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Global conservation laws imply superselection rules �SSRs� which restrict the operations that are possible on
any given state. Imposing the additional constraint of local operations and classical communication forbids the
transfer of quantum systems between spatially separated sites. In the case of particle conservation this imposes
a SSR for local particle number. That is, the coherences between subspaces of fixed particle number at each
site are not accessible and any state is therefore equivalent to its projection onto these subspaces. The acces-
sible entanglement under the SSR is less than �or equal to� that available in the absence of the SSR. An ancilla
can be used as a reference system to increase the amount of accessible entanglement. We examine the rela-
tionship between local-particle-number uncertainty and the accessible entanglement and consider the optimal
reference states for recovering entanglement from certain systems. In particular we derive the optimal ancilla
state for extracting entanglement for a single-shared particle and make steps toward the optimum for general
systems. We also show that a reference for phase angle is fundamentally different to a reference for the SSR
associated with particle conservation.
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I. INTRODUCTION

Some five decades ago Wick et al. �1� showed that con-
servation laws induce the so-called “superselection rules”
�SSR� that forbid the observation of coherences between dif-
ferent eigenstates of the conserved quantity by any physical
measurement. A decade later Aharanov and Susskind �2�
demonstrated that this restriction can be alleviated with an
additional system that acts as a reference for the coherences.
Such reference ancillae are of particular interest when the
dimension of its state space is not arbitrarily large compared
to that of the system. In such cases the quantum nature of the
reference system is important. We refer to a reference ancilla
whose state lies in a finite-dimensional state space as a finite
reference �3�. This is the regime that we are concerned with
here.

There has been some laxity in the use of terms to distin-
guish the classical and quantum regimes in the literature. To
avoid any possible confusion we shall reserve the term ref-
erence frame for a set of independent variables which, in
principle, can be defined without an explicit relation to any
physical object. The inertial reference frames in special rela-
tivity are an example. In contrast, we use the terms reference
system and reference ancilla to describe a physical system
whose observables are used as a reference for other physical
systems. This distinction between frames and systems is cru-
cial in theories such as quantum gravity where external ref-
erence frames are artificial and a description of a physical
system can only be made relative to other physical systems
�4,5�.

The lack of the ability to observe coherences under a SSR
implies that there are operations whose effect on the system
is not physically detectable. Conversely, the existence of
such operations implies that a SSR operates. This converse
situation is true even in the absence of a conservation law.
For example, it can be shown that the set of nondetectable

unitary operations form a symmetry group, G �6�. In other
words, G is the symmetry group which describes the invari-
ance of the system under the SSR. Moreover, this invariance
implies that the set of physically allowed operations �O�·�� is
constrained to commute with the symmetry group G �7�, that
is,

O�T̂�g��̂T̂†�g�� = T̂�g�O��̂�T̂†�g� ∀ g � G , �1.1�

for every state �̂ of the system. Here T̂�g� is the unitary
representation of the transformation g�G. In general, O rep-
resents an operation on an open system and the openness
implies that any global conservation law may not hold for
the system itself. This shows that SSRs can exist indepen-
dently of conservation laws at least for open systems.

In accordance with previous work, we label the SSR as-
sociated with the symmetry group G as the G-SSR. Alterna-
tively, if G is characterized by a generator, we sometimes
refer to the SSR by the name of the generator. For example,
a unitary representation of U�1� for a system of identical

particles is given by �eiN̂� :0���2��, where the group gen-

erator N̂ is the particle-number operator, and so here the
U�1�-SSR is equivalent to the particle-number SSR.

The situation is further enriched if, in addition to a SSR,
we also impose the constraint of allowing only local opera-
tions and classical communication �LOCC� for a bipartite
system. The physically allowed operations O must satisfy
both Eq. �1.1� and LOCC. Consider the bipartite case with
subsystems at two spatially separated sites, A and B. Any
local operation O=OA � 1B that satisfies Eq. �1.1� has the
property that

�OA � 1B��T̂�g��̂T̂†�g�� = T̂�g��OA � 1B���̂�T̂†�g� �1.2�

for all g�G, where O� is a local operator acting at site �
and 1 is the identity operator. If the group has local represen-
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tations �T̂��g� :g�G� for each site �, where T̂�g�= T̂A�g�
� T̂B�g�, then

O��T̂��g��̂T̂�
† �g�� = T̂��g�O���̂�T̂�

† �g� ∀ g � G .

�1.3�

For the case of a Lie group, this requires its local generators
to be additive. Thus the combination of LOCC and a SSR
can induce a local SSR acting at each site. Such local SSRs
are not necessarily fundamental in the sense of arising from a
conservation law similar to that of charge but are imposed by
our interest in examining the effect of the LOCC constraint.
Essentially, a local SSR arises when two sites lack a shared
reference to break the symmetry represented by G at each
site �6–9�. However, the absence of the shared reference here
is due to the LOCC constraint rather than any fundamental
constraint. For example, the local U�1�-SSR due to the ab-
sence of a shared optical phase reference is imposed by the
prohibition on transporting quantum fields between two sites
under the LOCC constraint rather than the conservation of
photon number.

Interest in superselection rules and their associated refer-
ence systems has been revived in recent years particularly in
relation to quantum information �10�. Bartlett et al. �11�
showed that in the absence of a reference for spatial orienta-
tion the communication of classical and quantum informa-
tion using spin particles is still possible provided the spins
are entangled and the information is encoded in SSR-
invariant subsystems. They have also shown how a private
shared reference for spatial orientation can be used for secret
communications �12�. The effects of finite references have
been studied in a variety of ways.

