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A generalized model of the quantum measurement process is considered, in which the relaxation of the
detector system interacting with an environment can be treated. When the effect of the environment on the
detector system is described by the quantum Markovian process, the model can be solved exactly. The time
evolution of the particle and detector is investigated in detail. It is shown that the decay of quantum coherence
of the particle becomes negligible when the relaxation time of the detector system is sufficiently short. Fur-
thermore the stochastic model is found, which is equivalent to the proposed model with respect to the particle
state.
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I. INTRODUCTION

The characteristic features of quantum mechanics are the
complementarity of wavelike and particlelike properties of a
particle and the state reduction caused by a quantum mea-
surement �1�. When we observe particlelike �wavelike� prop-
erties of a quantum-mechanical particle, wavelike �particle-
like� properties are inevitably destructed by the observation.
Then the decoherence of the particle takes place in a quan-
tum measurement process. Exactly solvable models are very
significant in order to understand the measurement-induced
decoherence since they exclude the effects of approxima-
tions. The Coleman-Hepp model �2–5� and its generalized
version �6–8�, which are exactly solvable, provide us the
comprehensive understanding of the quantum measurement
processes �see Ref. �9� for review�. In these models, how-
ever, the composite system of the particle �a measured sys-
tem� and the detector system �a measuring apparatus� are
isolated from a surrounding environment. Hence the detector
state remains unchanged after the interaction with the par-
ticle. If the models can be generalized such that the detector
system is placed under the influence of an environment, the
generalized model would be more important as a model of
the quantum measurement process. Such an extension of the
model is the main purpose of this paper. When the influence
of the environment on the detector system is described by the
quantum Markovian process �10,11�, the generalized model
can be solved exactly. In this paper, we solve the model by
means of nonequilibrium thermofield dynamics �NETFD�
�12–17�.

The Coleman-Hepp model for the quantum measurement
process is exactly solvable �2–5�, where a propagating par-
ticle Q described by a ultrarelativistic Hamiltonian HQ=vP
with momentum operator P and velocity parameter v��c�
interacts with a one-dimensional array of N spins with mag-
nitude 1/2, called a detector system D. Then the total Hamil-
tonian of the Coleman-Hepp model is provided by

H = HQ + H�, �1�

with

H� = �
k=1

N

��k�X − xk��x
�k�, �2�

where X is a position operator of the propagating particle,
which satisfies the canonical commutation relation �X , P�
= i�, �x

�k� is the Pauli matrix of the kth spin of the detector
system, and the real parameter xk stands for the position of
the kth spin. In Eq. �2�, the function �k�x� characterizes the
strength of the interaction between the particle and the kth
spin. In the original Coleman-Hepp model, neither the en-
ergy of the detector system D nor the energy exchange be-
tween the particle and detector are taken into account.

Nakazato and Pascazio �6,7� have generalized the
Coleman-Hepp model so that the detector energy and the
energy exchange can be taken into account. Remarkably the
generalized Coleman-Hepp model is still exactly solvable.
The Hamiltonian of the generalized Coleman-Hepp model is
described by the Hamiltonian,

H = H0 + H1, �3�

where the free Hamiltonian H0 and the interaction Hamil-
tonian H1 are given by

H0 = HQ + HD = vP +
1

2�
k=1

N

��k�z
�k�, �4�

H1 = �
k=1

N

��k�X − xk���+
�k�e−i�kX/v + �−

�k�ei�kX/v� , �5�

with ��
�k�= ��x

�k�� i�y
�k�� /2. In this model, the kth spin of the

detector system is excited by absorbing the energy ��k from
the propagating particle and it relaxes into the ground state
by emitting the energy ��k into the particle. Hiyama and
Takagi �8� have further generalized the 1/2-spin detector sys-
tem into the detector system with arbitrary spins. In their
model, the Pauli matrices �z

�k� and ��
�k� in Eqs. �4� and �5� are

replaced with arbitrary spin operators Sz
�k� and S�

�k�

=Sx
�k�� iSy

�k�. Moreover, Hiyama and Takagi �8� have consid-
ered the model where the detector system consists of N har-
monic oscillators. In this model, which is called the boson-
detector �BD� model, the free Hamiltonian of the particle and
detector system is given by
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H0 = HQ + HD = vP + �
k=1

N

��kak
†ak, �6�

and the interaction Hamiltonian is

H1 = �
k=1

N

��k�X − xk��ak
†e−i�kX/v + ake

i�kX/v� , �7�

where ak and ak
† are the annihilation and creation operators of

the kth harmonic oscillator of the detector system. This
model is also exactly solvable. The slightly different model
in which the interaction Hamiltonian H1 is replaced with

H1 = �
k=1

N

��k�X − xk��ak
† + ak� , �8�

has been considered by Kobayashi �18�. The properties of the
generalized Coleman-Hepp model and the boson-detector
model have been investigated in detail by means of the non-
equilibrium statistical method �19–23�.

In the generalized Coleman-Hepp model described by Eq.
�3� with Eqs. �4� and �5� or the boson-detector model by Eqs.
�6� and �7�, the composite system of the particle Q and de-
tector D is isolated from a surrounding environment. Thus
the quantum state of the detector system D remains un-
changed after the interaction with the propagating particle Q.
For example, we suppose that the detector system in the
generalized Coleman-Hepp model is initially prepared in the
ground state �Fig. 1�a��.

