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We discuss the generation of states close to the boundary family of maximally entangled mixed states as
defined by the use of concurrence and linear entropy. The coupling of two qubits to a dissipation-affected
bosonic mode is able to produce a bipartite state having, for all practical purposes, the entanglement and
mixedness properties of one of such boundary states. We thoroughly study the effects that thermal and
squeezed characters of the bosonic mode have in such a process and we discuss tolerance to qubit phase-
damping mechanisms. The nondemanding nature of the scheme makes it realizable in a matter-light-based
physical setup, which we address in some details.
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I. INTRODUCTION

The interplay between entanglement and mixedness has
long been recognized as a crucial point to tackle toward a
full understanding of the peculiar way correlations of a non-
classical nature settle in multipartite configurations of quan-
tum systems �1�. Despite the impressive efforts produced
along these directions and a few important progresses being
accomplished, a satisfactory comprehension of such an im-
portant topic is still elusive. Such incompleteness is well
evident in the current unavailability of a unique and unam-
biguous entanglement measure for general states involving
more than two parties and the striking difficulties related to
the ordering of mixed entangled states under different en-
tanglement measures �2�. It is therefore of paramount impor-
tance to continue the investigation along these lines. An im-
portant contribution to the problem represented by the trade
off between entanglement and mixedness has been given by
the classification of bipartite states exhibiting the maximum
obtainable amount of entanglement for a given degree of
mixedness �3,4�. The explicit form of these genuinely inter-
esting states, dubbed maximally entangled mixed states
�MEMSs�, strongly depends on the chosen measure for en-
tanglement and mixedness.

Devising means of realizing these states is of great impor-
tance. In a way, as some forms of noise will inevitably be
present in a physical setup, the availability of pure states
could well be out of question. The interest is thus in achiev-
ing the maximum possible entanglement from the mixed-
state resource one has to deal with. An efficient state-
purification procedure can then be applied to MEMSs as
described in Ref. �5�. Work at all levels has been performed
on the generation of MEMSs. Linear-optics settings involv-
ing parametric down-conversion processes have been used in
order to experimentally explore quite a substantial region of
the physically allowed entanglement-mixedness space, up to
the MEMS boundary �6,7�. Theoretical proposals have been
put forward for the navigation in the plane of entangled
mixed states �8,9� involving multilevel atomlike objects ei-
ther interacting with structured environments or following
properly arranged unitary evolutions. Interestingly, Cho and
McKenzie �10� proposed a scheme for the generation of bi-
partite Werner states in a two-impurity Kondo model via the

well-known Ruderman-Kittel-Kasuya-Yosida interaction.
This is interesting as, under proper choices of entanglement
and mixedness quantificators, Werner states are MEMSs �3�.
Here, we address a simple scheme that allows a system of
two qubits to approach the boundary of physically allowed
entangled mixed states. The protocol is based on biased spin-
boson interaction under the influences of dissipation and
phase damping. Besides its simplicity, the scheme addressed
here shows that dissipation is able to coherently lead the
qubit system to a partially entangled mixed state which, nev-
ertheless, is interestingly close to the MEMS boundary. We
show that the availability of a cold enough environment, to-
gether with an asymmetric preparation of the qubit system, is
all we need in order to approach such boundary curve. The
scheme is highly realistic, as it estimates and includes the
effects of the most relevant entanglement-spoiling mecha-
nisms and, as we discuss, holds the promises for a prompt
experimental realization in setups of cavity as well as circuit
quantum electrodynamics �QED�.

The remainder of this paper is organized as follows. Sec-
tion II briefly introduces MEMSs and their properties, be-
sides discussing the main technical tools used throughout the
paper. In order to fix the ideas, Sec. III A gives an account of
the unitary version of the scheme discussed here while the
main part of our analysis is presented in Sec. III B. There, we
address the reduced dissipative dynamics undergone by the
qubit system and identify a state of closest proximity to an
element of the MEMS family. Some technical details, unnec-
essary to the comprehension of our main results, are pre-
sented in the Appendix. In Secs. III C and III D we give
account of how a structured environment as well as the in-
troduction of phase-damping mechanism would affect our
findings. Section IV describes in some details an experimen-
tal setup that has the necessary features for the implementa-
tion of the physical mechanisms assessed here. Finally, Sec.
V provides a summary of our findings and conclusions.

