
Quantum circuits for strongly correlated quantum systems

Frank Verstraete,1 J. Ignacio Cirac,2 and José I. Latorre3

1Fakultät für Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria
2Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
3Department of ECM, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain

�Received 2 June 2008; published 16 March 2009�

We present an approach to gain detailed control on the quantum simulation of strongly correlated quantum
many-body systems by constructing the explicit finite quantum circuits that diagonalize their dynamics. As a
particularly simple instance, the full dynamics of a one-dimensional Quantum Ising model in a transverse field
with four spins is shown to be reproduced using a quantum circuit of only six local gates. This opens up the
possibility of experimentally producing strongly correlated states, their time evolution at zero time, and even
thermal superpositions at zero temperature. Our method also allows one to uncover the exact circuits corre-
sponding to models that exhibit topological order and to stabilizer states.
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I. INTRODUCTION

Recent advances in quantum information have led to
novel ways of looking at strongly correlated quantum many-
body systems. On the one hand, a great deal of theoretical
work has been done identifying the basic structure of en-
tanglement in low-energy states of many-body Hamiltonians.
This has led, for example, to new interpretations of
renormalization-group ideas in terms of variational methods
in classes of quantum states with some very special local
structure of entanglement �1–3�, as well as to new methods
to study the low-energy properties of interesting lattice
Hamiltonians. On the other hand, new experimental tools
have been developed that should allow us to simulate certain
quantum many-body systems, and thus to gain a better un-
derstanding of their intriguing properties and potentialities.
In particular, the low-temperature states corresponding to the
Bose-Hubbard model have been prepared using atoms in op-
tical lattices �5,6�, something which has triggered a lot of
attention both in the atomic physics and condensed-matter
physics communities.

In this paper we propose to use a quantum computer in a
different way, such that we not only have access to the low-
energy states but to the whole spectrum for certain quantum
many-body problems. This allows us to prepare any excited
state or thermal state at any temperature, as well as the dy-
namical evolution of any state for arbitrary times with an
effort which does not depend on the time, the temperature, or
the degree of excitation. The main idea is to unravel a quan-
tum circuit that transforms the whole Hamiltonian into one
corresponding to non-interacting particles. Moreover, the cir-
cuit will be efficient in the sense that the number of gates
only grows polynomially with the number of particles. We
will give some examples where with current systems of four
or eight trapped ions it would be possible to perform a com-
plete simulation of a strongly interacting Hamiltonian.

Our results can be understood as an explicit realization of
the original ideas on quantum simulation of quantum sys-
tems �4�, further elaborated to investigate the simulation of
the Schrödinger equation using Trotter-type ideas. Our ap-
proach, though, is quite different since we diagonalize the

dynamics using a finite set of quantum gates. There is no
approximation in our circuit and its computational complex-
ity is explicitly polynomial.

Our work can also be interpreted in terms of an extension
of the renormalization-group ideas �7�. There, one is inter-
ested in obtaining a simple effective Hamiltonian which de-
scribes the low-energy physics of a given problem. This is
done by a series of transformations that involve getting rid of
high-energy modes. In our case, we find a unitary transfor-
mation which takes the whole Hamiltonian into a simple
�noninteracting� one, and thus: �i� we do not loose the phys-
ics of the high energy modes in the way; �ii� it can be imple-
mented experimentally. Of course, our method only works
exactly for the small set of integrable problems, but very
similar approximate transformations can in principle be
found for any system whose effective low-energy physics is
well described by quasiparticles.