Some of the detector spins are excited by the interaction
with the particle �Fig. 1�b��. After the interaction, the excited
spins stay in the excited state �Fig. 1�c��. In the real world,
however, the excited spins inevitably relax to the equilibrium
state under the influence of an environmental system. There-
fore, in this paper, we further generalize the model so that the
relaxation of the detector system caused by a surrounding
environment can be treated. When the effect of the environ-
ment on the detector system is described by the quantum
Markovian process, the generalized model can be still ex-
actly solvable.

This paper is organized as follows. In Sec. II, we propose
a generalized version of the boson-detector model and obtain

the time evolution of the particle-detector system by means
of nonequilibrium thermofield dynamics �12–14�, which is
abbreviated as NETFD in the rest of this paper. In Sec. III,
we investigate the decay of the quantum coherence of the
propagating particle. We will show that the decay of the
quantum coherence becomes negligible when the relaxation
of the detector caused by the environment is very significant.
In Sec. IV, we will find the stochastic model which is equiva-
lent to the generalized model with respect to the particle
dynamics. In Sec. V, we give the concluding remarks.

II. DISSIPATIVE MODEL AND ITS SOLUTION

A. Boson-detector model interacting with an environment

In this section, the boson-detector model is generalized so
that the detector system placed under the influence of an
environment can be treated. In the generalized model, after
the interaction with the particle, the detector system relaxes
into the equilibrium state by the interaction with the environ-
ment. To make the model analytically tractable, we assume
that the detector system is a one-dimensional array of N har-
monic oscillators �8�. The generalized model is described by
the Hamiltonian,

HT = H + HE + HDE, �9�

where H=H0+H1 is the particle-detector Hamiltonian with
H0 and H1 being given by Eqs. �6� and �7�, HE is the envi-
ronmental Hamiltonian, and HDE is the interaction Hamil-
tonian between the detector system and environment.

We assume that the effect of the environment on the de-
tector is described by the quantum Markovian process. Let
W�t� be a density operator of the particle Q and detector
system D. Since the quantum Markovian process can be de-
scribed by the superoperator L of the Lindblad form �10,11�,
we obtain the quantum master equation for the density op-
erator W�t� of the particle Q and detector D,

�

�t
W�t� = −

i

�
�H,W�t�� + LW�t� , �10�

with

LW�t� = �
k=1

N

�k�n̄k + 1���ak,W�t�ak
†� + �akW�t�,ak

†��

+ �
k=1

N

�kn̄k��ak
†,W�t�ak� + �ak

†W�t�,ak�� , �11�

where �k is the damping parameter of the kth oscillator of the
detector system and n̄k= �e��k/kBT−1�−1 with T being the ab-
solute temperature of the environment. In the rest of this
paper, we assume that the detector is initially prepared in the
vacuum state, the density matrix of which is given by

WD = �
k=1

N

	0k
�0k	 , �12�

with ak	0k
=0. The temperature of the environment is T=0
and thus n̄k=0. Then, in the generalized model, the detector

x
Q

x
Q

(a)

(b)

x

(c)

FIG. 1. The schematic representation of the state change in the
detector system in the generalized Coleman-Hepp model. �a� The
detector system is prepared in an initial state, e.g., the ground state,
before the interaction with the particle. �b� The detector system is
excited by the propagating particle. �c� The detector system excited
by the particle remains unchanged after the interaction since the
detector system is isolated.
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system that is initially prepared in the vacuum state �Fig.
2�a�� is excited by the interaction with the propagating par-
ticle �Fig. 2�b��. After the interaction, the detector system
evolves into the vacuum state under the influence of the en-
vironment.

B. Time evolution of the particle-detector system

Now, using the method of NETFD, we solve the quantum
master equation given by Eq. �10� with Eq. �11� and n̄k=0.
The initial condition is assumed to be

W�0� = WQ � WD, �13�

where WD is the density operator of the detector system in
the vacuum state, given by Eq. �12�, and WQ represents the
initial state of the particle. Introducing the interaction picture
by W��t�=e�it/��H0W�t�e−�it/��H0, we can obtain the equation of
motion for W��t�,

�

�t
W��t� = −

i

�
�H1��t�,W��t�� + LW��t� , �14�

with

LW��t� = �
k=1

N

�k��ak,W��t�ak
†� + �akW��t�,ak

†�� , �15�

and

H1��t� = �
k=1

N

��k�X + vt − xk��ak
†e−i�kX/v + ake

i�kX/v� .

�16�

Here it is important to note that the commutation relation
�H1��t� ,H1��t���=0 holds for any times t and t�. To solve Eq.
�14�, it is convenient to use the method of NETFD, which is
briefly summarized in the Appendix.

