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We investigate the possibility of the existence of different types of thermal entanglement in the two-spin
Heisenberg XY model, which are distinguished by the behavior of the concurrence as a function of the model
parameters. Singularities in the temperature threshold for thermal entanglement and in the ground-state energy
as a function of the model parameters are used to construct diagrams containing boundary lines separating the
several types of thermal entanglement in the system, showing an unexpected rich structure. We discuss a
procedure to extract a pure quantum component from the spin-correlation function at arbitrary temperatures, by
using the explicit form of the decomposition that minimizes the concurrence, and show that it is highly
sensitive to the different patterns of thermal entanglement.
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I. INTRODUCTION

Entanglement is a fundamental quantum-mechanical fea-
ture which sets the basic differences between classical and
quantum correlations. It is regarded as a valuable resource in
quantum information processing �1,2� and has been the sub-
ject of intense research over the last few years �3�. The study
of entanglement in condensed-matter systems is more recent
and is expected to provide insights in the description of
many-body quantum effects, such as quantum magnetism,
superconductivity, quantum Hall effect, and quantum phase
transitions �4�. These expectations have motivated efforts
�5,6� to analyze the properties of entanglement in many-body
systems and to identify the possible consequences of these
properties in physical observables. The surprising result of
these studies is the conclusion that entanglement can be sus-
tained under macroscopic thermodynamic conditions in
condensed-matter systems �7�.

Most of the works on entanglement in condensed-matter
systems addressed the problem of its quantification as a func-
tion of some controlled parameters. In the case of pure states
in bipartite systems, the degree of entanglement can be mea-
sured by the von Neumann entropy �8�, which is calculated
from the reduced density matrix obtained by performing a
partial trace of the total density matrix over one of the sub-
systems. Using this measure it became possible to study
many properties of entanglement in the ground state of sev-
eral many-body systems �5,6�. The quantification of en-
tanglement in mixed states, however, is more complicated
because the measures of entanglement do not lead to direct
computational schemes for arbitrary mixed states. The en-
tanglement of formation �8�, for example, yields a closed
exact solution only in the simplest case of two qubits �9�. For
an arbitrary number of qubits, it has so far only been possible
to estimate upper and lower bounds to the entanglement of
formation �10�, in which case the concept of negativity �11�
is also important. Such state of affairs has made it difficult to
study more systematically the properties of entanglement in
more realistic many-body systems such as those in contact
with a thermal bath and/or in the presence of quantum noise.

Particularly important many-body systems, whose en-
tanglement properties have attracted much attention of the

condensed-matter community, are chains of quantum spins.
The possibility to map quantum walks �12�, whose theory
may provide a powerful way to systematize quantum algo-
rithms, onto networks of quantum spins �13� is one of the
motivations to study these systems in the context of quantum
computing and quantum information. A particularly attrac-
tive feature of quantum spin chains is the possibility of find-
ing exact expressions of entanglement quantifiers for certain
types of interactions. For instance, the von Neumann entropy
which quantifies entanglement in the ground state of the
Heisenberg XY spin chain has an exact expression in the
thermodynamic limit �14–16�. Other models of quantum spin
chains have recently been studied using methods from
random-matrix theory �17�.

The thermal pairwise entanglement between two arbitrary
spins in the Heisenberg XY model has been extensively stud-
ied. In the case of the two-spin chain, many exact solutions
are available �18–21�. For chains with more than two spins,
the pairwise entanglement between any two spins can be
calculated by using the reduced density matrix obtained by
performing the partial trace over all the remaining spins of
the chain �22–25�. In both cases, the most striking feature is
the vanishing of the entanglement for temperatures above a
certain finite threshold Tc. This is argued to be a general
property of entanglement in bipartite systems in contact with
a thermal bath �26�. The existence of a temperature interval,
below the critical temperature, on which the entanglement of
formation vanishes has also been recently reported �19,25�.

An important feature of ground-state entanglement is its
role as an indicator of a quantum phase transition �4�. The
derivative of the concurrence with respect to the parameter
driving the transition has been shown to exhibit well-defined
scaling properties �5,6,22,27�. Another interesting prospect is
the possibility that entanglement be used as a generalized
concept of order �7�, which could not only unify currently
widely accepted definitions of order via correlation function
but also give rise to new kinds of orders in condensed-matter
systems, such as the topological/quantum orders introduced
by Wen �28�. The basic idea can be summarized as follows.
The concept of order in condensed-matter systems is intrin-
sically connected to the existence of certain types of corre-
lations between different parts of the system. The notion of
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symmetry breaking provides in Landau’s theory a classifica-
tion of the possible orders and also determines the general
structure of the low-energy effective description in terms of
the Nambu-Goldstone modes. Quantum orders appear natu-
rally in fractionally quantum Hall systems and are different
in that they cannot be described by Landau’s theory. They
result from new kinds of nonlocal quantum correlations that
sustain an ordered pattern without breaking any symmetry. In
Ref. �29� quantum orders were associated with different pat-
terns of quantum entanglement. This interesting connection
allowed an understanding of some unusual features of en-
tanglement through the study of the ground state of exact
soluble models and also provided a classification of en-
tanglement patterns associated with quantum orders in terms
of projective symmetry groups �28,29�.

