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We study an optimized measurement that discriminates two mixed quantum states with maximum confi-
dence for each conclusive result, thereby keeping the overall probability of inconclusive results as small as
possible. When the rank of the detection operators associated with the two different conclusive outcomes does
not exceed unity, we obtain a general solution. As an application, we consider the discrimination of two mixed
qubit states. Moreover, for the case of higher-rank detection operators we give a solution for particular states.
The relation of the optimized measurement to other discrimination schemes is also discussed.
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I. INTRODUCTION

Quantum state discrimination �1–3� lies at the heart of
quantum communication and quantum cryptography. Since
information is encoded into states of a quantum system,
these states have to be distinguished when the information is
read out. In the standard discrimination problem, the quan-
tum system is prepared in a certain state that belongs to a
finite set of given states which occur with known prior prob-
abilities. When the states are nonorthogonal, they cannot be
distinguished perfectly and therefore discrimination strate-
gies have been developed which are optimized with respect
to various criteria. The most prominent of these are the dis-
crimination with minimum error �4� and the optimum unam-
biguous discrimination, originally introduced for two pure
states �5,6�. If unambiguous discrimination errors are not al-
lowed, at the expense of admitting a certain fraction of in-
conclusive results, where the measurement fails to give a
definite answer. In general, a variety of measurements may
lead to unambiguous, that is, error-free discrimination. The
optimum measurement is defined as the one that minimizes
the overall probability of inconclusive results.

Unambiguous discrimination is not always possible.
When the states in the given set are pure, they must be lin-
early independent �7�, and when they are mixed, the supports
�8� of their density operators must be different in order to
distinguish them without error �9–18�. For the case that some
or all states in the set cannot be unambiguously discrimi-
nated, recently Croke et al. �19,20� introduced the strategy of
discriminating them with maximum possible confidence.
When a state can be unambiguously distinguished, the con-
fidence in the respective measurement outcome is defined to
be equal to one, otherwise it is smaller. As for unambiguous
discrimination, also for the maximum-confidence discrimina-
tion the measurement is in general not unique �19� and ad-
ditional optimization criteria can be applied.

In this paper, we consider the discrimination of two mixed
quantum states. We investigate the optimized measurement
that distinguishes between them with the maximum confi-
dence for each of the two distinct outcomes, thereby keeping
the probability of inconclusive results, where the measure-
ment fails to give a definite answer, as small as possible. Our
treatment generalizes previous results �13–15� derived for

the optimum unambiguous discrimination of two mixed
quantum states. The paper is organized as follows. Section II
provides the general description of a measurement for dis-
criminating two mixed quantum states with maximum confi-
dence. In Sec. III the specific measurement that achieves this
goal with minimum overall failure probability is investigated
and applications are given, considering also the relation to
optimum unambiguous discrimination and to discrimination
with minimum error. Section IV concludes the paper with a
discussion and a summary.

II. GENERAL MAXIMUM-CONFIDENCE MEASUREMENT
FOR TWO MIXED STATES

We suppose that a quantum system is prepared in the
given mixed states �1 and �2 with the prior probabilities �1
and �2, respectively, where �1+�2=1. We want to perform a
measurement in order to infer from a single outcome whether
the state of the system was �1 or �2. In general, the discrimi-
nation made upon this inference may be erroneous and in-
conclusive results may also occur. A complete discrimination
measurement is described by three positive detection opera-
tors �1, �2, and �? summing up to the identity operator Id in
the d-dimensional joint Hilbert space Hd spanned by the
eigenstates of �1 and �2 belonging to nonzero eigenvalues
�1–3�, that is,

�? = Id − �1 − �2 � 0, �1 � 0, �2 � 0. �1�

The probability that a system prepared in the state �k is in-
ferred to be in the state � j is given by Tr��k� j� with j ,k
=1,2, while Tr��k�?� is the probability that the measurement
fails and yields an inconclusive result. The overall failure
probability Q of the discrimination measurement then reads
as

Q = Tr���?� = 1 − Tr���1� − Tr���2� , �2�

where we have introduced the density operator

� = �1�1 + �2�2, �3�

characterizing the total information about the quantum sys-
tem. When all detection operators are projectors, the mea-
surement is a von Neumann measurement, otherwise it is a
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generalized measurement based on a positive operator-
valued measure �POVM�. From the detection operators � j,
schemes for realizing the measurement can be obtained �21�.

