 2 , p+2, 2p+2, . . .).
The matrix T diagonalizes C by first diagonalizing the blocks
of C, then reordering the rows and columns so that the ma-
trix is block diagonal with circulant blocks, and finally di-
agonalizing those blocks. Geometrically, this procedure can
be thought of as a Fourier transform first along the horizontal
axis of the lattice and then along the vertical axis.

Also, since C† is BCCB with p� p blocks and q blocks
per row, C† is diagonalized by the same matrix and thus
commutes with C. So the singular values of C are the mag-
nitudes of the eigenvalues of C.

We can check that each entry of the first column of T is
1 /�n. So, in analogy to Eq. �17�, a linear transform T applied
to the first column of C yields the eigenvalues of C. The rest
of the argument is essentially identical to the proof of Theo-
rem IV.1. �

We can even analyze a three-dimensional lattice of inter-
acting fermions. Then the A and B matrices are as in Eq.
�24�, but A0 and B0 are BCCB instead of circulant. Let us call
these matrices “block circulant with BCCB blocks” or
�BC�2CB.

Theorem IV.3 (Ground-state energy gaps for (BC)2CB A
and B matrices). Let A and B be n�n �BC�2CB matrices.
Let the number of blocks be r and the BCCB blocks contain
q circulant sub-blocks each p� p, so n= pqr. Define the qua-
dratic fermionic Hamiltonian H with A and B as in Eq. �6�.
Let C=A+B and label the first column of C as Ĉ. Then the
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ground state is degenerate if Ĉ lies in one of n linear sub-
spaces. A perturbation in A or B away from these subspaces
results in a ���n� increase in the ground-state energy gap.

Proof. The proof is analogous to that of Theorem IV.2, but
we set

T = �Fp

Fp

�

�Py�Fq

Fq

�

�Pz�Fr

Fr

�

� ,

�26�

where Pz is a permutation matrix that reorders the
columns as (1, pq+1, 2pq+1, . . . , �r−1�pq+1, 2 , pq
+2, 2pq+2, . . .). This transformation first diagonalizes the
BCCB blocks, then permutes rows and columns to obtain a
block-diagonal matrix with circulant blocks and diagonalizes
the remaining blocks. �

V. EVOLUTIONS OF QUADRATIC FERMIONIC
HAMILTONIANS

In this section we show how the previous results on qua-
dratic fermionic Hamiltonians can be extended to Hamil-
tonian evolutions. For the case of circulant A and B matrices,
we discuss how to perturb an evolution to ensure that the
minimum ground-state energy gap is large. We analytically
derive the minimum ground-state energy gap of the one-
dimensional Ising model.

We choose, as our simple initial Hamiltonian,

H0 = 	
j=1

n

�2cj
†cj − I2n� = 	

j=1

n

�cj
†cj − cjcj

†� . �27�

The ground state of this Hamiltonian is easy to construct. For
example, for electrons in a metal, cj is the annihilation op-
erator for electron occupation at site j, and then the ground
state of H0 is the state with each site unoccupied. Written in
the form of Eq. �6�, we have A= In and B=0. As an example,
let us define the Hamiltonian evolution H�s�, where

H�s� = �1 − s�H0 + s 	
j,k=1

n

�Aj,k�cj
†ck − cjck

†� + Bj,k�cj
†ck

† − cjck�� .

�28�

Then H�s� is a quadratic fermionic Hamiltonian for all s
� �0,1�. To find the ground-state energy gap of H�s�, we
define

Ă�s� = �1 − s�In + sA ,

B̆�s� = sB . �29�

Then we can rewrite Eq. �28� as

H�s� = 	
j,k=1

n

Ăj,k�s��cj
†ck − cjck

†� + B̆j,k�s��cj
†ck

† − cjck� ,

�30�

and twice the least nonzero singular value of Ă�s�+ B̆�s� is
the ground-state energy gap of H�s�. We cannot directly use

Theorem III.3 to establish that the ground-state energy gap of
H�s� in Eq. �28� is large for all s, since Theorem III.3 is a
probabilistic result for a single random Hamiltonian.

Observe that since the identity matrix In is circulant, then

if A and B are circulant then so are Ă�s� and B̆�s�, and the
analysis in Theorem IV.1 can be applied to the whole evolu-
tion. Analogous results hold for the BCCB and BC2CB
cases. In the case of the one-dimensional Ising model with
periodic boundary conditions, we have

C̆�s� = Ă�s� + B̆�s� =�
1 − s s

1 − s s

� �

s

s 1 − s
� .