Being a generic property of the density matrix of a quan-
tum state, we should expect entanglement patterns to also
emerge in thermal states of finite systems, although the con-
cept of quantum order itself, defined via singularities in the
energy density, does not rigorously apply to finite systems,
which would imply a conceptual difference between en-
tanglement patterns in finite systems and quantum order.
Considering the current technological limitations in scaling
the number of entangled qubits in artificially constructed de-
vices, the possibility to distinguish between different types of
entanglement in qubit clusters is quite appealing from a con-
ceptual point of view. Interesting practical questions could
arise, such as the possibility to induce a certain entanglement
pattern in a given set of qubits, a situation that is conceptu-
ally similar to the phenomenon of spin injection in spintron-
ics �30�.

In this paper, we investigate the possibility of distinguish-
ing entanglement patterns in finite systems through the study
of the thermal entanglement in the two-spin Heisenberg XY
chain. We propose to use the behavior of the concurrence as
a function of the model parameters as a classifier of entangle-
ment patterns. Our results are presented in diagrams, whose
boundary lines are related to singularities in the ground-state
energy and in the temperature threshold for thermal entangle-
ment as a function of the model parameters. We have used
Wootters’ concurrence minimization procedure to extract a
pure quantum component from the spin-correlation func-
tions. We show that this pure quantum component is highly
sensitive to changes in the patterns of thermal entanglement
as one crosses the boundary lines of the diagrams. The paper
is organized as follows. In Sec. II, we present a brief descrip-
tion of the thermal entanglement of the system by means of
Wootters’ formula for the concurrence �9�. We calculate the
entanglement threshold Tc and show that it agrees with pre-
vious results �18,21�. We also observe the existence of a
temperature interval below Tc, denoted entanglement dip,
where the entanglement vanishes �19,25�. In Sec. III we pro-
vide a characterization of possible entanglement patterns in
the model by using the concurrence as a function of the
model parameters. The results are presented via diagrams
whose boundary lines separate regions with different types of
entanglement. These diagrams introduce concepts which ex-
tend in a nontrivial way previous analysis of the two-spin
Heisenberg XY model, where the concurrence was used sim-
ply as a tool to distinguish entangled from separable mixed

states. In Sec. IV, we derive the concurrence-minimizing or
optimal decomposition, and using it, we propose a procedure
to extract a pure quantum component from the spin-
correlation functions at finite temperature. We show that
many properties of the thermal entanglement, such as the
emergence of a temperature threshold and the existence of
entanglement dips, appear as notable features in the pure
quantum spin-correlation functions. Such signatures are lost,
however, when the ensemble average is performed. A sum-
mary and conclusions are presented in Sec. IV.

II. GENERAL PROPERTIES OF THE THERMAL
ENTANGLEMENT

The Hamiltonian of the Heisenberg XY model describing
two spins in the presence of a uniform magnetic field h ap-
plied in the z direction can be written as H=hH�, where H�

is given by

H� = −
�

2
��1 + ���1

x�2
x + �1 − ���1

y�2
y� − ��1

z + �2
z� , �1�

where the anisotropy parameter � ranges from �=0 �XX
model� to �=1 �Ising model�, �=J /h where J is the coupling
constant, and � j

k corresponds to the Pauli operator in the
direction k� �x ,y ,z� for the jth spin.

We assume that the system is in contact with a thermal
bath �23� with inverse temperature parameter �. We verify
that the transition from entangled to separable state occurs as
expected at a finite temperature Tc �18,21–23�, which we
shall present as a function of the model parameters. We also
observe the appearance of dips of vanishing concurrence,
denominated entanglement dips, which occur on a tempera-
ture interval below Tc, in agreement with recent works
�19,25�.

When the system is in contact with a thermal bath, the
resulting mixed state is described by the density matrix �
=Z−1 exp�−H� /T�, where Z is the partition function and T
��h��−1. From the matrix representation of H in the base
��00	 , �01	 , �10	 , �11	� we find

� =
1

Z

p 0 0 q

0 cosh � sinh � 0

0 sinh � cosh � 0

q 0 0 r
� , �2�

where

p = cosh �c +
2

�4 + �2�2
sinh �c,

q =
��

�4 + �2�2
sinh �c,

r = cosh �c −
2

�4 + �2�2
sinh �c,

Z = 2�cosh � + cosh �c� ,
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� = �/T ,

�c = �4 + �2�2/T .