II. INTRODUCTION TO MAXIMALLY
ENTANGLED MIXED STATES

Here, we briefly remind the basic properties of MEMSs
and their parametrization for a specific choice of entangle-
ment and mixedness measure. As we mentioned, a long-
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standing argument regards state ordering induced by en-
tanglement measures �4�. It has been seen that for different
entanglement measures there are different possible param-
etrizations of MEMSs. To date, bipartite MEMSs have been
found to be described by a one-parameter family of density
matrices �3�. For the purposes of this paper, we shall restrict
ourselves to the entanglement measure given by concurrence
�11�, which is defined in relation to the entanglement of for-
mation. The latter quantifies the number of Bell states re-
quired to prepare a given state. Entanglement of formation
depends monotonically on concurrence which, for a two-
qubit �pure or mixed� state � can be defined as �11,12�

C = max�0,��1 − ��2 − ��3 − ��4� , �1�

where �1�� j�j=2,3 ,4� are the eigenvalues of ���y
� �y�����y � �y� and �y is the y-Pauli spin operator. We shall
be measuring mixedness of a state via linear entropy �see, for
example, Bose and Vedral in �1��

S =
4

3
�1 − Tr��2�� . �2�

The necessary parametrization for MEMS with regards to
these measures was provided in �3� and identifies two sub-
classes of density matrices
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where �1 ��2� holds for r� �2 /3,1� �r� �0,2 /3��. In a C
versus S plane, these states lie on the so-called MEMS
boundary curve shown in Fig. 1�b�, where the upper �lower�
portion of the solid curve, i.e., the part corresponding to C
�2 /3 �C�2 /3�, is for �1 ��2�.

III. APPROACHING MEMS BOUNDARY

A. Unitary case

We start introducing the coupling model considered
throughout our work in the idealized situation of a perfectly
unitary evolution. Usually, problems involving the interac-
tion of two-level systems with a boson can be modeled using
an effective model where a dipolelike spin operator �propor-
tional to the �̂x Pauli operator� couples to the electric �or the
magnetic� part of a field. This is the case for neutral atoms or
quantum dots coupled to optical fields. However, this de-
scription holds also for a system consisting of a Cooper-pair
box �in a superconducting quantum-interference device
�SQUID� configuration and in the charge regime �14�� inte-
grated into a planar stripline resonator �15�; a setting gener-
ally referred to as circuit QED. At the charge degeneracy
point, an effective dipole moment operator for the SQUID
can be written, whose amplitude is proportional to the excess
charge in the SQUID island �15�. Here, in order to fix the
ideas and introduce the general formalism employed
throughout our study, we use language and terminology typi-
cal of cavity QED and we refer explicitly to a scheme of
atomic qubits interacting with the field of an optical cavity.
In Sec. IV we assess the details of possible experimental
implementations.

We consider two qubits with ground and excited states �0	
and �1	, respectively. They are allocated into a single-mode
cavity and have the same transition frequency �o, resonant
with the frequency � f 
�o of the cavity field. This is de-
scribed by the bosonic annihilation �creation� operator â �â†�.
Within the dipole-coupling interaction assumed here and us-
ing the rotating-wave approximation �16� in interaction pic-
ture with respect to the free Hamiltonian of the system, the
coupling reduces to �we assume units such that �=1 through-
out the paper� �17�

ĤI = �
j=1

2

gj��̂ j
−â† + �̂ j

+â� , �4�

where �̂ j
+= ��̂ j

−�†= �1	 j�0� is the qubit raising operator and gj
is the coupling strength of qubit j with the field. Figure 1�a�
shows a sketch of the idealized situation considered here. We
assume that the qubit system is initially prepared in state
���0�	12= �01	12, while the cavity field is in �0	b. Equation �4�
commutes with the operator counting the total number of
excitations within the system, so that the corresponding dy-
namics can be studied within finite-dimension subspaces. By
considering the single-excitation subspace �consistently with
our initial-state assumption�, it is straightforward to see that
solving the time-dependent Schrödinger equation is equiva-
lent to finding the solution to the following set of coupled
linear differential equations

i�t	�t� = g1
�t�, i�t��t� = g2
�t� ,

i�t
�t� = g1	�t� + g2��t� , �5�

where we have used the decomposition 	�t��100	12b
+��t��010	12b+
�t��001	12b for the state of the whole system
at time t �with �	�2+ ���2+ �
�2=1�. By introducing the cou-

(b)(a)