II. QUANTUM CIRCUIT FOR THE XY HAMILTONIAN

Let us start by considering the consequences of identify-
ing the quantum circuit Udis that disentangles a given Hamil-
tonian H acting on n qubits in the following sense:

H = UdisH̃Udis
† , �1�

where H̃ is a noninteracting Hamiltonian which, without loss

of generality, can be taken as H̃=�i�i�i
z, with �i

z Pauli op-
erators. We are interested in the circuits whose size only
grows moderately with the number of qubits. In that case we
could: �i� prepare excited eigenstates of H, just preparing a
product state and then applying Udis; �ii� simulate the time
evolution of a state, just by using

e−itH = Udise
−itH̃Udis

† . �2�

Since e−itH̃ can be simulated using n single-qubit gates, then
the whole evolution would require a fixed number of gates,
independent of the time t; �iii� similarly, the same circuit
will allow us to create the thermal state exp�−�H�
=Udis exp�−�H̃�Udis

† explicitly, just by preparing a product
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mixed state to start with. This is remarkable, as, in general,
there is no known scheme to create thermal states using a
�zero-temperature� quantum computer.

The goal is to identify the quantum circuits that disen-
tangle certain kind of Hamiltonians. Here we will consider
three cases: �i� the XY model; �ii� Kitaev’s on the honey-
comb lattice; and �iii� the ones corresponding to stabilizer
states. We will first concentrate in detail on the XY model
since it gives rise to quantum phase transitions and critical
phases, and thus it is perhaps the most interesting among
them.

The circuit Udis we shall construct is surprisingly small.
For a system of n spins, the total number of gates in the
circuit scales as n2 and the depth of the circuit grows as
n log n. Then, it seems reasonable to envisage experimental
realizations of the quantum circuit Udis that will allow to
create, e.g., the ground state of the quantum Ising model for
any transverse field starting from a trivial product state and
acting only with a small number of local gates. The very
same circuit would produce excited state, superpositions,
time evolution, and even thermal states. This is, thus, a quan-
tum algorithm that could be run in a quantum computer to
exactly simulate a different quantum system.

The strategy to disentangle the XY Hamiltonian is based
on tracing the well-known transformation, which solves the
model analytically �8,9�. The path to follow is divided in
three steps: we first need to implement the Jordan-Wigner
map of spins ��� into fermions �c�, then use the Fourier
transform to get fermions in momentum space �b�, and fi-
nally perform a Bogoliubov transformation to completely di-
agonalize the system in terms of free fermions �a�. The first
transformation is just a relabeling of degrees of freedom,
which needs no actual action on the system. The fermions c
are just an economical way of carrying along the degrees of
freedom that are subsequently Fourier transformed. On the
other hand, both the Fourier and Bogoliubov transformations
are real actions on the spin degrees of freedom. Thus, the
structure of the unitary transformation that takes the free
theory to the original XY system corresponds to

Udis = UFTUBog �3�

with

HIsing = H1��� ← H2�c�←
UFT

H3�b� ←
UBog

H4�a� = H̃ . �4�

Some of the pieces of the Udis transformation may have a
very simple form when view as an action on the coefficients
of the wave function. The problem is however nontrivial in
that the Bogoliubov transformation changes the vacuum and,
hence, the problem is different than the one of simulating a
fermionic computer with a standard quantum computer �10�.

Let us detail the construction of Udis for the XY Hamil-
tonian

HXY = �
i=1

n �1 + �

2
�i

x�i+1
x +

1 − �

2
�i

y�i+1
y � + ��

i=1

n

�i
z

+
1 + �

2
�1

y�2
z
¯ �n−1

z �n
y +

1 − �

2
�1

x�2
z
¯ �n−1

z �n
x ,

�5�

where � parametrizes the X-Y anisotropy and � represents
the presence of an external transverse magnetic field. The
last two terms above are related to the correct mapping of
periodic boundary conditions between spins to fermionic de-
grees of freedom and are suppressed in the large-n limit.
These terms can also be substituted with the standard peri-
odic terms �n

x�1
x and �n

y�1
y for the even total spin-up sector

and the same terms with opposite sign in the odd sector. The
Jordan-Wigner transformation ci= ��m�i�m

z ���i
x− i�i

y� /2 is
designed to transform the spin operators into fermionic
modes. Then the Hamiltonian reads