The concurrence of the system in this state can be calcu-
lated using Wooters’ formula �9� for the convex roof of the
concurrence. In order to apply this procedure we need to
calculate the square root of the eigenvalues of the non-
Hermitian matrix R���̃=��y � �y���y � �y. We obtain four
different values,

�1 =
�1 + q2 − q

Z
, �3�

�2 =
�1 + q2 + q

Z
, �4�

�3 =
e−�

Z
, �5�

�4 =
e+�

Z
. �6�

We shall consider, without loss of generality, just the case
in which � and h are positive. The maximum eigenvalue can
then be either �2 or �4 and thus there are two possible ex-
pressions for nonzero values of the concurrence, C2���=�2
−�1−�3−�4 and C4���=�4−�1−�2−�3. The concurrence
can therefore be written as C���=max�0,C2��� ,C4����,
where

C2��� =
2

Z
�q − cosh �� , �7�

C4��� =
2

Z
�sinh � − �1 + q2� . �8�

Due to parity symmetry the density matrix decomposes
into two blocks, denoted parallel and antiparallel. The eigen-
values �1 and �2 are obtained from the parallel block while
�3 and �4 arise from the antiparallel one. This distinction is
useful in the interpretation of the functions C2 and C4 as
parallel and antiparallel entanglement measures �31,32�.
These two types of entanglement are usually interpreted as
being derived from different spin configurations which can
be described in terms of the probabilities of the occurrence of
parallel or antiparallel Bell states. The interpretation in terms
of probabilities works very well for the ground state �pure
state�, but for the thermal state it leads to some difficulties as
was recently reported in Ref. �32�. In Sec. III, we will show
that the concurrences C2 and C4 are obtained from different
families of concurrence-minimizing decompositions, which
in turn explains the differences in their behavior.

In Fig. 1 we show three-dimensional graphs C���� for
different temperatures. At low temperatures, the behavior of
the concurrence is strongly affected by its value in the
ground state. There are two regimes separated by a curve
�c��� where the ground-state concurrence presents a discon-
tinuity, which is related to an abrupt change in the ground

state itself. For finite temperature, on the other hand, the
discontinuity at �=�c gives rise to the steep decline shown
in Fig. 1�a�. Increasing the temperature further, the transition
between the two regimes becomes smoother �Fig. 1�b�� and
the concurrence begins to vanish, initially in the region �
	�c �Fig. 1�c�� and then, above a certain threshold, it van-
ishes everywhere. In fact, for an arbitrary pair of parameter
values �� ,��, one can always find a critical temperature Tc

FIG. 1. Three-dimensional graphs of the concurrence as a func-
tion of the parameters � and � for different temperatures.
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above which C���=0. There are sound mathematical argu-
ments �26� establishing that this transition toward zero con-
currence at finite temperature, reported in many works
�18,19,21,23,24�, is a general property of bipartite thermal
entanglement.

The determination of Tc for arbitrary � and � involves the
solution of one of the following transcendental equations:
C2���=0 or C4���=0, in the parameter space regions where
�2
�4 or �2	�4, respectively. Except for the case �=0 and
�=�c, where we find

Tc =
�

ln�1 + �2�
for � = 0 �9�

and

Tc =
�

arcsinh��/2�
for � = �c =

2
�1 − �2

, �10�

it is not possible in general to obtain closed analytic expres-
sion for Tc.

Figure 2�a� shows a three-dimensional graph of Tc�� ,��
and Fig. 2�b� shows cross sections for several values of �.

Two different regimes appear, which are separated by a dis-
continuity located at a curve �t���. Note that there is no
discontinuity at the extreme values �=0 and �=1. For �

�t, Tc is determined by the solution of C4=0, while for
�	�t, it is obtained from the solution of C2=0. The discon-
tinuity is due to the fact that there is no value of Tc at which
C2 and C4 vanish simultaneously. This peculiar behavior of
the transition temperature is one of the signatures of the ex-
istence of different entanglement patterns in the mixed state
describing the system. In Sec. III we shall describe in detail
how these patterns can be characterized by the concurrence.

III. DIAGRAMS OF ENTANGLEMENT PATTERNS

Diagrams used as tools to characterize properties of ther-
mal entanglements have appeared in many previous works
�19,20,25�. However, with notable exceptions �32� the
boundary lines in these diagrams separate regions of positive
and null concurrence only, i.e., they only distinguish en-
tangled from separable states. This appears quite natural
from the point of view of traditional phase transition once we
interpret the degree of entanglement as a kind of order pa-
rameter distinguishing a correlated �entangled� phase from
an uncorrelated �separable� phase. However, if we accept the
possibility that entanglement may provide a characterization
of order beyond the conventional viewpoint, then it should
be possible to classify different entangled phases according
to certain pattern formations or certain behaviors of correla-
tion functions. In this section, we present entanglement dia-
grams whose boundary lines separate different types of en-
tanglement patterns, characterized by different classes of
behavior of the concurrence as a function of the system’s
parameters. More specifically, our procedure consists of ana-
lyzing the concurrence function C�� ,� ,T� through various
cuts on the three-dimensional parameter space. Interestingly,
the graphs of the concurrence as a function of one parameter,
maintaining the others fixed, can be grouped according to a
common shape and define continuous boundary lines sepa-
rating different entanglement regimes on the space of the
remaining parameters. These boundary lines can be traced
back to discontinuities either in the ground state of the sys-
tem or in the threshold temperature Tc. This procedure nicely
complements previous analysis of this model by revealing a
possible underlying structure in the quantum correlations im-
plied by the presence of entanglement.