In NETFD, the density operator W��t� acting on the Hil-
bert space H of the particle-detector system is represented by
the state vector 	W��t�
 of the extended Hilbert space H
� H̃ �see Appendix�. The state vector 	W��t�
 is subject to the
equation of motion,

�

�t
	W��t�
 = −

i

�
�H1��t� − H̃1��t��	W��t�
 + �̂	W��t�
 , �17�

where H̃1��t� is the tilde conjugate of H1��t�, namely,

H̃1 = �
k=1

N

��k�X̃ − xk��ãk
†ei�kX̃/v + ãke

−i�kX̃/v� , �18�

and the Lindblad operator �̂ with n̄k=0 in NETFD is given
by

�̂ = − �
k=1

N

�k�ak
†ak + ãk

†ãk − 2akãk� . �19�

The operator X̂ is the tilde conjugation of the position opera-
tor, and ãk and ãk

† are the tilde conjugate of the annihilation
and creation operators. Furthermore, setting 	W��t�

=e−�̂t	W��t�
, we obtain

�

�t
	W��t�
 = −

i

�
e−�̂t�H1��t� − H̃1��t��e

�̂t	W��t�


= − i�
k=1

N

��k�X + vt − xk��bk�t�ei�kX/v + bk�t�ei�kX/v�

− �k�X̃ + vt − xk��b̃k�t�e−i�kX̃/v + b̃k
†�t�e−i�kX̃/v��

�	W��t�
 , �20�

where the operators bk�t�=e−�̂take
�̂t, bk�t�=e−�̂tak

†e�̂t, b̃k�t�
=e−�̂tãke

�̂t, and b̃k
†�t�=e−�̂tãk

†e�̂t are calculated to be

bk�t� = e−�ktak, �21�

bk
†�t� = e−�ktãk + e�kt�ak

† − ãk� , �22�

b̃k�t� = e−�ktãk, �23�

b̃k
†�t� = e−�ktak + e�kt�ãk

† − ak� . �24�

Substituting these equations into Eq. �20�, we can obtain the
equation of motion for the state vector 	W��t�
,

�

�t
	W��t�
 = − i�

k=1

N

�Ak�t�ak + Bk�t�ak
† − Ãk�t�ãk − B̃k�t�ãk

†�

�	W��t�
 , �25�

where the operators Ak�t� and Bk�t� are given by

Ak�t� = �k�X + vt − xk�e−�ktei�kX/v − �k�X̃ + vt − xk�

��e−�kt − e�kt�ei�kX̃/v, �26�

Bk�t� = �k�X + vt − xk�e�kte−i�kX/v, �27�

and Ãk�t� and B̃k�t� are the tilde conjugate of Ak�t� and Bk�t�.
It should be noted that Ak�t�, Bk�t�, Ãk�t�, and B̃k�t� are com-
mutable operators, e.g., �Ak�t� ,Bk�t���=0 for any times t and
t�.

x

x

x

Q

Q

(a)

(b)

(c)

FIG. 2. The schematic representation of the state change in the
detector system in the generalized boson-detector model with dissi-
pation. �a� The detector system is prepared in the vacuum state
before the interaction with the particle. �b� The detector system is
excited by the propagating particle. �c� After the interaction, the
detector system relaxes into the vacuum state under the influence
with the environment of T=0.
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To solve Eq. �25�, we remember the operator identity for
annihilation and creation operators,

T exp�− i
0

t

dt��f�t��a + g�t��a†��
= exp�−

1

2


0

t

dt1
0

t1

dt2�f�t1�g�t2� − f�t2�g�t1���
�exp�− i

0

t

dt��f�t��a + g�t��a†�� , �28�

where the symbol “T” stands for the chronological ordering
of operators from the right to the left. Using this identity, we
can obtain the solution of Eq. �25�,

	W��t�
 = e−�1/2��G�t�+G̃�t��D�t�D̃�t�	W�0�
 , �29�

where the operators G�t� and D�t� are given by

G�t� = �
k=1

N 
0

t

dt1
0

t1

dt2�Ak�t1�Bk�t2� − Ak�t2�Bk�t1�� ,

�30�

D�t� = exp�− i�
k=1

N

�Ak�t�ak + Bk�t�ak
†�� , �31�

with

Ak�t� = 
0

t

dt�Ak�t��, Bk�t� = 
0

t

dt�Bk�t�� . �32�

Therefore we finally obtain the state vector 	W�t�
 that rep-
resents the quantum state of the particle and detector system
of the generalized boson-detector model,

	W�t�
 = e−�it/���H0−H̃0�e�̂te−�1/2��G�t�+G̃�t��D�t�D̃�t�	W�0�
 .

�33�

C. Relaxation of the detector state

Using the result obtained above, we investigate the time
evolution of the detector system which is initially prepared in
the vacuum state. In NETFD, the initial state of the detector
is given by

	WD�0�
 = 	0, 0̃
 = �
k=1

N

	0k, 0̃k
 , �34�

with ak	0k , 0̃k
= ãk	0k , 0̃k
=0. For the initial state 	WQ�0�
 of
the propagating particle, PQ�x�= �x , x̃ 	WQ�0�
= �x	WQ�0�	x
 is
the position probability density that the particle is located at
the initial time �t=0�. Using the completeness relation of the
position eigenstate of the particle, we can obtain the quantum
state of the detector system at time t from Eq. �33�,