FIG. 1. �Color online� �a� Sketch of the discussed thought ex-
periment. A cavity accommodates two two-level systems �labeled 1
and 2�, asymmetrically coupled to the cavity field. The latter leaks
out of the cavity due to a finite quality factor. �b� Concurrence
versus linear entropy MEMS boundary �full line�. For comparison,
the dashed lines shows the curve corresponding to the two-qubit
Werner state �W= p��	���+ �1− p�1 /4 with p� �0,1� and ��	
= �1 /�2���00	+ �11	�12 �13�.
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pling ratio �=g2 /g1 and the dimensionless interaction time
=g1t, the density matrix of qubits 1 and 2 obtained by trac-
ing out the field’s state is found to be

�u�� =�

2�� 0 0 0

0 �2�� ���	�� 0

0 ���	�� 	2�� 0

0 0 0 0
� , �6�

with 
��=� sin��1+�2� /�1+�2 ,���= �1
+�2 cos��1+�2�� / �1+�2� and 	��=−��1
−cos��1+�2��1+�2��. It is worth noting that in tracing out
the field the observed dynamics are no longer evolving uni-
tarily with respect to . Concurrence and linear entropy of
�u�� can be easily calculated. Their behavior is shown in
Fig. 2 against  and �. By inspection, it is clear that concur-
rence and mixedness are maximized at small nonunit values
of the coupling ratio when a substantial amount of entangle-
ment can be found in qubit states with S�1. Of course,
mixedness of the state here arises in virtue of the loss of
information over the field state. Shown in a C-S plane, these
features make it evident that density matrices belonging to
the boundary of physically meaningful states can be gener-
ated for a proper choice of  and �. Interestingly, despite the
rather large temporal range we have considered �
� �0,40��, the elements of the MEMS family �2 cannot be
produced by this scheme, which privileges highly entangled
states �up to C=1� of various mixedness. Differently from
what was found in Ref. �8�, our states do not “track” the
behavior of the MEMS boundary but follow a dynamical
touch-and-go pattern with respect to �1. The similarity be-
tween �u�� and �1 �for certain values of r, � and � can be
clearly understood by relying on the spectral decomposition
of these states: at the “touching” point between the open
trajectories associated with two-qubit states shown in Fig. 3
and the MEMS curve, the eigenvalues �eigenvectors� of �u
are identical �locally equivalent� to those of �1 �18�. This is
never the case for states �u�� and �2.

B. Approaching MEMS boundary: Open-system dynamics

Although promising because of the possibility of generat-
ing a vast range of boundary states, the scheme described so
far may be far from being realistic in some setups. A unitary
description is hardly retained for the whole range of time
necessary in the MEMS-approaching mechanism when sys-
tems of quantum dots �neutral atoms� embedded in a cavity

are considered, for instance. Any realistic physical setup will
imply the consideration of a finite rate of amplitude �phase�
damping affecting the system at hand. In particular, for the
specific instance considered in this work, energy leakage out-
side the cavity due to finite resonator quality factor should be
quantitatively included in our calculations. This is extremely
important within the context of our investigation, especially
in virtue of the special role played by the excitation-
conservation rules highlighted above. The introduction of an
energy-dissipation mechanism, as it is the case with a leaky
cavity, breaks such conservation law forcing us to study the
dynamics of the system in the whole Hilbert space, in prin-
ciple. The effects of such differences should be carefully
quantified.

This is precisely what we do here, where we replace the
Schrödinger equation at the basis of our study so far, with a
dissipative master equation for the state of the qubits-field
system �c�t� reading �unless otherwise specified, we use
again the notation involving g1,2 and t�

�t�c�t� = − i�ĤI,�c�t�� + L̂��c�t��  �L̂u + L̂���c�t�� , �7�

with the Liouville superoperator

L̂��c�t�� = ��n̄ + 1�„2â�c�t�â† − �â†â,�c�t��…

+ �n̄„2â†�c�t�â − �ââ†,�c�t��… . �8�

Here, 2� is the energy dissipation rate from the cavity and n̄
is the mean thermal occupation number of the bath with
which the field is at equilibrium �19�. Throughout our treat-
ment, we assume the bad cavity limit ��g1,2. This implies
that the cavity-field response to the bath is much faster than
that associated with its interaction with the qubits. In turn,
this means that we can neglect the back action of the photons
emitted by the qubits therefore validating the Born approxi-
mation. Moreover, the bad-cavity limit also allows for Mar-
kovian treatment of the open dynamics as it is equivalent to
a short qubit memory time. In analogy to what has been done
in the unitary case, we want to trace out the field degrees of
freedom, which can be systematically done by using

(b)(a)

FIG. 2. �Color online� �a� Concurrence of the produced �u��
against the rescaled interaction time =g1t and the coupling ratio �.
�b� Mixedness of the state against g1t and �.