We start by presenting in Fig. 3 the graphs of C�� ,� ,T�
for several values of � and for �=0.5. The concurrence
curves for �
�c2.3091 start with C=1 at T=0 and de-
crease monotonically with temperature, which can be inter-
preted as a result of the mixture of the maximally entangled
pure ground state with the other states. Exactly at �=�c,
there is a reduction in the ground-state concurrence caused
by a degeneracy in the ground state that transforms it into a
mixed state and defines a new entanglement pattern.

In the region �	�c, we have two different regimes that
are separated by the curve �t���. For �t	�	�c, the concur-
rence vanishes on a small temperature interval, denominated
entanglement dip, even though T	Tc �19,25�. After the dip
the concurrence increases with temperature reaching a maxi-

FIG. 2. �a� Three-dimensional graph of the critical temperature
Tc as a function of � and �. �b� Cross sections for several values of
�. For values of � different from �=0 and �=1, there is a discon-
tinuity in Tc as a function of � at the point �t, which defines a curve
�t���. This curve is shown in the diagram of Fig. 4, where it is used
as a boundary line separating different patterns of entanglement.
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mum value, after which it decreases monotonically until it
vanishes precisely at T=Tc. For �	�t1.194, we have
again a simple monotonic decrease in the concurrence with
temperature, but it differs from the regime where �
�c
through the value of the ground-state concurrence.

The existence of the entanglement dip for �t	�	�c re-
sults from the combination of Wooters’ formula �9�, C���
=max�0,C2��� ,C4����, with the fact that the graphs of the
functions C2��� and C4��� as a function of temperature never
cross for C���
0. For �
�c, C���=C4��� defines the non-
null part of the concurrence shown in Fig. 3�a�, while for
�	�t, the non-null part of the concurrence is given by
C���=C2���. In the intermediate regime, where �t	�	�c,
both C2��� and C4��� contribute to C��� on different tem-
perature intervals. Since their graphs do not cross for C���


0, there must exist a finite interval where the concurrence
vanishes.

Figure 4 shows a diagram on the plane �� ,�� with regions
corresponding to the different entanglement regimes. Note
that for �=0 we have �t=0, and therefore there are only two
regions: �I� and �II�. For �=1, �c→� and �t→�, and there-
fore there is just the regime �III�. These two limiting cases
were analyzed in Ref. �21�. These results imply that in the
Ising model, only the parallel entanglement exists, while in
the XX model, the antiparallel entanglement dominates. The
curve �c��� defines the lower limit of a region where the
entanglement is described only by C4, while the curve �t���
sets the upper limit of a region where the entanglement is
described by C2. In the intermediate regime both types of
behavior appear, creating the entanglement dip discussed
previously. We can also use the boundary curves of Fig. 4 to
obtain numerically an expression to the ratio �t /�c as a func-
tion of �. We find the following linear relation:

�t���
�c���

� A + B� , �11�

where A=0.193�0.002 and B=0.648�0.004.
Preparing the ground for our discussion in Sec. IV con-

cerning the characterization of entanglement patterns, we
analyze the behavior of the probabilities of Bell states. Fol-
lowing Ref. �31� let q1�q2� be the maximum probability for
the occurrence of a �an� parallel �antiparallel� Bell state. The
functions C2 and C4 can be written in terms of these prob-
abilities �31� as C2=q1−1 /2 and C4=q2− �1−�2� /2, where
�2= ��q00−�q11�2, with q00 and q11 being the probabilities of
the occurrence of the states �00	 and �11	, respectively. Note
that C=C2 if q1
1 /2
q2, implying a connection between
the entanglement and the predominance of a parallel state
over the antiparallel ones. This justifies the term parallel en-
tanglement in this case. In our model this characterization
works well for �	�t, where parallel entanglement is ob-
tained. Similarly, we characterize the entanglement as anti-
parallel if C=C4 and q2
q1. In our model this condition is
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FIG. 3. Graphs of C�� ,� ,T� for �=0.5 and different values of
�. Four different behaviors exist depending on the value of �: �a�
monotonic decrease starting from a pure state with C=1 for �
�c=2 /�1−�22.3091 and a monotonic decrease starting from
mixed state for �=�c. �b� Concurrence vanishes on a finite interval,
entanglement dip �shown in the inset� for �c��	�t�0.193
+0.648���c1.194. �c� Monotonic decrease starting from a pure
state with C	1 for �	�t.