H2�c� =
1

2�
i=1

n

��ci+1
† ci + ci

†ci+1� + ��ci
†ci+1

† + cici+1�� + ��
i=1

n

ci
†ci,

�6�

where cn+1=c1, setting periodic boundary conditions, and ci
and ci

† are fermionic annihilation and creation operators act-
ing on the vacuum 	�c
 as defined by

�ci,cj� = 0 �ci,cj
†� = 	ij ci	�c
 = 0. �7�

Thus, the Jordan-Wigner transformation takes a state of spin-
1/2 particles into a fermionic state

	

 = �
i1i2,. . .,in=0,1


i1i2,. . .,in
	i1,i2, . . . ,in
 , �8�

= �
i1i2,. . .,in=0,1


i1i2,. . .,in
�c1

†�i1�c2
†�i2, . . . ,�cn

†�in	�c
 . �9�

The relevant point to observe is that there is no effect on the
coefficients 
i1i2,. . .,in

. There are no gates to be implemented
on the register, provided we retain the fact that any further
swapping of degrees of freedom will carry a minus sign from
now on. This is a remarkable simplification in our construc-
tion.

The first nontrivial part of the quantum circuit for the XY
Hamiltonian is the one associated to the Fourier transform

bk =
1

n

�
j=1

n

exp�i
2�

n
jk�cj, k = −

n

2
+ 1, . . . ,

n

2
. �10�

This transformation exploits translational invariance and
takes H2�c� into a momentum space Hamiltonian H3�b�. We
here present the construction of this circuit in terms of two-
body local for the case where n=2k, that is, when a classical
fast Fourier transform exists, though the technique has gen-
eral applicability. The quantum circuit that produces the
above result can be constructed in the case of n=8 as shown
in Fig. 1.

The circuit contains two types of gates. Every crossing of
lines in the classical fast Fourier transformation corresponds
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to a fermionic swap �fSWAP� in the quantum case that we
represent with a crossed box in Fig. 1. The quantum gate for
this fSWAP reads

USWAP =�
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 − 1
� . �11�

Note the minus sign whenever two occupied modes enter the
fSWAP. The UFT circuit also makes use of a second class of
gates that implement the change in relative phase associated
to the Fourier transform,

Fk =�
1 0 0 0

0
1

2

��k�

2

0

0
1

2

−
��k�

2

0

0 0 0 − ��k�
� , �12�

with ��k�=exp�i2�k /n�. The fast Fourier classical circuit is
of depth n log n. The quantum circuit needs further fSWAPs
that makes the total number of gates to grow as n2. More
precisely, the counting of gates in the circuit goes as follows.
For a system of n=2k spins, the circuit needs 2k−1�2k−1�
local gates. Only kn of them are site-dependent interacting
gates, whereas the rest correspond to fSWAPs needed to en-
sure the fermionic character of the effective modes. The pe-
riodic boundary conditions present in the system have
emerged from a set of initial free modes. It is the action of
gates that builds the appropriate boundary property in the
system.

Let us note that the way entanglement builds up in the
system is made apparent in the circuit in Fig. 1. For instance,
when the system is divided in two sets with four contiguous
qubits in each one all bipartite entanglement is transmitted
through four fSWAP gates. This is the minimum number of
gates necessary to generate the known maximum entangle-
ment along time evolutions. Thus, no circuit with fewer gates
relating both half chains could provide an exact solution.

The final step to achieve a full disentanglement of the XY
Hamiltonian corresponds to a Bogoliubov transformation.
The momentum-dependent mixture of modes is disentangled
using

ak = cos�
k/2�bk − i sin�
k/2�b−k
† ,


k = arccos� − � + cos�2�k

n
�


�� − cos�2�k

n
��2

+ �2 sin2�2�k

n
�� .