FIG. 3. �Color online� Concurrence C versus linear entropy S in
�u�� and comparison to the MEMS boundary. Each continuous
curve corresponds to an open trajectory of the two-qubit state hav-
ing �� �0,2� �which increases at steps of 0.05� and the curvilinear
abscissa is � �0,40�.
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projection-operator techniques �20�. However, in order to by-
pass the technicalities involved in such an approach, here we
follow a simpler and yet rigorous way which leads to the
same results as the projection-operator technique �21�.

In the bad cavity limit, it is reasonable to assume that the
cavity field remains in the thermal steady state determined by

L̂, which we label �ss. We remind that within the bad cavity
limit we are necessarily assuming weak coupling of the qu-
bits with the field with respect to the field dissipation rate. In
what follows, the validity of our results holds in this limit.
Upon trace over the field state we get the following formal
solution for the evolution of the qubits alone �22�:

�t��t� = �
0

t

Trfield�L̂ueL̂�t−t��L̂u���t�� � �ss��dt�. �9�

Moreover, we can easily find that

L̂u�â�c� = ��2n̄ + 1�â�c − 2�n̄�câ ,

L̂u��câ� = 2��n̄ + 1�â�c − ��2n̄ + 1��câ , �10�

with �c=� � �ss. Upon iteration of these relations and ex-
plicit evaluation of the commutators involved in Eq. �9�, a
lengthy but straightforward calculation leads to the reduced
master equation for systems 1 and 2

�t��t� = �
j=1

2
gj

2

�
ˆ�n̄ + 1�„2�̂ j

−��t��̂ j
+ − ��̂+

j �̂−
j ,��t��…

+ n̄„2�̂ j
+��t��̂ j

− − ��̂−
j �̂+

j ,��t��…‰

+
g1g2

�
�

j�k=1

2

ˆ�n̄ + 1�„2�̂ j
−��t��̂k

+ − ��̂ j
+�̂k

−,��t��…

+ n̄„2�̂ j
+��t��̂k

− − ��̂ j
−�̂k

+,��t��…‰ . �11�

Equation �11� is the starting point of our analysis. It can be
solved by projecting it onto states of the two-qubit computa-
tional basis ��00	 , �01	 , �10	 , �11	�12, in a way so as to study
the Bloch-type differential equations for the density matrix
elements �ijkl= 12�ij���kl	12 �i , j ,k , l=0,1�. The explicit form
of such equations is given in the Appendix. Here, we discuss
the results achieved by solving them.

Our initial state is again �01	12 and the density matrix is
found to have the general form

��t� =�
�0000�t� 0 0 0

0 �0101�t� �0110�t� 0

0 �0110�t� �1010�t� 0

0 0 0 �1111�t�
� . �12�

The presence of the nonzero �1111�t� element is a first sig-
nificant difference with respect to Eq. �6�. In fact, while it is
easy to see that in the unitary case concurrence was simply
determined by the off-diagonal density matrix elements, here
C depends critically on a delicate trade off between popula-
tions and coherences. Explicitly

C = − 2�0110�t� − 2��0000�t��1111�t� , �13�

where we have used the fact that �0110�t��0 for any choice
of the parameters involved and at any time. We now reintro-
duce the coupling ratio � and the dimensionless time  and
analyze the behavior of C and S corresponding to state �12�.
This is done in Fig. 4, where �� �0,2� with � �0,100� are
taken and concurrence �linear entropy� is studied for specific
values of n̄.

Immediately, one recognizes that C is maximized at �
�1, although the actual value is sensitive to n̄. Quite expect-
edly, in virtue of the features characterizing the unitary case,
n̄=0 corresponds to the maximum �minimum� of C �S�
evaluated over the stationary state of the qubit system. This
is reached already for 
30. A numerical inspection reveals
that �opt�0.8 corresponds to the largest possible value of
concurrence of a state having S�0.7. In the C-S plane, these
results are summarized in Fig. 5�a�, where curves associated
with increasing values of � and n̄ are compared to the
MEMS boundary. The �dashed� curve corresponding to �opt
and n̄=0 is clearly highlighted. The tip of this curve corre-
sponds to a state which is extremely close to the MEMS
boundary. However, a few remarks are in order: differently
from the unitary case, the dissipative scheme is able to ap-
proach family �2, which belongs to the lower part of the
MEMS boundary curve. Dissipation thus depletes the gen-
eral properties of the generated states. Although very close to
the boundary, ��� never touches it. However, the scheme

FIG. 4. �Color online� We show the behavior of linear entropy S
�first row of plots� and concurrence C �second row� against � and
=g1t for n̄=0,0.4 and 0.8 in going from leftmost to rightmost plot
in each row, respectively.