FIG. 4. Diagram ��� separating the distinct behaviors of
C�� ,� ,T� shown in Fig. 3. Regions �I�, �II�, and �III� correspond to
the graphs shown in Figs. 3�a�, 3�b�, and 3�c�, respectively. The
curve �c��� represents a regime of its own that is different from �I�
and �II� �see Fig. 3�a��.
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satisfied for �
�c. Note however that it is not necessary to
have q2
q1 for C=C4 if ��0 and therefore the character-
ization of antiparallel entanglement is more subtle than the
parallel one. In Fig. 5 we show the behaviors of q1 and q2 in
the intermediate region �t	�	�c as a function of the tem-
perature. There are two different regions, denoted �I� and �II�
in Fig. 5, where the concurrence is positive and two regions

where the concurrence vanishes. In region �I� we have C
=C2, while C=C4 in region �II�. In both regions we have
q1
q2, which implies the predominance of a parallel Bell
state over the antiparallel ones. Although the entanglement
can be characterized as parallel in region �I�, it cannot be
classified as antiparallel in region �II�. A similar conclusion
was put forward in Ref. �32� regarding the characterization
of finite temperature entanglement. The difficulty is due to
the combined effects of temperature dependence of q1 and q2
and the presence of a magnetic field, which acts only on the
parallel sector of the density matrix. If h=0��→��, �=0
and thus the predominance of one type of Bell state over the
others becomes a sufficient condition for entanglement char-
acterization at all temperatures. The difficulty also disappears
at zero temperature.

Next, we study the behavior of the concurrence as a func-
tion of the parameter � maintaining � and T fixed. This
corresponds to performing cuts in Fig. 1 for different values
of �. In the upper part of Fig. 6, we present a diagram �
�T which exhibits a boundary curve separating two differ-
ent regimes, denoted �I� and �II�, which are characterized by
the graphs shown in the lower part of the figure. A notable
feature of region �I� is the presence of the entanglement dip
on a finite interval of the domain of the parameter �. This
feature is clearly absent in region �II�.

Lastly, we analyze the dependence of C�� ,� ,T� as a func-
tion of the anisotropy parameter � keeping � and T fixed.
The results are presented in the diagram shown in Fig. 7,
which exhibits four different regions. In region �I� we have

FIG. 5. Behavior of the probabilities q1 and q2 in the interme-
diate region �t	�	�c. The vertical lines define four regions. In
the regions denoted �I� and �II� the concurrence is positive, while it
vanishes in the other two regions. In region �I�, q1
1 /2 and the
entanglement can be classified as parallel C=C2. In region �II�,
although q1
q2 the entanglement cannot be characterized as paral-
lel because C2	0 and C=C4.

(b)

(a)

(c)

FIG. 6. Upper part: diagram ��T separating different behaviors of C�� ,� ,T� for fixed T and �. Lower part: representative graphs of
regions �I� and �II� of the above diagram.
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null concurrence in a small interval of values of �, which
corresponds to the values of � and � for which T

Tc�� ,��. In region �II�, the concurrence vanishes for val-
ues of � above a certain threshold. The opposite occurs in
region �III�. The last region, �IV�, corresponds to points
�� ,T� for which we have T
Tc for all values of � and
therefore C=0 everywhere. A notable feature of the diagram
is the existence of a crossing point of boundary curves, ap-
proximately at T1.310 and �=1.155. If we maintain one
of the parameters T or � fixed at one of these values and let
the other vary, we detected only two different entanglement
patterns.

In Sec. IV, we shall demonstrate how these different
classes of behavior of the concurrence function C�� ,� ,T� or
entanglement patterns translates into specific features of a
pure quantum component of the spin-spin-correlation func-
tion.

IV. PURE QUANTUM CORRELATIONS

In Sec. III we demonstrated how the behavior of the con-
currence function C�� ,� ,T� can be used to separate regions

in parameter space which exhibit different types of entangle-
ment. In this section, we further characterize these entangle-
ment patterns using suitably defined spin-correlation func-
tions. We shall consider two types of correlation functions:
�i� the usual ones which are obtained by thermal ensemble
averages and �ii� the correlation functions defined via a mix-
ture of states belonging to a special decomposition of the
density matrix. This special decomposition appears in the
calculation of the entanglement of formation �8� and has the
property of minimizing the average concurrence. Ensemble
averaged correlation functions are invariant under changes in
density-matrix decompositions, which physically means that
they quantify jointly both classical and quantum correlations.
Therefore some properties of the thermal entangled state,
which are revealed by the concurrence, may not be detected
by these functions. The spin-correlation functions defined via
the concurrence-minimizing decomposition, on the other
hand, are sensitive to all features characterizing the different
types of entanglement that occur in the system. In this sec-
tion, we obtain explicitly the concurrence-minimizing de-
composition, and using it we calculate the pure quantum

FIG. 7. Upper part: diagram ��T showing the boundary lines separating four different regions. Lower part: behavior of C�� ,� ,T�, for
T and � fixed, characterizing each region shown in the diagram above.
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spin-correlation functions. Several graphs of these correla-
tion functions are presented and compared with the correla-
tion functions obtained by ensemble averages.