We want to find twice the least singular value of C̆�s�. Fol-
lowing the proof of Theorem IV.1, we define the first column

of C̆�s� as Ĉ and then the singular values of C̆�s� are the

magnitudes of the components of �nFnĈ, which can be writ-
ten explicitly as

�k�s� = �1 − s� + s
cos
2��k − 1��n − 1�
n

�
+ i sin
2��k − 1��n − 1�

n
�� . �31�

Then we have

��k�s��2 = �1 − s�2 + s2 + 2�1 − s�s cos
2��k − 1��n − 1�
n

� .

�32�

Evidently ��k�s��2� �1−s�2+s2−0.5 for s� �0,1�. So for s
�0.5, as n increases, we have that �k�s� is bounded below by
a constant independent of n and k. Thus we only need to
consider s=0.5, where

��k�s��2 =
1

2

1 + cos
2��k − 1��n − 1�

n
�� . �33�

We get zero, and thus a level crossing at s=0.5, if the argu-
ment to cosine is an odd multiple of �. For n even, that
happens for k−1=n /2. For n odd, it is impossible—the nu-
merator is always even and the denominator always odd—so
no level crossing occurs. Since the argument to cosine is
restricted to a lattice of spacing 2� /n, for n odd the argu-
ment may not get closer than 2� /n to an odd integer mul-
tiple of �. It follows from Taylor expansion of cosine that
��k�s��2 is at least ��1 /n2� and so the ground-state energy
gap is at least ��1 /n�.

In general, it is only the �n−1�-dimensional subspaces
where the Hamiltonians have degenerate ground states that
pose any difficulty for adiabatic evolution, for those sub-
spaces divide the space of Hamiltonians in two and no evo-
lution may cross the divide without encountering a ground-
state degeneracy. For n odd, the only �n−1�-dimensional
subspace is defined by Cn,1=−	Cj,1. This subspace can be
avoided: if the final Hamiltonian lies on the same side of the
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divide as H0, nothing needs to be done. Otherwise, use −H0
as an initial Hamiltonian instead. The �n−2�-dimensional
subspaces effectively represent “strings” in the space and can
be avoided, if necessary, by using a non-straight-line path
�28–30�.

Also, suppose the ground-state energy gap is small be-
cause of a close approach to the kth degenerate subspace.
Then we can perturb the evolution to increase the minimum
ground-state energy gap by adding multiples of fk

R and fk
I to

Ĉ�s�.
Figure 2 shows the evolution of the spectrum from H0 to

an example nine-qubit Hamiltonian with BCCB interactions.
Evidently the ground-state energy gap is much larger than
most of the other gaps.

VI. REPRESENTATIONS OF THE HAMILTONIANS

Using the Jordan-Wigner transformation, we can define
Hamiltonians using other kinds of particle operators that also
have large ground-state energy gaps. In the Hubbard model
of free electrons, interaction terms such as cj

†ck
†−cjck do not

occur because they do not conserve the number of electrons.
However, they may occur in spin systems transformed into
fermionic representations. The best-known example is the
Hamiltonian resulting from the Jordan-Wigner transforma-
tion applied to the XY model �10�. Let us first identify all the
Hamiltonians that, under the Jordan-Wigner transformation
�31�

cj = �− 1� j−1�1
z�2

z
¯ � j−1

z 
� j
x − i� j

y

2
� ,

cj
† = �− 1� j−1�1

z�2
z
¯ � j−1

z 
� j
x + i� j

y

2
� , �34�

yield a quadratic fermionic Hamiltonian in the form of Eq.
�6�. Theorem VI.1 is equivalent to the result in ��32� p. 4�,
but using a different basis representation.

Theorem VI.1 (Quadratic fermionic Hamiltonians repre-
sented with Pauli operators). There is a bijection between
Hamiltonians on n qubits of the form

H = 	
j=1

n

Wj,j� j
z + 	

k�j

Wj,k� j
x� j+1

z
¯ �k−1

z �k
x

+ 	
k�j

Wk,j� j
y� j+1

z
¯ �k−1

z �k
y , �35�

where the coefficients Wj,k are real, and Hamiltonians of the
form

H = 	
j,k=1

n

Aj,k�cj
†ck − cjck

†� + Bj,k�cj
†ck

† − cjck� , �36�

where �cj : j=1, . . . ,n�, defined by Eq. �34�, satisfy the FCRs,
A is a real symmetric n�n matrix, and B is a real antisym-
metric matrix. The bijection is given by the invertible trans-
formation