The confidence in the conclusive measurement outcome j,
which we shall denote by Cj, has been introduced �19� as the
conditional probability P�� j � j�= P�� j , j� / P�j� that the state � j
was indeed prepared given that the outcome j is detected. In
our case, we have

Cj =
� jTr�� j� j�

Tr��� j�
=

� jTr�� j� j�
�1Tr��1� j� + �2Tr��2� j�

, �4�

with j=1,2. Here P�� j , j�=� jTr�� j� j� is the joint probability
that the state � j was prepared and the detector j clicks, and
P�j�=Tr��� j� is the total probability for the detection of the
outcome j. In other words, the confidence Cj is the ratio
between the number of instances when the outcome j is cor-
rect and the total number of instances when the outcome j is
detected. Similar to Ref. �19�, we define the positive opera-
tors

�̃ j = � j�
−1/2� j�

−1/2, �̃ j =
�1/2� j�

1/2

Tr��� j�
�5�

and obtain from Eq. �4� the confidences

Cj = Tr��̃ j�̃ j� . �6�

Let us write the operator �̃1 as

�̃1 = �max
�1� �

k=1

m

��k���k� + �min
�1� �

k=m+1

m+n

��k���k� + �
k=m+n+1

d

�k
�1���k���k� ,

�7�

where the eigenstates 	��k�
 with ��k ��k��=�kk� form a
d-dimensional orthonormal basis in Hd. Here �max

�1� and �min
�1�

are the largest and smallest eigenvalues of �̃1, respectively,
and m and n denote their degrees of degeneracy. From Eqs.
�5� and �3� we get

�̃1 + �̃2 = �−1/2��−1/2 = Id, �8�

showing that the eigenvalues of �̃1 and �̃2 do not exceed 1.
From

�̃2 = Id − �̃1 = �
k=1

d

��k���k� − �̃1, �9�

we conclude that the eigenstates belonging to the smallest
eigenvalue of �̃1, given by �min

�1� , are associated with the larg-
est eigenvalue of �̃2, given by �max

�2� =1−�min
�1� and vice versa.

We consider a measurement that achieves the maximum
possible confidences C1

max and C2
max for the discrimination of

each of the two given states. By representing �̃ j with the
help of the orthonormal basis 	��k�
, it follows from Eqs. �6�,
�7�, and �9� that the operators �̃ j maximizing Cj for j=1,2
take the form

�̃1 = �
k,k�=1

m

�kk���k���k��, �̃2 = �
k,k�=m+1

m+n

	kk���k���k�� , �10�

where due to Tr �̃ j =1, we have to require that

�
k=1

m

�kk = 1, �
k=m+1

m+n

	kk = 1. �11�

These operators yield the maximum confidences

C1
max = �max

�1� , C2
max = �max

�2� = 1 − �min
�1� , �12�

corresponding to the largest eigenvalues of the operators �̃1
and �̃2, respectively, in accordance with Ref. �19�. Using Eq.
�12� we obtain the general relation

C1
max + C2

max = 1 + �max
�1� − �min

�1� 
 1, �13�

where we took into account that the case of all eigenvalues
of �̃1 being identical is excluded since it would correspond to
�1=�2.