(b)(a)

FIG. 5. �Color online� C-S plot for ��� as determined by a
dissipative dynamics with n̄�0 and � /g1=10. Dashed curve em-
bodies the open trajectory for the optimal state corresponding to n̄
=0 and �=�opt. �b� Decay of entanglement and increase of mixed-
ness in the optimal state for n̄ that goes from 0 to 1 �in steps of 0.1,
from top to bottom open trajectory�.
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does not require any time control. In fact, the state of closest
distance from MEMS is achieved as a steady state: for 
�30 the properties of � do not change and the curves in Fig.
5�a� do not fold back as time grows.

The analytic form of the optimal state at any  can be
found from the explicit solution of Eqs. �A1�–�A9�

�0000�� =
�2�1 − e−2G/��

G2 , �0101�� =
�1 + e−G/��2�2

G4 ,

�1010�� =
�2�1 − e−G/��2

G4 , �0110�� = − ��1010���0101�� ,

�14�

with �1111��=0 and G=�g1
2+g2

2=g1
�1+�2. It is interesting

to notice that such an optimal state enjoys the same features
as �u��, i.e., the absence of populations of the �11	12 state,
which effectively leaves the two-qubit state in a one-
excitation subspace. As for the unitary case, C is determined
simply by the off-diagonal elements of the density matrix.
We can quantify exactly how close we get to the �2 class by
using state fidelity F��A ,�B� �12�, which gives an estimate of
the similarity between two density matrices �A and �B. For
identical �orthogonal� states, F=1 �F=0�. Here, we use the
“amplitude” version of F defined by F��A ,�B�
=Tr���A�B

��A, which is not too sensitive to very small
changes in the optimal set of parameters. By comparing �2
and the density matrix having elements given by Eq. �14�,
we immediately recognize that F�� ,�2� cannot be close to 1
as the positions of the coherence terms in the two density
matrices do not correspond. Moreover, while r� �0,2 /3� in
�2 guarantees positive coherences, we have that �0110��
�0∀, and yet, the properties of the two states are rather
close, as we have already commented. However, it is
straightforward to see that, by means of a bit and phase flip
on qubit 2, we get �
�2. Needless to say, such local unitar-
ies leave C or S invariant. The behavior of F�� ,�2� against 
is shown in Fig. 6�a� for increasing values of r in the range
valid for �2. At r�2 /3, �=10g1, and �=0.8 we find
F�� ,�2��99.4%. This choice of parameters defines the state
�for �40�

� =�
0.398 0 0 0

0 0.362 − 0.295 0

0 − 0.295 0.24 0

0 0 0 0
� , �15�

which has concurrence and linear entropy values of C
=0.589 and S=0.639. Figures 5�b� and 6�b� show the effects
induced of the thermal nature of the field on such an optimal
state. In particular, state fidelity decreases quite rapidly to-
ward �0.7. Despite such a relatively large asymptotic value,
this implies that the corresponding state is quite far from a
MEMS, as seen in Fig. 5�b� too. In fact, F=0.7 is the state
fidelity between the maximally mixed state 1 /4 and �2.

C. Irrelevance of the use of squeezed light
for MEMS boundary approach

Based on the results of Refs. �8,9�, where physical or
effective squeezed fields were beneficial to the task of
MEMSs generation, one may now wonder whether coupling
the cavity field to a squeezed bath can improve the perfor-
mances of the protocol addressed here. In this section we
briefly show that, for the specific instance here studied, this
is not the case at all.