	WD�t�
 = 
−	

	

dx�x, x̃	W�t�


= e−�it/���HD−H̃D�e�̂t

�
−	

	

dx�x − vt,x − v˜t	e−1/2�G�t�+G̃�t��D�t�D̃�t�	W�0�


= e−�it/���HD−H̃D�e�̂t
−	

	

dx e−1/2�G�t�+G̃�t��	X=X̃=x−vt

� D�t�	X=X̃=x−vtD̃�t�	X=X̃=x−vt�x − vt,x − v˜t	W�0�


= e−�it/���HD−H̃D�e�̂t
−	

	

dx e−1/2�G�t�+G̃�t��	X=X̃=x−vt

� D�t�	X=X̃=x−vtD̃�t�X=X̃=x−vtPQ�x − vt�	0, 0̃


= e−�it/���HD−H̃D�e�̂t
−	

	

dx PQ�x�e−1/2�G�t�+G̃�t��	X=X̃=x

� D�t�	X=X̃=xD̃�t�	X=X̃=x	0, 0̃
 . �35�

Here we define the c-number functions Ck�x , t� and Ck�x , t�
by

Ck�x,t� = �k�x + vt − xk�e�kt−i�kx/v, �36�

Ck�x,t� = 
0

t

dt�Ck�x,t�� . �37�

Using the function Ck�x , t�, we find that D�t� 	X=X̃=x becomes
the displacement operator,

D�t�	X=X̃=x = exp�− i�
k=1

N

�Ck
��x,t�ak + Ck�x,t�ak

†�� . �38�

Furthermore it is easy to check that G�t� 	X=X̃=x is identically
zero,

G�t�	X=X̃=x = 0. �39�

Therefore we obtain the state vector of the detector system,

	WD�t�
 = e−�it/���HD−H̃D�e�̂t
−	

	

dxPQ�x��
k

	− iCk�x,t�


�	− iCk�x,t�˜
 , �40�

where 	−iCk�x , t�
 is the Glauber coherent state of the kth
oscillator of the detector. It is well-known fact that the envi-
ronment with T=0 changes the coherent state as 	
k

→ 	
ke

−�kt
 during time t. Therefore we finally obtain the
quantum state of the detector which interacts with the propa-
gating particle under the influence of the environment,

	WD�t�
 = 
−	

	

dxPQ�x��
k

	
k�x,t�
	
k�x,t�˜
 , �41�

with
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k�x,t� = − iCk�x,t�e−i�kt−�kt. �42�

In the density-matrix representation, the detector state WD�t�
is given by

WD�t� = 
−	

	

dx PQ�x��
k

	
k�x,t�
�
k�x,t�	 , �43�

which is the statistical mixture of the time-dependent coher-
ent states.

To see the property of the coherent state 	
k�x , t�
 of the
kth oscillator of the detector system, we consider the case of
the function �k�x� which characterizes the interaction be-
tween the propagating particle and detector oscillator is pro-
portional to the � function,

�k�x� = v�k��x� , �44�

which means that the kth oscillator interacts with the particle
only when it passes through at position x. In this case, the
complex amplitude of the coherent state of the kth oscillator
becomes


k�x,t� = �0 �t  tk�
�ke

−�k�t−tk�e−i�k�t+x/v�−i�/2 �t � tk� ,
� �45�

where tk= �xk−x� /v is the time that the particle initially lo-
cated at the position x passes through the site of the kth
oscillator. The meaning of the result is clear. The kth oscil-
lator is in the vacuum state before the interaction with the
particle �t tk�. The interaction at the time tk excites the os-
cillator into the coherent state with amplitude 	�k	. After the
interaction, the amplitude decays exponentially to zero and
finally the oscillator returns to the vacuum state. This is just
the situation depicted in Fig. 2.

III. DECAY OF QUANTUM COHERENCE

To investigate the decay of the quantum coherence of the
propagating particle in the generalized boson-detector model,
we consider the Mach-Zehnder interferometer depicted in
Fig. 3. We denote as 	1�
 �or 	0�
� the state that there is one
�or no� particle on the path ��=a ,b� of the interferometer.
We also set 	+ 
= 	1a
 � 	0b
 and 	−
= 	0a
 � 	1b
. In the figure,
we assume that the particle enters the interferometer from the
input port a. In general, just after the particle appears at the
output of the first beam splitter and before interacting with
the detector, the particle state is written as

WQ�0� = �path � �Q, �46�

with

�path = S++	 + 
�+ 	 + S+−	 + 
�− 	 + S−+	− 
�+ 	 + S−−	− 
�− 	 ,
�47�

and �Q is the initial state of the particle. The expansion co-
efficients Sjk� s satisfy

S++ + S−− = 1, S�.� � 0, S+− = S−+
� , S++S−− � 	S+−	2.

�48�

When we use a half mirror and enter the particle from the
input port a, we have �path= 	�
��	 with 	�
= �	+ 
+ 	−
� /�2.

Since the particle interacts with the detector only when it
propagates on the path a, the Hamiltonian H0+H1 of the
particle-detector system is modified as H0+ P+ � H1 with the
projection operator P+= 	+ 
�+	. Using the result derived in
the previous section, we can obtain the quantum state of the
particle and detector system in NETFD at time t before en-
tering the second beam splitter,

	W�t�
 = e−�it/���H0−H̃0�e�̂te−�1/2��G�t�+G̃�t��D�t�D̃�t�	W�0�
 ,

�49�

with

D�t� = exp�− i�
k=1

N

�
0

t

dt�Ak�t��ak + 
0

t

dt�Bk�t��ak
†�� ,

�50�

G�t� = �
k=1

N 
0

t

dt1
0

t1

dt2�Ak�t1�Bk�t2� − Ak�t2�Bk�t1�� ,

�51�

where the operators Ak�t� and Bk�t� are given by

Ak�t� = P+�k�X + vt − xk�e−�ktei�kX/v − P̃+�k�X̃ + vt − xk�

��e−�kt − e�kt�ei�kX̃/v, �52�

Bk�t� = P+�k�X + vt − xk�e�kte−i�kX/v, �53�

which are equal to those given by Eqs. �26� and �27� if the
projection operator P+ is replaced with the identity.