A. Concurrence-minimizing decomposition

It is known that any legitimate decomposition of the den-
sity matrix can be obtained as follows �2�: �i� find a legiti-
mate decomposition ��vi	� of the density matrix, �, and sub-
normalize the states of this decomposition in such a way that
�vi �vi	= pi, where pi is the probability of occurrence of the
state �vi	 in the ensemble. In that way, � can be written as
�=�i=1

n �vi	�vi�, where n is the rank of the density matrix; �ii�
any legitimate decomposition of � can be obtained from
��vi	� by using a higher dimensional unitary matrix. More
specifically, if �wi	 is a legitimate decomposition of the den-
sity matrix, then there exists an m�m unitary matrix U, with
mn, such that �wi	=� j=1

n Uij�v j	.
Following Wooters’ prescription �9�, in order to obtain a

concurrence-minimizing decomposition we need first to con-
struct a legitimate decomposition, ��xi	�, of the density matrix
with the special property �xi � x̃j	=�i�ij, where �x̃j	 is a “spin-
flipped” state. From the considerations of the previous para-
graph if we take the n subnormalized eigenstates of the den-
sity matrix as our initial decomposition than there exists an
m�m unitary matrix U that acting on it produces the re-
quired decomposition ��xi	�. On the other hand, one can show
that the states ��xi	� are in fact right eigenstates of the non-
Hermitian matrix R=��̃=��y � �y���y � �y, so that the de-
sired decomposition can also be obtained by normalizing the
right eigenstates of R in such a way that the required prop-
erty is satisfied. We applied both procedures and verified that
they lead to the same decomposition, which was taken as a
consistency check. The final results are

�x1	 =��1

2
�� p

r
�1/4

�00	 − � r

p
�1/4

�11	� , �12�

�x2	 = − i��2

2
�� p

r
�1/4

�00	 + � r

p
�1/4

�11	� , �13�

�x3	 = − i��3

2
��01	 − �10	� , �14�

�x4	 =��4

2
��01	 + �10	� . �15�

The next step is to find a unitary transformation that maps
the decomposition ��xi	� onto a new one ��zi	� with the prop-
erty that it minimizes the average concurrence. It can be
shown �9,33� that this result can be easily obtained from the
following representation:

�z1	 = 1
2 ��y1	 + ei�2�y2	 + ei�3�y3	 + ei�4�y4	� , �16�

�z2	 = 1
2 ��y1	 + ei�2�y2	 − ei�3�y3	 − ei�4�y4	� , �17�

�z3	 = 1
2 ��y1	 − ei�2�y2	 + ei�3�y3	 − ei�4�y4	� , �18�

�z4	 = 1
2 ��y1	 − ei�2�y2	 − ei�3�y3	 + ei�4�y4	� , �19�

where the states ��yi	� correspond to the states ��xj	� rear-
ranged in such a way that �y1	 equals the state �xi	 for which
�i=�max. The average concurrence of that decomposition is
given by �C	=�1+� j
1� je

−2i�j, where the set �� j� corre-
sponds to the set ��i� rearranged in decreasing order. In the
regions where 2�max−� j=1

4 � j 
0, the concurrence-
minimizing decomposition is given by taking ��zi	� with the
choice �2=�3=�4=� /2. There are two types of decomposi-
tions of the density matrix which refer to the conditions �1
=�2 and �1=�4. These two decompositions have very differ-
ent characteristics as were shown in Sec. IV through the
behavior of the functions C2 and C4. Notice that the states
��x1	 , �x2	� belong to the parallel sector, while ��x3	 , �x4	� be-
long to the antiparallel one. However, to find the
concurrence-minimizing decomposition we need to mix
states from both sectors. This reveals the difficulty to inter-
pret the functions C2 and C4 as parallel and antiparallel en-
tanglements, as we have discussed in Sec. IV. We shall ana-
lyze these two decompositions separately.

Case 1: �4
�2. In this case we have �y1	= �x4	. The
concurrence-minimizing decomposition, denoted ��wi	�, is
given by

�w1	 = 1
2 ��x4	 + i�x1	 + i�x2	 + i�x3	� , �20�

�w2	 = 1
2 ��x4	 + i�x1	 − i�x2	 − i�x3	� , �21�

�w3	 = 1
2 ��x4	 − i�x1	 + i�x2	 − i�x3	� , �22�

�w4	 = 1
2 ��x4	 − i�x1	 − i�x2	 + i�x3	� . �23�

All states of this decomposition have the same probability
of occurrence p=1 /4. The concurrence is thus the same for
every state and this decomposition also minimizes the en-
tanglement of formation.