From Eq. �5� it becomes obvious that the operators �̃ j and
� define the detection operators � j only up to an arbitrary
constant cj and additional optimization criteria can be ap-
plied �19�. Using Eq. �10�, the general structure of the detec-
tion operators discriminating �1 and �2 with maximum con-
fidence thus reads as

�1 = c1 �
k,k�=1

m

�kk��
−1/2��k���k���

−1/2, �14�

�2 = c2 �
k,k�=m+1

m+n

	kk��
−1/2��k���k���

−1/2. �15�

In order to determine the constants c1 and c2 as well as the
matrix elements �kk� and 	kk�, we consider the probability of
inconclusive results given by Eq. �2�, which is equivalent to
Q=1−c1−c2, where Eq. �11� has been taken into account. It
is our aim to find the operators �1 and �2 described by Eqs.
�14� and �15�, that minimize Q on the constraint that the
positivity conditions expressed in Eq. �1� must hold.

At this point, we can establish the link between the above
considerations and the problem of unambiguous discrimina-
tion. Since errors are not allowed, the condition Tr��1�2�
=0 has to be fulfilled for any detection operator �2 that
unambiguously indicates the presence of the state �2, and Eq.
�4� then yields the confidence C2=1. Equation �12� shows
that C2

max=1 requires �min
�1� =0 which implies that rank��1�

�d=rank��� �8�, where �=�1�1+�2�2. Hence the support of
�2 must contain states that do not belong to the support of �1,
or – in other words – the kernel �8� of �1 must not be zero.
Similarly, only for �min

�2� =1−�max
�1� =0 the state �1 can be un-

ambiguously distinguished, meaning that �2 must have a
nonzero kernel. We thus have rederived the conditions that
have to be fulfilled when individual unambiguous discrimi-
nation of the two mixed states is feasible.

When the density operators of both states have nonvan-
ishing kernels, the maximum-confidence discrimination is
equivalent to unambiguous discrimination. However, when
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only the kernel of the first state is nonzero while the kernel
of the second one vanishes, the usual measurement for un-
ambiguous discrimination delivers an inconclusive result in
the presence of the first state. In this case, the measurement
scheme of unambiguous discrimination differs from a
maximum-confidence measurement since the latter distin-
guishes also the first state with a certain nonzero confidence,
thereby admitting errors to occur.

III. OPTIMIZED MEASUREMENT WITH MINIMUM
FAILURE PROBABILITY

A. Solution for states where rank(�1 ,�2)�1

1. General solution

In the following, we want to determine the specific dis-
crimination measurement that achieves the maximum confi-
dences C1

max and C2
max given by Eq. �12�, with the lowest

possible overall failure probability Q. First we restrict our-
selves to the simplest case, where neither the largest nor the
smallest eigenvalue of �̃1, and consequently also of �̃2, are
degenerate; that is,

�̃1 = �max
�1� ��1���1� + �min

�1� ��2���2� + �
k=3

d

�k
�1���k���k� . �16�

Using Eqs. �14� and �15� with m=n=1, the detection opera-
tors warranting the maximum confidences Cj

max for discrimi-
nating the states can be written as

�1 = c1�−1/2��1���1��−1/2 = a�v��v� , �17�

�2 = c2�−1/2��2���2��−1/2 = b�w��w� , �18�

where we introduced the normalized states

�v� =
�−1/2��1�

���1��−1��1�
, �w� =

�−1/2��2�
���2��−1��2�

. �19�

Here �=�1�1+�2�2, and a and b are some constants that
have to be determined. Our task is to minimize the failure
probability resulting from Eqs. �2�, �17�, and �18�,

Q = 1 − a�v���v� − b�w���w� , �20�

on the constraint that the eigenvalues of the operator
�1+�2 are smaller than 1, as required by Eq. �1�. A
simple calculation shows that the latter eigenvalues are