We first eliminate the information of the particle from the
quantum state 	W�t�
 given by Eq. �49�. Using the complete-
ness of the position eigenstates, we obtain the reduced quan-
tum state of the particle path and detector,

a

a

b

b

the generalized BD model

FIG. 3. The schematic representation of the Mach-Zehnder in-
terferometer. The particle interacts with the detector only when it
propagates on the path a. The particle-detector system on the path a
is described by the generalized BD model. The particle detectors are
placed at the output ports of the interferometer in order to observe
the fringe visibility. In this figure, it is assumed that the particle
enters the interferometer from the input port a.
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	Ŵ�t�
 = 
−	

	

dx�x, x̃	W�t�


= e−�it/���HD−H̃D�e�̂t
−	

	

dx PQ�x�e−�1/2��G�t�+G̃�t��	X=X̃=x

� D�t�	X=X̃=xD̃�t�	X=X̃=x	�path
 � 	0, 0̃
 , �54�

where PQ�x�= �x	�Q	x
 is the initial probability density of the
particle position. The operator D�t� 	X=X̃=x is given by

D�t�	X=X̃=x = exp�− i�
k=1

N

�P̃+C+k
� �x,t� + �P+ − P̃+�C−k

� �x,t��ak

− i�
k

P+C+k�x,t�ak
†� , �55�

with

C�k�x,t� = 
0

t

dt��k�x + vt� − xk�e��kt�−i�kx/v, �56�

and the operator G�t� 	X=X̃=x is provided by

G�t�	X=X̃=x = − 2M�x,t��P+ − P+P̃+� , �57�

with

M�x,t� = �
k=1

N 
0

t

dt1
0

t1

dt2�k�x + vt1 − xk��k�x + vt2

− xk�sinh �k�t1 − t2� , �58�

where we have used the fact that P+ is the projection opera-
tor, namely, P+

2 = P+. If we further eliminate the information

of the particle path from the quantum state 	Ŵ�t�
, we can
obtain the detector state,

	WD�t�
 = �+ ,+̃ 	Ŵ�t�
 + �− ,−̃ 	Ŵ�t�
 , �59�

which becomes identical with Eq. �40�, where we have used
the equality,

�+ ,+̃ 	�P+ − P+P̃+� = �− ,−̃ 	�P+ − P+P̃+� = 0. �60�

To obtain the fringe visibility of the interferometer, we
eliminate the information of the detector system from the

quantum state 	Ŵ�t�
 given by Eq. �54�. After some calcula-
tion, we can obtain

	�path�t�
 = �1	Ŵ�t�
 = 
−	

	

dx PQ�x�eM�x,t��P+ − P̃+�2
�1	D�t�	X=X̃=xD̃�t�	X=X̃=x	0, 0̃
	�path
 = 

−	

	

dx PQ�x�eM�x,t��P+ − P̃+�2
e−F̂�x,t�

� �0	exp�− i�P+ − P̃+��
k=1

N

�C−k�x,t�ak
† + C−k

� �x,t�ak��	0
	�path
 , �61�

where 	1
 is given by

	1
 = �
k=1

N

	1k
 , �62�

with 	1k
=�nk=0
	 	nk , ñk
 and ak

†ak	nk , ñk
= ãk
†ãk	nk , ñk


=nk	nk , ñk
, The operator F̂�x , t� is provided by

F̂�x,t� =
1

2�
k=1

N

��P+ − P+P̃+�C+k�x,t�C−k
� �x,t�

+ �P̃+ − P+P̃+�C+k
� �x,t�C−k�x,t�

− �P+ − P̃+�2	C−k�x,t�	2� . �63�

In deriving Eq. �61�, we have used the equality �1	�̂=0.
Furthermore the vacuum expectation value in Eq. �61� is
calculated to be

�0	exp�− i�P+ − P̃+��
k=1

N

�C−k�x,t�ak
† + C−k

� �x,t�ak��	0


= exp�−
1

2
�P+ − P̃+�2�

k=1

n

	C−k�x,t�	2� . �64�

Then the quantum state of the particle path is given by

	�path�t�
 = 
−	

	

dxPQ�x�eM�x,t��P+ − P̃+�2Nk�x,t�	�path
 ,

�65�

with

Nk�x,t� = exp�−
1

2�
k=1

N

��P+ − P+P̃+�C+k�x,t�C−k
� �x,t�

+ �P̃+ − P+P̃+�C+k
� �x,t�C−k�x,t��� . �66�

Substituting Eq. �47� into Eq. �65�, we finally obtain
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	�path�t�
 = S++	+ ,+̃ 	 + S−−	− ,−̃ 
 + S+−
−	

	

dx PQ�x�eM�x,t�

�exp�−
1

2�k=1

N C+k�x,t�C−k
� �x,t��	+ ,−̃ 


+ S−+
−	

	

dx PQ�x�eM�x,t�

�exp�−
1

2�
k=1

N

C+k
� �x,t�C−k�x,t��	− ,+̃ 
 . �67�

In the density-matrix form, the state of the particle path is
given by

�path�t� = S++	 + 
�+ 	 + S−−	− 
�− 	 + S+−
−	

	

dx PQ�x�eM�x,t�

�exp�−
1

2�
k=1

N

�k
�+��x,t��k

�−��x,t��	 + 
�− 	

+ S−+
−	

	

dx PQ�x�eM�x,t�

�exp�−
1

2�
k=1

N

�k
�+��x,t��k

�−��x,t��	− 
�+ 	 , �68�

with

�k
����x,t� = 

0

t

dt��k�x + vt� − xk�e��kt�. �69�

Thus the decay of the fringe visibility of the interferometer
�or equivalently the quantum coherence of the particle� is
determined by the function F�t�,

F�t� = 
−	

	

dx PQ�x�eM�x,t�exp�−
1

2�
k=1

N

�k
�+��x,t��k

�−��x,t�� .