Case 2: �2
�4. In this case we have �y1	= �x2	. From the
general representation of the states ��zi	� and the expression
for ��xi	� we obtain

�z1	 = 1
2 ��x2	 + i�x1	 + i�x3	 + i�x4	� , �24�

�z2	 = 1
2 ��x2	 + i�x1	 − i�x3	 − i�x4	� , �25�

�z3	 = 1
2 ��x2	 − i�x1	 + i�x3	 − i�x4	� , �26�

�z4	 = 1
2 ��x2	 − i�x1	 − i�x3	 + i�x4	� . �27�

Unlike the previous case the states of this decomposition
are not equally probable and consequently they do not have
the same concurrence. Therefore, although this decomposi-
tion minimizes the average concurrence it does not minimize
the entanglement of formation. However, we verified nu-
merically that the discrepancy is very small so that it can still
be used for practical purposes. The probabilities of occur-
rence of the states in the concurrence-minimizing decompo-
sition are given by
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p1 = p2 =
1

4
�1 −

Q
Z
� , �28�

p3 = p4 =
1

4
�1 +

Q
Z
� , �29�

where z=2�cosh �+cosh �c� is the partition function and

Q =
4

�4 + �2�2

sinh �c

�1 + q2
. �30�

In the regions where C���=0, the phases �2, �3, and �4 are
chosen such that C=�1+� j
1� je

−2i�j =0. This choice is al-
ways possible when �1	�2+�3+�4. Making this choice, we
obtain a decomposition corresponding to separable pure
states. For these states, as we shall demonstrate, the pure
quantum spin correlations vanish. This does not mean, how-
ever, that the ensemble averaged spin correlations should
also vanish since the statistical mixture of these states allows
for the existence of classical correlations. In fact, in these
regions the correlations between the spins are purely classi-
cal in the sense of being generated solely by local operations
and classical communications �2�.

B. Spin correlation functions

In this section we present a detailed quantitative analysis
of the properties of the spin-correlation functions of the sys-
tem. We start by presenting exact expressions for the spin-
correlation functions of the states in the concurrence-
minimizing decomposition and also for ensemble averaged
correlation functions. Comparative graphs will illustrate their
differences and similarities. Spin correlation functions are
defined as quantum averages,

��� � ��1
��2

�	 − ��1
�	��2

�	 , �31�

where � ,�� �x ,y ,z�.
We show that the average correlation functions calculated

on the states of the concurrence-minimizing decompositions
correspond to a pure quantum component of the correlations.

For the decomposition ��zi	�, the correlation functions for
the pure states �z1	 and �z2	 are the same and similarly for �z3	
and �z4	. We denote them as ����z1,2� and ����z3,4�, respec-
tively. The pure quantum spin-correlation function is then
defined by the following weighted average:

���
q = 2p1����z1,2� + 2p3����z3,4� , �32�

where

�xx�z1,2� =
2�q + sinh ��

Z − Q
−

e��4 cosh �c − 2Q + 4q�
�Z − Q�2 ,

�33�

�yy�z1,2� =
2�− q + sinh ��

Z − Q
+

e−��4 cosh �c − 2Q + 4q�
�Z − Q�2 ,

�34�

�zz�z1,2� =
2 cosh �c − Q − 2 cosh �

Z − Q

−
��1 + q2�Q − 2 cosh �c�2

�Z − Q�2�1 + q2�
, �35�

and

�xx�z3,4� =
2�q + sinh ��

Z + Q
−

e��4 cosh �c + 2Q + 4q�
�Z + Q�2 ,

�36�
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FIG. 8. Behavior of the spin-correlation functions as a function
of temperature for each region in the diagram shown in Fig. 4. The
full lines represent the pure quantum component �xx

q , while the
dashed lines represent the ensemble averaged spin-correlation
function.
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�yy�z3,4� =
2�− q + sinh ��

Z + Q
+

e−��4 cosh �c + 2Q + 4q�
�Z + Q�2 ,

�37�

�zz�z3,4� =
2 cosh �c + Q − 2 cosh �

Z + Q

−
��1 + q2�Q + 2 cosh �c�2

�Z + Q�2�1 + q2�
. �38�

For the decomposition ��wi	�, the correlation functions are
the same for all the states. We find

�xx�w1–4� =
2�q + sinh ��

Z

−
4��1 + q2 + q��P sinh � + cosh ��

Z2 ,
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FIG. 9. Behavior of the spin-correlation functions as a function
of temperature for each region in the diagram shown in Fig. 4. The
full lines represent the pure quantum component �yy

q , while the
dashed lines represent the ensemble averaged spin-correlation
function.
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FIG. 10. Behavior of the spin-correlation functions as a function
of temperature for each region in the diagram shown in Fig. 4. The
full lines represent the pure quantum component �zz

q , while the
dashed lines represent the ensemble averaged spin-correlation
function.
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�yy�w1–4� =
2�− q + sinh ��

Z

−
4��1 + q2 − q��P sinh � + cosh ��

Z2 ,

�zz�w1–4� =
2�cosh �c − cosh ��

Z
−

�Q2�1 + q2� − 4�
Z2 ,

where P=cosh �c /�1+q2. In this case the pure quantum cor-
relation function is simply ���

q =����w1–4�. In summary, the
formula

���
q = �����w1–4� , �4 
 �2

2p1����z1–2� + 2p3����z3–4� , �2 
 �4
�

can be used as an operational definition of the pure quantum
spin-correlation function of the system.