1/2= 1

2 �a+b���a−b�2+4ab��v �w��2� and that they both do
not exceed 1 if a+b�1+ab�1− ��v �w��2�. In order to obtain
the smallest possible failure probability, we take the equality
sign to hold and substitute the resulting expression
b= �1−a� / �1−a�1− ��v �w��2�� into Eq. �20�. Upon minimiz-
ing the resulting function Q�a�, we find that the minimum
failure probability is reached when a=ao and b=bo with

ao =
1 − ��ww

�vv
��v�w��

1 − ��v�w��2
, bo =

1 − � �vv

�ww
��v�w��

1 − ��v�w��2
, �21�

where �vv= �v���v� and �ww= �w���w�. Due to the positivity
condition expressed in Eq. �1�, the constants ao and bo rep-

resent a physical solution only in the parameter region where
0�ao,bo�1; while outside this region they have to be re-
placed by their values at the boundaries in order to get the
optimum solution. Thus we obtain

aopt = 1, bopt = 0 if ��ww

�vv
� ��v�w�� ,

aopt = ao, bopt = bo if ��v�w�� � ��ww

�vv
�

1
��v�w�� ,

aopt = 0, bopt = 1 if ��ww

�vv
�

1
��v�w�� ,

�22�

determining the optimum detection operators

�1
opt = aopt�v��v�, �2

opt = bopt�w��w� , �23�

and �?
opt= Id−�1

opt−�2
opt. The minimum failure probability

Qopt associated with a measurement achieving the maximum
possible confidences C1

max=�min
�1� and C2

max=1−�min
�1� is ob-

tained by substituting Eq. �22� into Eq. �20�, yielding

Qopt =�1 − �vv if ��ww

�vv
� ��v�w��

1 − �ww if ��ww

�vv
�

1
��v�w�� ,


 �24�

and, for the condition in middle line of Eq. �22�,

Qopt = 1 −
�vv + �ww − 2��vv�ww��v�w��

1 − ��v�w��2
. �25�

When Eq. �24� applies the measurement is a von Neu-
mann measurement, where �1

opt= �v��v�, �2
opt=0, and �?

opt

= Id− �v��v� if the condition in the upper line is fulfilled, while
for the condition in the lower line �1

opt=0, �2
opt= �w��w�, and

�?
opt= Id− �w��w�. On the other hand, when Eq. �25�, or the

middle line of Eq. �22�, respectively, applies and �v �w��0,
the discrimination is achieved by a generalized measurement
since then in Eq. �23� aopt=ao�1 and bopt=bo�1.

In the special case �v �w�=0, the middle line of Eq. �22�
always holds. We then get the operators �1

opt= �v��v�, �2
opt

= �w��w�, and �?
opt= Id− �v��v�− �w��w� which describe a von

Neumann measurement with the resulting failure probability
Qopt=1−�vv−�ww. For d=2, this means that �?

opt=0 and in-
conclusive results do not occur.

It is interesting to relate the maximum-confidence mea-
surement with minimum failure probability to the measure-
ment strategy of minimum-error discrimination �4�, where
�?=0. Since in this case �2= Id−�1, the error probability
Perr=�1Tr��1�2�+�2Tr��2�1�=1−�1Tr��1�1�−�2Tr��2�2�
can be written as

Perr = �1 + Tr���1� with � = �2�2 − �1�1, �26�

or �=�−2�1�1, respectively, due to Eq. �3�. The error prob-
ability takes its minimum PE= 1

2 �1−Tr���� �4�, when �1
=�1

E, where

�1
E = �

i�
i�0�
�
i��
i� with � = �

i=1

d


i�
i��
i� �27�

and �
i �
 j�=�ij �22,23�. In other words, in a minimum-error
measurement �1

E projects onto the subspace spanned by all
eigenstates of � that belong to negative eigenvalues 
i, while
�2

E= Id−�1
E. In the next paragraph, we derive the conditions

DISCRIMINATION OF TWO MIXED QUANTUM STATES … PHYSICAL REVIEW A 79, 032323 �2009�

032323-3



that have to be fulfilled when discrimination with the mini-
mum error probability is achieved by the same measurement
like the maximum-confidence discrimination.

Before proceeding, we note that our general solution
given by Eqs. �22�–�25� comprises the optimum unambigu-
ous discrimination of two arbitrary mixed quantum states
with one-dimensional kernels �9�. This case arises when in
Eq. �16� �max

�1� =1 and �min
�1� =0. Indeed, since because of Eq.