�70�

The next task is to obtain the integrand of the decoherence
function F�t�. First we note that

1

2�
k=1

N

�k
�+��x,t��k

�−��x,t� = �
k=1

N 
0

t

dt1
0

t1

dt2�k�x + vt1

− xk��k�x + vt2 − xk�cosh �k�t1 − t2� .

�71�

Then using this equation and Eq. �58�, we can finally obtain
the decoherence function F�t� of the generalized boson-
detector model,

F�t� = 
−	

	

dx PQ�x�exp�−
1

2�
k=1

N 
0

t

dt1
0

t

dt2�k�x + vt1

− xk��k�x + vt2 − xx�e−�k	t1−t2	� . �72�

When we set �k=0 in this equation, the decoherence function

F�t� becomes equal to that obtained for the generalized
boson-detector model. It is obvious that the inequality,


0

t

dt1
0

t

dt2�k�x + vt1 − xk��k�x + vt2 − xx�e−�k	t1−t2	

� �
0

t

dt��k�x + vt� − xk��2

, �73�

holds, which yields the inequality,

F�t� � F�t�	�k=0. �74�

This result means that the decoherence in the generalized
boson-detector model is not greater than that in the conven-
tional boson-detector model. In particular, we can see that

lim
�k→	


0

t

dt1
0

t

dt2�k�x + vt1 − xk��k�x + vt2 − xx�e−�k	t1−t2	

= 0. �75�

It is found from this result that there is no decay of the
quantum coherence in the strong damping limit for the de-
tector oscillators.

To investigate the property of the decoherence function
F�t�, we assume that all the oscillators of the detector are
equal and the particle is initially located far from the detector
so that there is no interaction at the initial time. We consider
the time t after the particle interacts with all the oscillators.
Then the function F�t� becomes

F�	� = exp�−
1

2
N

−	

	

dt1
−	

	

dt2��vt1 − x���vt2

− x�e−�k	t1−t2	� . �76�

We further assume that the function ��x� which character-
izes the coupling between the particle and detector oscillator
is Gaussian,

��x� =
u

�2��2N
exp�−

x2

2�2� , �77�

where � determines the interaction range of each oscillator
with the particle and u is some real constant with dimension
of velocity. Then the decoherence function F�	� becomes

F�	� = exp�−
b

2�


−	

	

dx1
−	

	

dx2e−�1/2��x1
2+x2

2�−a	x1−x2	� ,

�78�

where the parameters a and b are given by

a =
��

v
, b =

1

2
�u

v
�2

. �79�

Note that the ratio � /v is the interaction time of each oscil-
lator and 1 /� is the relaxation time of the oscillator. Then the
parameter a characterizes how much the oscillator decays
during the interaction with the particle. Performing the inte-
gration, we obtain
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F�	� = exp�− b�1 − erf�a��e−a2
� , �80�

where erf�x� is the error function. This result shows that the
function F�	� rapidly approaches unity as the value of the
parameter a becomes large. The decoherence function F�	�
is plotted as the function of the parameters a and b in Fig. 4.

Finally we obtain the quantum state of the particle. This
can be done by eliminating the information of the particle
path and detector system from the quantum state 	W�t�
 given
by Eq. �49�. After some calculation, we can derive the re-
duced quantum state of the particle,

	�Q�t�
 = �1	��+ ,+̃ 	 + �− ,−̃ 	�	W�t�


= e−�itv/���P−P̃��S−−	�Q�0�
 + S++G�X,X̃;t�	�Q�0�
� ,

�81�

where the function G�t� is given by

G�X,X̃;t� = exp�−
1

2�
k=1

N 
0

t

dt1
0

t

dt2�k�X,X;t1,t2�

−
1

2�
k=1

N 
0

t

dt1
0

t

dt2�k�X̃,X̃;t1,t2�

+
1

2�
k=1

N 
0

t

dt1
0

t

dt2�k�X̃,X;t1,t2�e−i�k�X−X̃�/v

+
1

2�
k=1

N 
0

t

dt1
0

t

dt2�k�X,X̃;t1,t2�e−i�k�X−X̃�/v� ,

�82�

with

�k�x,x�;t1,t2� = �k�x + vt1 − xk��k�x� + vt2 − xk�e−�k	t1−t2	.