In order to provide a quantitative study to this situation,
we have derived the reduced master equation for two qubits
immersed in the field of a cavity coupled to a broadband
squeezed-vacuum characterized by the parameters N and M
��N�N+1� related to the squeezing parameter s �the equal-
ity sign holding for ideal squeezing, in which case we have
N=sinh2 s�. This can efficiently be done by writing Eq. �11�
for n̄=0 and replacing rising and lowering qubit operators

with their “squeezed” versions �̂ j
+=�N�̂ j

++�M /N�̂ j
− and

�̂ j
−=�M /N�̂ j

++�N�̂ j
−. The resulting master equation, de-

pending explicitly on N and M and the effective coupling
rates gj

2 /� and g1g2 /�, is identical to the one obtained adapt-
ing the approach described in �23� which passes through the
use of a squeezed and dissipative picture. For M =0, the ther-
mal cavity-field case is found back, while the case of both
M =N=0 corresponds to the optimal vacuum-field situation
that has been extensively discussed above. Bloch-type equa-
tions can be derived and an analysis analogous to the one
described in Sec. III B can be performed. However, one rec-
ognizes that the introduction of a squeezed bath in the sys-
tem considered in our study does not help the MEMS-
approaching task. In fact, the situation described in Fig. 4
seems to optimize both the entanglement and mixedness
within the two-qubit system. Without entering into the details
of the analysis that has been performed, we simply mention
that a numerical research of the point of closest approach to
the MEMS boundary leads to the results shown by the solid
curve in Fig. 6�b�. These reveal that the largest fidelity is
achieved at N=0 �for an ideally squeezed field�. The slower
decay of fidelity in the squeezed case might be related to the
protected steady state that is typically achieved when this
sort of structured bath is considered.

FIG. 6. �Color online� �a� State fidelity F�� ,�2� against the di-
mensionless interaction time =g1t for �=�opt and r� �0,2 /3� in-
creasing at steps of 2/30 �going from bottom to top curve�. �b�
Dashed �solid� curve shows F�� ,�2� against the parameter n̄ �N�
characterizing the thermal �squeezed� bath for r
2 /3, g1t=100,
and �=�opt. Horizontal line shows the fidelity between �2 �with the
above choice for r� and the maximally mixed state 1 /4.
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D. Inclusion of phase damping

Until now we have only considered dissipation induced
by losses in the cavity field due to its coupling with an ex-
ternal bath. This resulted in effective damping terms in the
reduced two-qubit master equation. However, spoiling
mechanisms intrinsic to the qubit system, such as spontane-
ous emission and phase damping, may originate important
effects to be taken into account. Typically, these kick in with
different time scales and their relative weight is a system-
dependent issue. However, a few general considerations can
be made here. Spontaneous emission from the excited state
of each qubit occurring at rate �q�gj �� �in order for the
bad cavity limit to hold� is formally accounted for by intro-
ducing in the two-qubit reduced master equation terms iden-
tical to the first line of Eq. �11� �for n̄=0 and replacing gj

2 /�
with �q�. This results in an effective modification of the
spontaneous emission rate which becomes �q�1+cj�, with
cj =gj

2 / ��q�� the �finite� cooperativity parameter correspond-
ing to qubit j. Depending on the relative ratios of the param-
eters entering the problem, this simply biases the dynamics
toward individual spontaneous emission processes of the two
qubits against the effective qubit-qubit interaction, therefore
resulting in less entanglement and more mixedness of the
stationary state. On the other hand, the inclusion of phase-
damping processes in the dynamics encompassed by Eq. �11�
needs to be commented.

As the closest state to MEMS occurs for n̄=0, we only
need to consider this case. Phase damping is added by intro-
ducing

L̂pd���t�� = − �†�z,��z,��t��‡ �16�

in Eq. �7�. Notice that as L̂pd does not involve field opera-
tors, it remains unaffected by the procedure used to obtain
the reduced qubit dynamics. Therefore, term �16� is straight-
forwardly added to Eq. �11� where we set n̄=0. By means of
suitably modified Bloch equations, we are able to quantify
the effects that phase damping has on entanglement genera-
tion. Figure 7 shows such effects on our optimal solution. We
see that the inclusion of this term has a drastic effect on the
state of closest proximity to MEMS. Even for the very small
value � /g1�0.001, we already see a marked drop in the
amount of entanglement our state possesses. In fact, Fig. 7�b�

shows that by ��0.003 we have lost all the entanglements.
Thus, a setting realizing the discussed scheme on effective
MEMSs approach should keep phase-damping effects under
control in order to maintain the protocol efficient.

This result is interesting also under another viewpoint. In
fact, it can be seen that despite the excellent proximity be-
tween �2 and our optimal state, the resilience properties of
the two states against phase-damping processes are quite dif-
ferent: �2 as a family of states is incredibly robust to the
action of phase-damping channels acting on the qubits. As
shown by the dot-dashed part of the boundary curve in Fig.
7�a�, such a channel maps a state belonging to �2 into another
one within the same family, so that the lower part of the
MEMS curves basically folds on itself �24�. On the other
hand, the optimal state � is affected in the rather different
way addressed above, despite it is less than 1% away, in
terms of state fidelity, from such a MEMS. Such a behavior
asks for the design of suitable strategies for the protection of
the properties of �, at the optimal point, against processes
bringing it away from the MEMS boundary. This is currently
the topic of our ongoing investigations.