�9� then also �min
�2� =1−�max

�1� =0, it follows that the operators �̃1
and �̃2 and consequently also the supports of the operators �1
and �2 have the rank d−1 if � has the rank d, the two kernels
thus being one dimensional.

2. Discrimination of two mixed qubit states

As an important application, we consider the maximum-
confidence discrimination of two arbitrary qubit states �1
and �2 that are defined in the same two-dimensional
Hilbert space and occur with the prior probabilities �1 and
�2=1−�1, respectively. Equation �16� then takes the form

�̃1 = �1�−1/2�1�−1/2 = �max
�1� ��1���1� + �min

�1� ��2���2� �28�

and determines the maximum confidences C1
max=�max

�1� and
C2

max=1−�min
�1� , as well as the orthonormal states ��1� and ��2�.

Since �=�1�1+�2�2 is a rank-two operator, the matrix ele-
ments of �−1 can be easily expressed by the matrix elements
of �. Equations �24� and �25�, characterizing the minimum
failure probability achievable in maximum-confidence dis-
crimination, are then transformed into

Qopt =�1 −
det���

��2����2�
if ���1����2�� � ��2����2�

1 −
det���

��1����1�
if ���1����2�� � ��1����1�

2���1����2�� else.
�

�29�

Here the relation ��1����1�+ ��2����2�=Tr �=1 has been used,
and det���= ��1����1���2� ��2�− ���1����2��2. The optimum de-
tection operators are determined by

aopt = 1, bopt = 0 if ���1����2�� � ��1����1�
aopt = 0, bopt = 1 if ���1����2�� � ��2����2�
aopt = ao, bopt = bo else,

where

ao =
1 −

���1����2��
��1����1�

1 −
���1����2��2

��1����1���2����2�

, bo =
1 −

���1����2��
��2����2�

1 −
���1����2��2

��1����1���2����2�

�30�

and they follow from �1
opt=aopt�v��v� and �2

opt=bopt�w��w�,
where �u� and �v� are defined in Eq. �19�.

The special case ��1����2�=0 or �v �w�=0, respectively,
deserves a separate discussion. For d=2 it implies that ��1�
and ��2� are eigenstates of �, or, equivalently, �� , �̃1�=0 and
thus also ��1 ,�2�=0. Equation �19� then reduces to
�v�= ��1�, �w�= ��2�, and we arrive at

�1
opt = ��1���1�, �2

opt = ��2���2�, �?
opt = 0. �31�

Let us relate this measurement to the minimum-error mea-
surement. For ��1 ,�2�=0 and d=2, we find from Eqs. �26�,
�28�, and �12� that �=
1��1���1�+
2��2���2� with


1 = ��1����1��1 − 2C1
max�, 
2 = ��2����2��2C2

max − 1� , �32�

since �=��1−2�̃1� for �� ,�1�=0. From Eq. �27� it becomes
obvious that for C1

max
0.5 and C2
max
0.5 the detection op-

erators for minimum-error discrimination are �1
E= ��1���1�

and �2
E= ��2���2� which coincide with the optimum detection

operators in Eq. �31�. On the other hand, if either C1
max or

C2
max is smaller than 0.5, we conclude with the help of Eq.

�13� that either �1
E=0 or �1

E= Id. This means that the mini-
mum probability of errors arises without any measurement at
all, just by always guessing the presence of the most prob-
able state �24�.