The pure quantum spin-correlation functions calculated
previously vanish, by construction, when the states are sepa-
rable. However, the full density matrix of the system is a
statistical mixture of these states that leads to decomposition
invariant averages, which implies that it must also include
some degree of classical correlations. Therefore, the en-
semble averaged correlation functions do not vanish if we
choose a decomposition containing only separable states.
These correlation functions are defined as

������ � Tr��1
��2

��� − Tr��1
���Tr��2

��� = �
j=1

4

�� j��1
��2

��� j	

− �
j=1

4

�� j��1
��� j	�

k=1

4

��k��2
���k	 , �39�

where ��� j	� is an arbitrary decomposition of the density
matrix. Notice that these correlation functions do not depend
on the decomposition since they can be written directly in
terms of the density matrix. Applying this definition to our
problem, we obtain the following results:

�xx��� =
2�q + sinh ��

Z
, �40�

�yy��� =
2�− q + sinh ��

Z
, �41�

�zz��� =
2�cosh �c − cosh ��

Z
− �1 + q2��Q

Z
�2

. �42�

Since these correlation functions quantify jointly classical
and quantum correlations, they are not sensitive to the en-
tanglement patterns described in Sec. III.

We proceed by presenting some graphs of the correlation
functions as a function of the temperature for several values
of the system’s parameters � and �. We find that the pure
quantum correlation functions are strongly sensitive to pa-
rameter variations that lead to changes in the entanglement
patterns, whose boundaries are defined by the curves �c���
and �t���. Figure 8 shows the behavior of �xx as a function
of the temperature for �=0.5 and three different values of �
representing the three regions shown in the diagram of Fig.
4.

The behaviors of �yy and �zz are somewhat less dramatic,
but they also show clear signatures distinguishing the regions
associated with different entanglement patterns. They are
shown in Figs. 9 and 10, respectively. Note in particular that
the ensemble averaged correlation functions completely miss
the entanglement features related to the existence of the
boundary line �t��� shown in the diagram of Fig. 4.

We close this section by showing an interesting connec-
tion with the theory of classical-like ground states �CGSs�
�34�. It states that pure quantum fluctuations may vanish at
certain values of the control parameters and the ground state
of the quantum system becomes identical to the lowest-
energy state of its classical counterpart. Extending this idea
to low-temperature thermal states, we have verified the exis-
tence of a factorizing field � f, at which the concurrence and
all pure quantum correlation functions vanish. This point ap-
proaches the value �c when T→0 as shown in Fig. 11.

V. SUMMARY AND CONCLUSIONS

In this paper we investigated the possibility of the exis-
tence of different types of thermal entanglement in the two-
spin Heisenberg XY model. Our main motivation was the

(b)(a)

FIG. 11. �a� Pure quantum correlation functions in the neighborhood of the factorizing field � f at which they all vanish; �b� factorizing
field as a function of temperature. Note that � f →�c when T→0.
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connection, valid in the thermodynamic limit, between quan-
tum order on one hand and entanglement patterns on the
other �28,29�. We were also guided by the possibility of us-
ing the concept of entanglement as a generalized notion of
order with features that could also be manifested in clusters
of coupled qubits �7�. A particular intriguing aspect of ther-
mal entanglement in clusters of qubits is the existence of a
temperature threshold above which the entanglement van-
ishes �26�. Combining singular features of the temperature
threshold of the two-spin Heisenberg XY model with ground-
state discontinuities as a function of the model parameters,
we could identify classes of behaviors of the concurrence
that led to a quantitative characterization of entanglement
patterns in the system, which were shown in diagrams. These
different types of entanglement were further characterized by
an operationally defined procedure to extract a pure quantum
component of the ensemble averaged spin-correlation func-
tion. These pure quantum spin-correlation functions were
shown to be highly sensitive to changes in the classes of

entanglement types and were also shown to vanish for sepa-
rable states.

We believe that the concepts discussed in this work may
bring insights in the development of entanglement as a pow-
erful concept to unify theoretical tools in condensed-matter
systems. We are particularly interested in applying the con-
cepts developed here to the theory of full counting statistics
of charge transfer through interacting mesoscopic systems
�35�, where qubits can be used as a measurement device. We
are specially intrigued by the possibility that entanglement
patterns could play a role in the design of highly efficient and
selective detectors. Another interesting challenge for re-
search in the immediate future is the construction of en-
tanglement witnesses that are sensitive to changes in en-
tanglement patterns.
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