IV. PRACTICAL CONSIDERATION

Here, we provide some details about an experimental set-
ting we would like to suggest as a potential candidate for the
successful implementation of the scheme we have discussed
so far. It is somehow obvious that a cavity-QED setup of two
neutral atoms into an optical cavity as well as single-
electron-charged quantum dots into a semiconductor micro-
cavity would be well suited for the test of our proposal.
However, here we decide to explicitly approach a circuit-
QED setup, which we believe is the most promising scenario
for our purposes in virtue of its properties of easy manipula-
bility of stationary qubits and the physical features of the
cavity and two-level systems involved.

In this scenario, each qubit is encoded into a standing-still
superconducting qubit embodied by a SQUID working in the
charge regime at the degeneracy point �to wash away, to first
order in the single-Cooper pair charge 2e, the detrimental
effect of low-frequency noise induced by background impu-
rities� �14,15�. Alternatively, one can use the recently pro-
posed transmon qubits, a charge-phase qubit that results
from a modification of a Cooper-pair box, which achieve
unprecedented protection against 1 / f noise. The transition
energy of each superconducting qubit can be adjusted
through an external in situ magnetic flux that modulates the
Josephson energy of the SQUID �14� in such a way that the
qubit can be easily put in the strong resonant or dispersive
regime with the field. This tuning ability is at the basis of the
experimentally demonstrated nondemolition measurement of
the qubit state through spectroscopic resolution of the field’s
frequency-pulling effect �15�. The qubits are integrated, via
conventional optical lithography, in a full-wave or half-wave
on-chip coplanar waveguide split by input and output capaci-
tances at tens of millimeters apart. The capacitors couple the
cavity to input/output lines for the injection/leakage of the
electromagnetic signal.

The cavity resonance frequency is in the range of
�5 GHz. With this frequency and an operating temperature

(b)(a)

FIG. 7. �Color online� �a� Effect of phase damping on the open
trajectories corresponding to the states with optimal value �opt.
Dashed curve shows the trajectory corresponding to �=0, while the
lower curves show an increasing dimensionless phase-damping rate
� /g1 which goes from 10−3 to 0.1 in steps of 10−3. The lower
�dot-dashed� part of the MEMS boundary curve corresponds to
MEMS �2 affected by independent phase-damping channels. �b�
Decrease in concurrence C against an increasing phase-damping
rate � /g1 for the optimal state with �=�opt and g1t=100.
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�100 mK, n̄ is as small as 0.06, which allows for the
vacuum-field treatment discussed in detail in this paper. Mul-
tiple qubits have been experimentally allocated into a single
coplanar waveguide, in a way so as to implement two-qubit
information transfer via cavity-filled bus �25� and, more re-
cently, a circuit-QED version of the Tavis-Cummings model
�26�. The biased coupling of qubits 1 and 2 can be achieved
by embedding them at slight asymmetric locations with re-
spect to a voltage antinode of the sustained field mode. In
principle, the stripline is a quasiunidimensional structure
with a very small transversal dimension that reduces the ef-
fective volume of the cavity field and enhances the coupling
rate with the qubit. This, together with the effective dipole
moment of the SQUID qubit ��2�104ea0�, gives rise to
g1 /� f 
0.2–2%. The energy damping time of the stripline
can be as long as �1 �s, which in principle allows for a
long coherent dynamics within the cavity lifetime �experi-
mental evidences put the qubit damping rate in the range of
2 �s� and thus the implementation of the unitary version of
the MEMS-approaching scheme. A detailed derivation of the
qubit-stripline coupling Hamiltonian and the resulting cou-
pling strength can be found in Paternostro et al. �15�. As the
cavity into which the qubits operate is cut by interrupting the
coplanar waveguide with the input/output capacitors, the
resonator quality factor can be electrically tuned from 102 to
106. This would in principle allow the realization of bad-
cavity conditions where g1��. Therefore, such a setup is
able to probe both the regimes studied here. Finally, we men-
tion that for an individual qubit it is �−1�2 �s, which
should put the phase-damping rate in a range of weak effect
onto the optimal state properties. Very recently, the ability to
perform complete state tomography of two transmon qubits
has been experimentally demonstrated �27�, opening up the
possibility for preparation, evolution, and characterization of
the target state.