�83�

When we expand the initial state of the particle in terms of
the position eigenstates as

	�Q�0�
 = 
−	

	

dx
−	

	

dyf�x,y�	x, ỹ
 , �84�

the quantum state 	�Q�t�
 at time t becomes

	�Q�t�
 = 
−	

	

dx
−	

	

dyf�x,y�	x + vt,y + ṽt


��S−− + S++G�x,y ;t�� . �85�

In the density-matrix representation, we have

�Q�t� = 
−	

	

dx
−	

	

dyf�x,y�	x + vt
�y + vt	

��S−− + S++G�x,y ;t�� . �86�

Since lim�k→	G�x ,y ; t�=1 is fulfilled, we obtain

lim
�k→	

�Q�t� = 
−	

	

dx
−	

	

dyf�x,y�	x + vt
�y + vt	

= e−�itv/��P�Q�0�e�itv/��P, �87�

where we have used the relation S+++S−−=1. This result im-
plies that the particle propagates without interacting with the
detector system in the strong damping limit for the detector
oscillators.

IV. STOCHASTIC COLEMAN-HEPP MODEL

In this section, we consider the stochastic version of the
Coleman-Hepp model, where the interaction Hamiltonian H�
given by Eq. �2� is placed with the stochastic Hamiltonian,

H��t� = �
k=1

N

��̃k�X − xk��k�t� . �88�

In this equation, �k�t�’s are the independent stochastic vari-
ables, each of which obeys the stationary Gauss-Markovian
process with a zero mean value, and thus Doob’s theorem
provides

��k�t�
 = 0, ��k�t��k��t��
 = �kk��k
2e−	t−t�	/�k, �89�

where �¯
 stands for the average over the stochastic pro-
cess. In this model, the effect of the detector particle located
at xk on the propagating particle is described by the random

fluctuation. In the following, we renormalized �k�̃k�x� as
�k�t� and thus we can set ��k�t��k��t��
=�kk�e

−	t−t�	/�k. To in-
vestigate the decay of the quantum coherence, we suppose
the setup depicted in Fig. 3.

Then the quantum state W�t� of the system obeys the
Liouville-von Neumann equation,

�

�t
W�t� = −

i

�
�HQ + P+ � H��t�,W�t�� . �90�

When we set W��t�=e�it/��HQW�t�e−�it/��HQ, we obtain

0
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FIG. 4. �Color online� The dependence of the decoherence func-
tion F�	� of the particle on the parameters a and b.
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�

�t
W��t� = − i�

k=1

N

�k�t��Gk�t�,W��t�� � − i�
k=1

N

�k�t�Gk
��t�W��t� ,

�91�

with A�B= �A ,B� and

Gk�t� = �k�X + vt − xk�P+. �92�

We can easily solve the equation of motion,

W��t� = exp�− i�
k=1

N 
0

t

dt��k�t��Gk
��t��W�0� . �93�

Averaging this equation with respect to the stochastic pro-
cess, we obtain the quantum state WQ� �t� of the particle Q in
the interaction picture,

WQ� �t� =�exp�− i�
k=1

N 
0

t

dt��k�t��Gk
��t����WQ�0�

= exp�−
1

2�
k=1

N 
0

t

dt�
0

t

dt���k�t���k�t��
Gk
��t��Gk

��t���WQ�0�

= exp�−
1

2�
k=1

N 
0

t

dt�
0

t

dt�e−	t�−t�	/�kGk
��t��Gk

��t���WQ�0� , �94�

where we have used the fact that the stochastic variables
obey the stationary Gauss-Markovian process.

To obtain the state of the particle path, we eliminate the
information of the particle state from the quantum state W��t�
given by Eq. �94�. Using the completeness of the position
eigenstates, we obtain

�path�t� = 
−	

	

dx�x	W��t�	x


= �exp�−
1

2
A�t;x��P+

��2��
x
�path�0� , �95�

with

A�t;x� = �
k=1

N 
0

t

dt1
0

t

dt2e−	t1−t2	/�k�k�x + xt1 − xk��k

��x + vt2 − xk� . �96�

In Eq. �95�, �¯
x stands for the average value with the prob-
ability density PQ�x�= �x	�Q�0�	x
 of the particle position.
Since we have the equality �P+

��4= �P+
��2, we can derive the

relation,

e−�1/2�A�t;x��P+
��2

= 1 + �e−�1/2�A�t;x� − 1��P+
��2. �97�

Using this relation and expanding the state �path�0� of the
particle path as Eq. �47�, we obtain

�path�t� = S−−	− 
�− 	 + S++	 + 
�+ 	 + F��t�S+−	 + 
�− 	

+ F��t�S−+	− 
�+ 	 , �98�

where the decoherence function F��t� of the stochastic ver-
sion of the Coleman-Hepp model is given by

F��t� = 
−	

	

dx PQ�x�exp�−
1

2�
k=1

N 
0

t

dt1
0

t

dt2e−	t1−t2	/�k�k

��x + xt1 − xk��k�x + vt2 − xk�� . �99�

It is obvious that this result is equivalent to that given by Eq.
�72�. Therefore the generalized boson-detector model is
equivalent to the stochastic Coleman-Hepp mode with the
stationary Gauss-Markovian process with respect to the
quantum coherence of the propagating particle. From the sto-
chastic point of view, the Coleman-Hepp model without dis-
sipation �6–8� corresponds to the stochastic model in which
the stochastic variables have very long correlation times, that
is, �k→	.