�13�

The Hamiltonian can now be expressed as

H4�a� = �
k=−n/2+1

n/2

�kak
†ak, �14�

�k =
�� − cos�2�k

n
��2

+ �2 sin2�2�k

n
� , �15�

which is a sum of noninteracting terms and its spectrum is

equivalent to the completely local spin-1/2 Hamiltonian H̃
=�i�i�i

z. Let us note that the Bogoliubov transformation
only mixes pairs of modes. The precise gate that produces
such disentanglement corresponds to

Bk =�
cos 
k 0 0 i sin 
k

0 1 0 0

0 0 1 0

i sin 
k 0 0 cos 
k

� �16�

with 
k given by Eq. �13�. This completes the construction of
the circuit that underlies the XY Hamiltonian.

III. PROPOSAL FOR A SMALL-SIZE EXPERIMENT

Let us now discuss the simplest nontrivial experiment that
can take advantage of the circuit we have constructed. We
can take �=1, which reduces the system to the quantum
Ising chain in a magnetic transverse field �. This theory ex-
hibits a quantum phase transition for �=1 in the n→� limit.
Here, instead, we can consider a system of n=4 qubits. Ex-
perimentally, the four qubits should be prepared in the initial
	0000
 or 	0001
 state, depending whether ��1 or ��1
�different valid variants of the circuit we are presenting
change the way the system must be prepared or the angles
appearing in the Bogoliubov transformation�. Then, the set of
gates depicted in the circuit in Fig. 2 should be operated with

FIG. 1. �Color online� Structure of the quantum circuit perform-
ing the exact diagonalization of the XY Hamiltonian for eight sites.
The circuit follows the structure of a Bogoliubov transformation
followed by a fast Fourier transform. Three types of gates are in-
volved: type-B �responsible for the Bogoliubov transformation and
depending on the external magnetic field � and the anisotropy pa-
rameter ��, type-fSWAP �depicted as crosses and necessary to
implement the anticommuting properties of fermions�, and type-F
�gates associated to the fast Fourier transform�. Some initial gates
have been eliminated since they only amount to some reordering of
initial qubits.
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a choice of the parameter � in the only nontrivial Bogoliubov
B gate. To be precise, the angle can be seen to correspond to
Eq. �13�. We can further suppress unnecessary initial and
final fSWAPs since they just correspond to a relabeling of
qubits that can be taken care of without actual actions on the
system. Actually, only six gates would be needed to recreate
the full dynamics of the Ising model for four qubits. After
running the circuit, the state of the system would then be the
ground state of the Ising Hamiltonian for that value of the
external magnetic field. It would then be possible to measure,
e.g., the correlator ��i

x� j
x
, for all i=1, 2, 3, 4 and j� i. This

process could be done over a scan of the � parameter and
scan the magnetization ��x
 for any qubit as well as a mea-
sure of three- and four-body correlations functions.

IV. EXTENSIONS TO OTHER HAMILTONIANS

We may finally take a larger view on the underlying struc-
ture of the circuits we have presented. The basic idea is that
those integrable systems whose solutions make use of the
Jordan-Wigner transformation will have a unitary circuit that
disentangles the dynamics with gates of the type

Vij = ei��ci
†cj+H.c.�, Wij = ei��cicj+H.c.�. �17�

In our case, the Fourier transform can be written in terms of
V gates, whereas the Bogoliubov transformation needs W
gates. These type of gate can further be expressed in terms of
local unitaries because Vij =Vij

x Vij
y with

Vij
x = ei��i

x�i+1
z . . .�j−1

z �j
x
, Vij

y = ei��i
y�i+1

z . . .�j−1
z �j

y
, �18�

and, similarly, Wij =Wij
x Wij

y , with

Vij
x = ei��i

x�i+1
z . . .�j−1

z �j
x
, Vij

x = ei��i
x�i+1

z . . .�j−1
z �j

x
. �19�

Then, all these gates can be implemented using B-type,
F-type, and fSWAP gates, as described previously.