Aj,j = Wj,j ,

Aj,k�j = Ak,j =
�− 1�k−j+1

2
�Wj,k + Wk,j� ,

Bj,k�j = − Bk,j =
�− 1�k−j+1

2
�Wj,k − Wk,j� . �37�

Proof. Apply Eq. �34� to Eq. �36� and use the commutation
relations for Pauli operators to simplify the result. �

Using Theorem VI.1, we can restate earlier results in a
surprisingly simple manner. First, observe that application of
Theorem VI.1 to H0 defined in Eq. �27� yields

H0 = 	
j=1

n

� j
z. �38�

The ground state of H0 is the configuration with each par-
ticle in a spin-down eigenstate of �z. If HP is in the form of
Eq. �35�, then so is the Hamiltonian evolution

H�s� = �1 − s�	
j=1

n

� j
z + sHP �39�

for 0	s	1.
Next, observe that, up to sign, the elements of the matrix

W are the same as those of A+B. So to find the ground-state
energy gap for a Hamiltonian that can be written in the form
of Eq. �35�, we only need to apply the necessary sign
changes to the elements of W, find the least nonzero singular
value of the resulting matrix, and multiply by 2. Thus Theo-
rem III.3 can be applied to the Hamiltonians in Eq. �35�
yielding a simple result:

Theorem VI.2 (Ground-state energy gaps of Hamiltonians
defined using Pauli operators with Gaussian coefficients).
Let H be defined by Eq. �35�, where the elements of W are
N�0,1� and independent. Let � be the ground-state energy
gap of H. Then, for large n, n�2 /4 converges in distribution
to the probability density function

-10

-5

0

5

10

0 0.2 0.4 0.6 0.8 1

s

FIG. 2. �Color online� Energy spectrum as a function of s for a
two-dimensional lattice of interacting fermions, using the A and B
matrices from Eq. �24�, in reduced units. The minimum ground-
state energy gap is larger than most of the other minimum-energy
gaps.
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��x� =
1 + �x

2�x
e−�x/2+�x�. �40�

Proof. Observe that the entries of W are, up to sign, those of
A+B as defined by Theorem VI.1. Thus A+B has indepen-
dent N�0,1� entries, so we have the same proof as Theorem
III.3. �

The one-dimensional cluster state, while not universal for
quantum computing, is useful for gaining intuition about
cluster states �33�. It is known that the Hamiltonian whose
ground state is the one-dimensional cluster state can be
mapped onto the one-dimensional Ising model �33�. How-
ever, the results in this section and Sec. V give an alternative
proof that the one-dimensional cluster state can be realized in
polynomial time using AQC.

The third-order interaction terms in Eq. �35� are exactly
the stabilizers of the one-dimensional cluster state �34�. In
fact,

H = − 	
j=1

n−2

� j
x� j+1

z � j+2
x + �− 1�n−1�1

y�2
z�3

z
¯ �n−2

z �n−1
y

+ �− 1�n−1�2
y�3

z�4
z
¯ �n−1

z �n
y �41�

is a Hamiltonian whose ground state is the one-dimensional
cluster state. By Theorem VI.1, A and B matrices corre-
sponding to H are circulant and so Theorem IV.1 applies.
The discussion of Sec. V implies the existence of an adia-
batic evolution from H0 to H with a large minimum ground-
state energy gap.

In general, we can define Fermi operators using spin-S
operators provided 2S+1=2n for some n �16�. For instance,
using n spin-3/2 particles, we can define 2n Fermi operators
by

c1,j =
− 1
�3

Sj
−Sj

zSj
−�

k�j

5

4
− �Sk

z�2� , �42�

c2,j =
1
�3


1

2
+ Sj

z�2

Sj
−�

k�j

5

4
− �Sk

z�2� , �43�

where Sx, Sy, and Sz are spin-3/2 operators and S�=Sx� iSy.
While the standard Jordan-Wigner transform applied to a
one-dimensional chain of spin-1/2 particles results in a tridi-
agonal B matrix, the spin-3/2 transform applied to a one-
dimensional chain of spin-3/2 particles yields a pentadiago-
nal B matrix.

VII. CONCLUSION

We showed that polynomially large ground-state energy
gaps are rare in many-body quantum Hermitian operators,
but the gap is generically polynomially large for quadratic
fermionic Hamiltonians. In addition to Hamiltonians with
random interactions, we derived analytic results for the
ground-state energy gap of lattices in one, two, and three
dimensions. We extended the analysis to Hamiltonian evolu-
tions. Our results on fermionic lattices, under the Jordan-
Wigner transformation, imply that the ground states of cer-

tain nonlocal Hamiltonians may be found efficiently,
including the one-dimensional cluster state.