As an example for ��1 ,�2�=0 or ��1����2�=0, respec-
tively, we treat the discrimination between the completely
mixed qubit state �1= I2 /2, occurring with the prior probabil-
ity �1=1−�2, and a given mixed qubit state �2, occurring
with the prior probability �2. We then have to distinguish
between the states

�1 =
I2

2
, �2 = p������ + �1 − p�

I2

2
, �33�

with 0� p�1, where we took into account that any mixed
qubit state �2 can always be written in the form given in Eq.
�33�. Loosely speaking, the parameter p characterizes the
purity of the qubit state �2, since for p=1 it is pure and for
p=0 it is completely mixed. By applying Eqs. �12� and �28�–
�30�, we obtain the maximum confidences and the associated
minimum failure probability for discriminating the states,

C1
max =

1 − �2

1 − p�2
, C2

max =
�2�1 + p�
1 + p�2

, Qopt = 0. �34�

The corresponding optimized measurement is the projection
measurement with

�1
opt = ��������, �2

opt = ������, �?
opt = 0, �35�

where ���� is the normalized state that is orthogonal to ���,
that is, I2= ������+ ��������. Using Eq. �32� we find that for
�2+ p�−1��2� �2− p�−1 these detection operators are identi-
cal with those of the minimum-error measurement. When �2
lies outside this range, however, the minimum probability of
errors is obtained when simply the state with the largest prior
probability is guessed to be present, without performing a
measurement.

In the special case p=1, the example given in Eq. �33�
corresponds to the discrimination between the pure state
�2= ������ and a mixed state �1, a problem that is also known
as quantum state filtering and that has been treated with re-
spect to minimum-error discrimination �25�, optimum unam-
biguous discrimination �26,27�, and maximum-confidence
discrimination �20�. When ��� lies within the support of �1,
the measurement for optimum unambiguous discrimination
is a von Neumann measurement with �1= ��������, �2=0,
and �?= ������ �27�. In our case, it yields the failure prob-
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ability Q= 1
2�1+�2 and the confidences C1=1 and C2=0, in

contrast to the measurement described by Eq. �35�, where for
p=1 we get Q=0, C1

max=1, and C2
max=2�2 / �1+�2�.

Our second example refers to the case ��1 ,�2��0 or
��1����2��0, respectively. We suppose equal prior probabili-
ties of the two states and take also their purities to be the
same, assuming that

� j = p�� j��� j� + �1 − p�
I2

2
�j = 1,2� , �36�

with 0� ��1 ��2��1 and 0� p�1. Without lack of general-
ity, we put I2= �0��0�+ �1��1� and

��1/2� = cos
�

2
�0� � sin

�

2
�1� �0 � � � �/2� , �37�

where �0� and �1� are two orthonormal basis states and
cos �= ��1 ��2�. With �1=�2=0.5, Eqs. �28�–�30� together
with Eqs. �12� and �23� yield the eigenstates of �̃1, ��1,2�
= 1

�2
��0�� �1��, and the maximum confidences and associated

minimum failure probabilities

C1
max = C2

max =
1

2
+

p sin �

2�1 − p2 cos2 �
, Qopt = p cos � , �38�

as well as the optimum detection operators

�1
opt =

�v��v�
1 + p cos �

, �2
opt =

�w��w�
1 + p cos �

,

and �?
opt= I2−�1

opt−�2
opt. Here �v� and �w� are the normalized

states

�v/w� =
1
�2

��1 − p cos ��0� � �1 + p cos ��1�� , �39�

which are nonorthogonal since p�0. Clearly, the detection
operators are not projectors and the measurement therefore is
a generalized measurement. For p=1, it reduces to the well-
known measurement for the optimum unambiguous discrimi-
nation of two equally probable nonorthogonal pure states �5�
and the maximum confidences are equal to 1, while their
limiting value for p→0 is equal to 0.5. For fixed p, the
minimum failure probability associated with the measure-
ment decreases with growing angle � �cf. Fig. 1�, while the
maximum confidences increase and tend to �1+ p� /2 for
�→� /2.

By exploiting Eq. �27�, we find that the minimum-error
discrimination of the two equiprobable states defined in
Eq. �36� is achieved by a projective measurement with
�1/2

E = ��1/2���1/2�, where again ��1,2�= 1
�2

��0�� �1��. Using
these detection operators in Eq. �4�, we get the confidences
C1

E=C2
E= 1

2 �1+ p sin �� in a minimum-error measurement
which are clearly smaller than the confidences given in Eq.
�38� and arising from a maximum-confidence measurement.