V. CONCLUDING REMARKS

In this paper, we have investigated the generalized boson-
detector model, where the detector is placed under the influ-
ence of the surrounding environment. Assuming that the ef-
fect of the environmental system on the detector is described
by the quantum Markovian process, we can solve the model
exactly. We have obtained the time evolution of the particle
and detector system by means of the method of NETFD. We
have investigated the relaxation of the detector system and
the decay of the quantum coherence of the propagating par-
ticle. We have found that the decay of the quantum coher-
ence of the particle is made negligible when the relaxation of
the detector caused by the environment is significant. Fur-
thermore, with respect to the particle dynamics, we have
found the stochastic model that is equivalent to the general-
ized boson-detector model. When the correlation time of the
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stochastic variable is very long, we obtain the same results as
those obtained for the generalized Coleman-Hepp model
without dissipation.
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APPENDIX: NONEQUILIBRIUM THERMO FIELD
DYNAMICS

In this appendix, we briefly summarize the method of
NETFD �12–17�. We suppose that a physical system is de-
scribed by a Hilbert space H. Then a density operator which
represents a quantum state of the system is a Hermitian op-
erator acting on vectors of the Hilbert space H. Any operator
A acting on vectors of the Hilbert space H can be repre-
sented by a vector 	A
 belonging to an extended Hilbert

space H � H̃. In NETFD, the auxiliary Hilbert space H̃ is
called the tilde-conjugated space of the original Hilbert space
H �15�. Hence a quantum state of the system can be given by

a state vector of the extended Hilbert space H � H̃. When an
operator A acting on vectors of the Hilbert space H is given

by the vector 	A
 of the Hilbert space H � H̃, a product XAY

can be represented by the vector XỸ†	A
, where the operator

Ỹ acting on vectors of the Hilbert space H̃ is the tilde con-
jugate of the operator Y. The tilde conjugation of operators is
defined by �15�

�A1A2�˜ = Ã1Ã2, �A1�

�A†�˜ = �Ã�†, �A2�

�Ã�˜ = �A , �A3�

�a1A1 + a2A2�˜ = a1
�Ã1 + a2

�Ã2, �A4�

where Ak’s are arbitrary operators of the Hilbert space H,
and ak’s are arbitrary c numbers. In Eq. �A3�, �=1 ��=−1�
is assigned for a bosonic �fermionic� operator A. For bosonic
annihilation and creation operators a and a† satisfying
�a ,a†�=1, and position and momentum operators X and P
satisfying �X , P�= i�, we have the commutation relations

�ã , ã†�=1 and �X̃ , P̃�=−i� of their tilde-conjugated operators.
Let us consider a quantum system in a quantum state de-

scribed by a density operator W�t�, the time evolution of
which obeys the Liouville-von Neumann equation,

�

�t
W�t� = −

i

�
�H,W�t�� , �A5�

where H is the Hamiltonian of a system. Then for the state
vector 	W�t�
 which represents the density operator W�t�, we
obtain the equation of motion 	W�t�
,

�

�t
	W�t�
 = −

i

�
Ĥ	W�t�
 , �A6�

with

Ĥ = H − H̃ , �A7�

where we have used the correspondence relations,

HW�t�↔H	W�t�
 and W�t�H↔ H̃	W�t�
. When we consider
an open system, the time evolution of which is described by
the quantum Markovian process, the density matrix W�t�
obeys the quantum master equation of the Lindblad form
�10,11�,

�

�t
W�t� = −

i

�
�H,W�t�� + F��LW�t�,L†� + �L,W�t�L†��

+ G��L†W�t�,L� + �L†,W�t�L�� , �A8�

where L=a for an oscillator system and L=S−�=Sx− iSy� for a
spin system. In this equation, G and F are real parameters. In
NETFD, we obtain the equation of motion for the vector
	W�t�
,

�

�t
	W�t�
 = −

i

�
Ĥ	W�t�
 + �̂	W�t�
 , �A9�

with

�̂ = F�2LL̃ − L†L − L̃†L̃� + G�2L†L̃† − LL† − L̃L̃†� .

�A10�

The scalar product of two vectors 	A
 and 	B
 of the Hil-

bert space H � H̃, which correspond to operators A and B of
the Hilbert space, is given by the Hilbert-Schmidt product
�A 	B
=Tr�A†B�. Since an average value of any observable A
of a physical system in a quantum state W is given by �A

=Tr�AW�, we have the expression �A
= �1	A	W
 in NETFD.
In this equation, the vector 	1
 is defined by

	1
 = �
k

	ek
 � 	ẽk
 , �A11�

where 	ek
�	ẽk
� is the basis vector of the Hilbert space H
�H̃�. The vector 	1
 of the Hilbert space H � H̃ corresponds
to an identity operator 1=�k	ek
�ek	 of the Hilbert space H.
For an oscillator system, we have 	1
=�n=0

	 	n
 � 	ñ
, where

	n
= �1 /�n!�a†n	0
 and 	ñ
= �1 /�n!�ã†n	0̃
 with a	0
= ã	0̃

=0 are the Fock states. The scalar product �1 	X
 in NETFD
is nothing but the trace operation for the operator X. For a
density operator WAB of a bipartite system, the reduced den-
sity operator of the subsystem is given by performing the
partial-trace operation, e.g., WA=TrBWAB. In NETFD, the
state vector that represents the reduced quantum state is pro-
vided by 	WA
= �1B 	WAB
 with 	1B
=�k	ek

B
 � 	ẽk
B
, where

�	e1
B
 , 	e2

B
 , . . .� is a complete orthonormal system of the sub-
system B. The method and applications of NETFD have been
given in Refs. �12–17�.
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