Since quadratic fermionic Hamiltonian evolutions are
classically simulatable, the adiabatic quantum computations
in this article are simulatable. Thus we have provided a
polynomial-time classical algorithm for finding properties of
the ground states of certain random-interaction Hamiltonians
and fermionic interaction lattices in one, two, and three di-
mensions.

It should be noted that the Jordan-Wigner transformation
can be generalized to higher dimensions, e.g., �35�. Interest-
ing results may follow from application of these alternate
transformations to our theorems.

Some fermionic systems may only approximately de-
couple into “noninteracting quasiparticles,” unlike the exact
decouplings studied here. These systems may be “approxi-
mately” classically simulatable and have “approximately”
polynomially large ground-state energy gaps. This may be
interesting to explore.

In the Hamiltonians studied here the decoupling transfor-
mation is both known to exist and easy to find explicitly.
Perhaps similar results could be obtained for systems where
the transformation is known to exist but difficult to find ex-
plicitly.
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APPENDIX: PROOF OF THE LIEB et al. THEOREM

For completeness we include a proof of Theorem II.1. We
first need the property that the fermionic commutation rela-
tions are preserved under certain unitary transformations.

Theorem A.1 (Unitary transformations). Suppose the op-
erators �cj : j=1, . . . ,n� obey the FCRs. Let

T = 
U V

V U
� , �A1�

where U and V are real n�n matrices and suppose T is
unitary. Define the set of operators �� j : j=1, . . . ,n� by

�
�1

]

�n

�1
†

]

�n
†

� = T�
c1

]

cn

c1
†

]

cn
†

� , �A2�

where Eq. �A2� denotes the transformation

� j = 	
i=1

n

Tj,ici + Tj,i+nci+n
† . �A3�

Then �� j : j=1, . . . ,n� also obey the FCRs.
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Proof. The proof follows from substituting the definitions
of �� j : j=1, . . . ,n� into the FCRs, and using the known com-
mutation relations on �cj ,cj

† : j=1, . . . ,n�. �
Now we are ready to prove Theorem II.1.
Proof of Theorem II.1. We write Eq. �6� as

H = �c1
†

¯ cn
† c1 ¯ cn �
 A B

− B − A
��

c1

]

cn

c1
†

]

cn
†

� .

�A4�

The theorem is equivalent to showing there are solutions to


 A B

− B − A
� =

1

2

�X + Y� �X − Y�

�X − Y� �X + Y�
�†
� 0

0 − �
�

�
1

2

�X + Y� �X − Y�

�X − Y� �X + Y�
� �A5�

for some non-negative real n�n diagonal matrix �, where X
and Y are unitary. If so, then substituting Eq. �A5� into Eq.
�A4� and using the definition of �k, we get

H = 	
k=1

n

��k�k
†�k − �k�k�k

†� . �A6�

Further, by Theorem A.1, ��k :k=1, . . . ,n� satisfy the FCRs.
So we can apply the FCRs to the second term in each sum-
mand to get Eq. �8�.

Now we set about finding solutions to Eq. �A5�. We re-
write it for convenience as


X + Y X − Y

X − Y X + Y
�
 A B

− B − A
� �A7�

=
� 0

0 − �
�
X + Y X − Y

X − Y X + Y
� . �A8�

Equation �A8� is equivalent to the following four equations:

�X + Y�A − �X − Y�B = ��X + Y� , �A9�

�X + Y�B − �X − Y�A = ��X − Y� , �A10�

�X − Y�A − �X + Y�B = − ��X − Y� , �A11�

�X − Y�B − �X + Y�A = − ��X + Y� . �A12�

Evidently only two of the equations are independent. Adding
and subtracting Eqs. �A9� and �A11� yield

X�A − B� = �Y , �A13�

Y�A + B� = �X . �A14�

We can left multiply by � to get

�X�A − B� = �2Y , �A15�

�Y�A + B� = �2X , �A16�

and then substitute Eq. �A14� into Eq. �A15� and Eq. �A13�
into Eq. �A16� to get the pair of eigendecomposition equa-
tions

Y�A + B��A − B� = �2Y , �A17�

X�A − B��A + B� = �2X . �A18�

Since A is real symmetric and B is real antisymmetric, �A
+B�†=A−B and so �A−B��A+B� and �A+B��A−B� are sym-
metric positive semidefinite. So there is always a unitary X
and Y with non-negative diagonal �2 satisfying Eqs. �A17�
and �A18�. �
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