B. Case of higher-rank detection operators

When the rank of the detection operators represented by
Eqs. �14� and �15� is larger than one, minimizing the prob-

ability Q of inconclusive results is in general a highly non-
trivial optimization problem because the positivity con-
straints in Eq. �1� impose a set of complicated conditions.
However, when the given density operators allow to separate
the problem into independent optimizations in orthogonal
two-dimensional subspaces of the joint Hilbert space, an ana-
lytical solution can be easily obtained by applying the results
for discriminating two mixed qubit states. This is analogous
to the separation into orthogonal two-dimensional subspaces
that has been used previously for investigating the optimum
unambiguous discrimination of two mixed states �13–15�. In
the following we treat a simple example.

We consider the discrimination of two mixed states de-
fined in a d-dimensional joint Hilbert space with d being an
even number and described by the density operators,

� j =
2p

d
�
k=1

d/2

�rk
�j���rk

�j�� + �1 − p�
Id

d
�j = 1,2� , �40�

with 0� p�1 and �rk
�1,2��=cos

�k

2 �0�k�sin
�k

2 �1�k, where for
k�k� any two basis states labeled by k and k� are mutually
orthogonal. The identity operator then takes the form
Id=�k=1

d/2 ��0�k�0�k+ �1�k�1�k�. For simplicity, we suppose equal
prior probabilities of the two states, �1=�2= 1

2 . We then get
�̃1= 1

2�−1/2�1�−1/2 with the spectral decomposition

�̃1 = �
k=1

d/2

��k
�+���k

�+����k
�+�� + �k

�−���k
�−����k

�−��� , �41�

where the eigenvalues and eigenstates are

�k
��� =

1

2
�

p sin �k

2�1 − p2 cos2 �k

, ��k
���� =

�0�k � �1�k

�2
, �42�

with 1�k�d /2. If we denote the largest of the angles �k by
�, we obtain with the help of Eq. �12� the maximum confi-
dences
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FIG. 1. Maximum confidence C1,2
max and the associated minimum

failure probability Qopt for discriminating two equally probable qu-
bit states having the same purity p �cf. Eq. �36��. The parameters are
�=3� /8 �full line�, �=� /4 �dashed line�, and �=� /8 �dotted line�
�cf. Eq. �37��.
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C1
max = C2

max =
1

2
+

p sin �

2�1 − p2 cos2 �
�� = max	�k
� . �43�

In the special case p=1, where C1
max=C2

max=1, the
maximum-confidence discrimination with minimum failure
probability is equivalent to optimum unambiguous discrimi-
nation. The latter measurement has been derived previously
and yields for our example the minimum failure probability
Qopt

�p=1�= 2
d�k=1

d/2 cos �k �14,15�. For p=1 the operator �̃1 has
only the eigenvalues 0 and 1, each being d /2-fold degener-
ate, and the optimum detection operators �1 and �2 there-
fore have the rank d /2.

Here we are interested in the case that the largest eigen-
value of �̃1 may be degenerate also for p�1, thus leading to
higher-rank detection operators for the maximum-confidence
discrimination. We assume that

�k = � for k = 1, . . . ,m , �44�

�k � � for k = m + 1, . . . , d
2 . �45�

Using the eigenstates of �̃1 and the explicit expression result-
ing for �= 1

2 ��1+�2�, the general ansatz for the detection op-
erators in maximum-confidence discrimination given by Eqs.
�14� and �15� can be rewritten as

�1 = �
k,k�=1

m

akk��vk
�����vk�

����, �2 = �
k,k�=1

m

bkk��wk
�����wk�

���� , �46�

where in analogy to Eq. �39�,

�vk
���/wk

���� =�1 − p cos �

2
�0�k ��1 + p cos �

2
�1�k. �47�

The expression for the failure probability �Eq. �2�� then
yields Q=1− 1

d �1− p2 cos2 ���k=1
m �akk+bkk�. Since due to our

special choice of the density operators, the pairs of states
	�vk

���� , �wk
����
 with different values of k span mutually or-

thogonal two-dimensional subspaces; the minimization of Q
under the positivity constraints for the detection operators
can be separated into m independent two-dimensional prob-
lems. We find that Q takes its minimum Qopt, when in Eq.
�46� akk�=akk�kk� and bkk�=bkk�kk�, and in analogy to the
derivation of Eq. �38� we arrive at