The method we have presented here can be extended to
solve other quantum systems of relevance. Let us sketch two
specific cases. First, we focus on the two-dimensional Kitaev
Hamiltonian on the honeycomb lattice �11�. That Hamil-
tonian is particularly interesting because its ground state ex-
hibits nontrivial topological features and can nevertheless be
solved exactly using a mapping to free Majorana fermions.
The construction of the quantum circuit diagonalizing the
Hamiltonian can be constructed in the same way as for the
Ising Hamiltonian. The only difference is that, due to the
mapping of one spin 1/2 to two fermions or four Majorana
fermions, ancillas have to be used in the quantum circuit; but

these can again simply be disentangled at the end. A second
example of system whose exact circuit can be obtained cor-
responds to the case of stabilizer states �12�. This class of
states is particularly interesting from the point of view of
condensed-matter theory as it encompasses the toric code
state and all the so-called string net states as arising in the
context of topological quantum order �13�. The related quan-
tum Hamiltonian is a sum of commuting terms, each term
consisting of a product of local Pauli operators. Such a
Hamiltonian can always be diagonalized by a quantum cir-
cuit only consisting of Clifford operations �14�. In principle,
those gates can be highly nonlocal, and in the case of Hamil-
tonians exhibiting topological quantum order, one can rigor-
ously prove that the quantum circuit has a depth that scales
linearly in the size of the system �15�. A nice measure of the
complexity of a particular class of stabilizer states would be
to characterize the minimal depth of the quantum circuit cre-
ating this Hamiltonian.

A challenging task is to find the quantum circuit that di-
agonalizes Hamiltonians that can be solved using the Bethe
ansatz. As the corresponding models are integrable, a quan-
tum circuit is guaranteed to exist that maps the Hamiltonian
to a sum of trivial local terms. Such a procedure would be
very interesting and lead to the possibility of measuring cor-
relation functions that are very hard to calculate using the
Bethe ansatz solution.

V. CONCLUSION

In conclusion, we have shown that certain relevant Hamil-
tonians describing strongly correlated quantum systems can
be exactly diagonalized using a finite-depth quantum circuit.
We have produced the explicit construction of such a circuit
that opens up the possibility of experimental realizations of
strongly correlated systems in controlled devices.

APPENDIX

We here illustrate the technique use to construct indi-
vidual quantum gates in the XY. We consider the example of
a fast Fourier transform of four qubits. The explicit transfor-
mations of modes in Eq. �10�,

bk = �c0 + exp�− i2�
2k
4 �c2�

+ exp�− i2�
k
4��c1 + exp�− i2�

2k
4 �c3� , �A1�

where it is made apparent that modes 0 and 2 first mix in the
same way as 1 and 3, and then a subsequent mixing takes
place. The first step corresponds to

c0� = c0 + c2, c1� = c1 + c3,

c2� = c0 + e−i�c2, c3� = c1 + e−i�c3. �A2�

This the reason why the circuit in Fig. 2 carries two identical
gates in the first part of the Fourier transform. Similarly,
further mixtures will take place after some fermionic swaps
are operated.

To uncover the actual gate needed for the circuit, we con-
sider the wave function made of the modes involved,

FIG. 2. �Color online� Quantum circuit that reproduces all the
dynamical properties of the quantum Ising Hamiltonian in a exter-
nal magnetic field with four spins. Some initial and final reordering
gates can be sparsed in an experimental realization.
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 = �
i,j=0,1

Aij� �c0�
†�i�c2�

†� j	00


= �
i,j=0

1

Aij�c0
† + c2

†�i�c0
† + ei�c2

†� j	00
 . �A3�

Expanding this last equation and working in the basis 	00
,
	01
, 	10
, and 	11
 the coefficients of the wave function are
rearranged by the transformation A�=UA with

�
1 0 0 0

0
1

2

1

2

0

0
1

2

−
1

2

0

0 0 0 − 1

� . �A4�
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