For the sake of completeness, we just mention that a dif-
ferent scheme for the preparation of MEMS using a prear-
ranged off-line entangled resource has been suggested, both
in cavity and circuit QED, in Ref. �9�. We refer to that work
for an extensive account of the details necessary for such the
step.

V. CONCLUDING REMARKS

In this paper we have studied how dissipation can be used
in a way so as to engineer a two-qubit state whose properties
are fairly close to those of a MEMS. We found that concur-
rence as large as C�0.59 can be set in a state having more
than 99% fidelity with �2. This was achieved by introducing
dissipation in a system that, in the noiseless unitary case, is
able to span quite a large portion of the MEMS boundary.
Although the noise-affected version of the protocol sees a
strong reduction in its ability to produce genuine MEMS, yet
a rather considerable possibility of navigation in the C-S
plane is preserved despite the explicit consideration of dissi-
pation. The relevance of our study is thus twofold. On one
hand, it can be seen as the promising demonstration that a
simple protocol for quantum state engineering of entangled
mixed state can be designed for dissipation-affected settings.
On the other hand, ours is the rigorous and complete quan-

titative assessment of the ability of a resonant and bias spin-
boson coupling to generate MEMS under the effects of rel-
evant sources of noise. As such, we believe our investigation
provides valuable and interesting information for the experi-
mental groups interested in quantum state engineering in
cavity and circuit QED, where our study would find a natural
and significant implementation. In perspective, it would be
interesting to exploit the apparatus put forward here in order
to address whether the system we have considered is able to
create boundary-entangled mixed states for more than two
qubits, an issue which would require a considerable deal of
theoretical work and represents a stimulating challenge.
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APPENDIX

As discussed in the main body of the paper, we can solve
Eq. �11� by projecting onto the two-qubit computation basis.
In doing so we arrive at a set of differential equations that
defines the time behavior of the density matrix. The amount
of calculation required is greatly reduced by exploiting the
Hermitianity and normalization of the density matrix, thus
reducing the set of relevant equations to

�t�0000 =
2

�
�g1

2�n̄ + 1��1010 + 2g1g2�n̄ + 1��0110

+ g2
2�n̄ + 1��0101 − G2n̄�0000� , �A1�

�t�0001 =
1

�
�2g1

2�n̄ + 1��1011 − �g2
2�2n̄ + 1� + 2g1

2n̄��0001

+ 2g1g2�n̄ + 1��0111 − g1g2�2n̄ + 1��0010� , �A2�

�t�0010 =
1

�
�2g2

2�n̄ + 1��0111 − �g1
2�2n̄ + 1� + 2g2

2n̄��0010

+ 2g1g2�n̄ + 1��1011 − g1g2�2n̄ + 1��0001� , �A3�

�t�0101 =
2

�
�g1

2�n̄ + 1��1111 − �g2
2�n̄ + 1� + g1

2n̄��0101

+ g2
2n̄�0000 − g1g2�2n̄ + 1��0110� , �A4�

�t�0110 = −
�2n̄ + 1�

�
�g1g2��1010 + �0101� + G2�0110�

+
2g1g2

�
��n̄ + 1��1111 + n̄�0000� , �A5�

�t�0111 = −
1

�
��g1

2�2n̄ + 1� + 2g2
2�n̄ + 1���0111 − 2g2

2n̄�0010

+ g1g2�2n̄ + 1��1011 − 2g1g2n̄�0001� , �A6�
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�t�1010 = −
2

�
��g1

2�n̄ + 1� + g2
2n̄��1010 − g2

2�n̄ + 1��1111

− g1
2n̄�0000 + g1g2�2n̄ + 1��0110� , �A7�

�t�1011 = −
1

�
��2g1

2�n̄ + 1� + g2
2�2n̄ + 1���1011 − 2g1

2n̄�0001

+ g1g2�2n̄ + 1��0111 − 2g1g2n̄�0010� , �A8�

�t�1111 = −
2

�
��g1

2�n̄ + 1� + g2
2�n̄ + 1���1111 − g1

2n̄�0101

− g2
2n̄�1010 − 2g1g2n̄�0110� . �A9�

These equations, together with the normalization constraint
�1111=1− ��0000+�0101+�1010� and the decoupled equation
�t�0011=− G2

� �2n̄+1��0011, allow for the solution of the dy-
namical problem discussed throughout the paper.
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