�1
opt = �

k=1

m �vk
�����vk

����
1 + p cos �

, �2
opt = �

k=1

m �wk
�����wk

����
1 + p cos �

. �48�

From these operators we get Qopt=1− 2m
d �1− p cos ��.

Clearly, for fixed m the maximum confidences given in Eq.
�43� require a minimum overall failure probability Qopt
which grows with increasing dimensionality d.

We still remark that in certain cases it might be desirable
to perform a different measurement where all two-
dimensional subspaces contribute to the conclusive results,
yielding somewhat reduced confidences but a considerably
lower failure probability. In particular, for

�1
av = �

k=1

d/2 �vk
��k���vk

��k��
1 + p cos �k

, �2
av = �

k=1

d/2 �wk
��k���wk

��k��
1 + p cos �k

, �49�

we obtain from Eqs. �2� and �4� the probability of inconclu-
sive results Qav= 2p

d �k=1
d/2 cos �k and the confidences

C1
av = C2

av =
1

2
+

p�k=1

d/2
sin �k�1−p cos �k

1+p cos �k

2�k=1

d/2
�1 − p cos �k�

. �50�

In general, whenever eigenvalues other than the smallest and
largest one occur in the spectral decomposition of the opera-
tor �̃1, it might be worthwhile in some cases to replace the
maximum confidence strategy by a balanced strategy yield-
ing a somewhat smaller confidence at a drastically reduced
probability of inconclusive results.

IV. DISCUSSION AND CONCLUSIONS

The measurement strategy of maximum confidence dis-
crimination is related to another optimization strategy that
was considered by Fiurášek and Ježek �28� for mixed states
and that was introduced already earlier for pure states �29�.
In this scheme, the average success probability to get a cor-
rect result PS=� j� jTr�� j� j� is maximized for a given prob-
ability Q=1−� jTr��� j� of inconclusive results. In addition,
the so-called relative success rate PRS= PS / �1−Q� is consid-
ered �28�. Introducing f j =Tr��� j� / �1−Q�, where � j f j =1,
and using Eq. �4�, it follows that PRS=� j f jCj. Hence the
largest possible value of PRS is equal to the largest of the
different maximum confidences Cj

max, PRS
max=Maxj	Cj

max
.
This value is obtained in a measurement where f j =0 or � j
=0, respectively, for any state � j with Cj

max�Maxj	Cj
max


which then yields an inconclusive result. For two equiprob-
able qubit states with the same purity given by Eq. �36�, the
maximum relative success rate PRS

max has been calculated in
Ref. �28�. As expected from the above considerations, it co-
incides with the maximum confidences C1

max=C2
max given in

Eq. �38�.
To summarize, we investigated the measurement for dis-

criminating two mixed quantum states with maximum pos-
sible confidence for each of the two different conclusive out-
comes, thereby keeping the overall probability of
inconclusive results as small as possible. When the density
operators of both states have nonvanishing kernels, the mea-
surement is equivalent to optimum unambiguous discrimina-
tion. When one of the kernels is zero, however, the optimum
unambiguous discrimination always fails for one of the states
and thus differs from the optimized maximum-confidence
measurement discriminating both states with a certain non-
zero confidence. Provided that the rank of the detection op-
erators associated with the two conclusive outcomes does not
exceed unity, we obtained a general solution for the optimum
measurement valid for arbitrary prior probabilities of the
states. It is given by Eqs. �22�–�25� and represents our main
result. As an application, we considered the discrimination of
two mixed qubit states. Moreover, for the case of higher-rank
detection operators, we derived a solution for particular
states.
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