For example, Bartlett et al. �13�, Bagan et al. �14�, and
Lindner et al. �15� examined protocols for estimating the
relative angle between two directions which are defined by
finite-dimensional spin systems. Further, the effect on quan-
tum operations due to finite references was studied initially
by van Enk and Kimble �16� and shortly later by Gea-
Banacloche �17�. Moreover although specific details of this
initial work attracted some criticism from Itano �18� and Nha
and Carmichael �19�, it has been extended and generalized to
quantum measurements, uncertainty relations, and simulta-
neous measurements mainly by Ozawa �20–23�.

Entanglement is also affected by the presence of a SSR. A
SSR has an effective decohering effect that constrains the
amount of entanglement in a system that is accessible. A
number of different terms have been used to label the en-
tanglement which is constrained in this way. Bartlett and
Wiseman �7�, as well as others �see, e.g., �6,9,24,25��, refer
to it as the accessible entanglement �26�. For the special case
of indistinguishable particles in the absence of a shared
phase reference, we previously referred to the SSR-
constrained entanglement as particle entanglement in Refs.
�8,9� to distinguish it from the entanglement of the spatial
modes occupied by the particles. Our operational definition
of particle entanglement makes use of a set of local quantum
ancillary systems �or registers� which are not subject to the
SSR. The accessible entanglement in a system of shared
identical particles is given by the maximum amount of en-

tanglement that one can transfer from the system to the local
ancillas by G-invariant operations that obey LOCC. It is im-
portant to note that the transfer operation involves only a
single copy of the system state. However, once the entangle-
ment resides in the ancillae it can be manipulated in the usual
way free of the SSR. Further details of this nonasymptotic
interpretation of particle entanglement can be found in the
introduction of Ref. �6�.

In this paper we focus on the problem of finding the op-
timal reference state that maximizes the accessible entangle-
ment of a system in the presence of the local-particle-number
SSR. Under such a SSR, the pure state describing a single
particle which shared coherently between two sites is physi-
cally equivalent to an equal mixture of states representing a
single particle at one site and a single particle at the other. In
general, the SSR constrains the accessible entanglement due
to the unobservabilty of the coherences between eigenkets of
different local particle number. The accessible entanglement
in this case is the weighted average of the entanglement
found in each subspace of fixed local particle number. The
entanglement lost because of the SSR can be recovered with
a reference ancilla, and it is this problem that we focus on
here. In particular, we examine cases where the number of
particles in the reference ancilla is not arbitrarily large and
explore how effectively the reference ancilla increases the
accessible entanglement in a variety of situations. In Sec. II
we calculate the optimal reference state for maximizing the
accessible entanglement from a system containing a single-
shared particle where the number of particles in the reference
system is fixed. We compare the amount of entanglement
made accessible by the optimal state with that due to various
other states in Sec. III and make steps toward finding optimal
reference state for a general state of the system in Sec. IV.

II. OPTIMAL REFERENCE STATE FOR A SINGLE-
SHARED PARTICLE

A. Particle entanglement

We begin by briefly recalling the definition of the particle
entanglement �or, equivalently, the accessible entanglement�
as defined by Wiseman and Vaccaro �8�. As shown above,
SSRs can be induced by the lack of a shared reference or a
conservation law. The origin of the SSR is unimportant for
the main results of this paper. However, as the conservation
of particle number was used in Ref. �8�, we assume the con-
servation also holds here. The observation of coherences be-
tween states of different particle number requires operations
that do not conserve particle number. The conservation of
particle number therefore implies that phase coherences be-
tween subspaces of the state space corresponding to different
numbers of particles are unobservable. This means that phase

shifts generated by exp�−iN̂��, where N̂ is the particle-
number operator and � is a phase angle, are not detectable.
The group of undetectable transformations is therefore the

group U�1�= �exp�−iN̂�� :0���2�� of phase-shift opera-
tors, which induces the particle-number superselection rule
U-SSR. In the case of bipartite systems, we consider the SSR
which is induced by imposing the conservation of particle

WHITE, VACCARO, AND WISEMAN PHYSICAL REVIEW A 79, 032109 �2009�

032109-2



number at each spatial site. The corresponding group is
UAB�1�=UA�1� � UB�1� where U��1� is the group of opera-
tors that generate phase shifts at site �. We call this the
local-particle-number superselection rule, i.e., the local
U-SSR.

Consider the pure state ���N��AB of a system comprising a
fixed number of indistinguishable particles shared between
two spatially separated sites labeled A and B. We have in-
cluded a superscript in the label of the state to indicate the
total �fixed� number of particles the state represents. The
effective state under the local-particle-number SSR is not
���N��AB but rather a mixed state given by �7�

�̂�N� = 	
2�

d�A

2�
	

2�

d�B

2�
�e−i�N̂A�A+N̂B�B����N��AB�

	 �AB
��N��ei�N̂A�A+N̂B�B�� �2.1�

=�
n=0

N


̂AB
�n,N−n����N��AB
��N��
̂AB

�n,N−n�, �2.2�

where 
̂AB
�n,N−n� is an operator which projects onto the sub-

space representing n particles at site A and �N−n� at B. The
entanglement of �̂�N� is, by definition, the particle entangle-
ment of ���N��AB. We note that the effective state, �̂�N�, is a
mixture of a set of mutually orthogonal entangled pure states


̂AB
�n,N−n����N��AB. Its entanglement is thus the average of the

entanglement of each member of the set. This means that the
particle entanglement is given by �8�

EP����N��AB� � �n
pnEM���proj

�n� �AB� , �2.3�

where

��n
�N��AB =


̂AB
�n,N−n����N��AB


pn

,

pn = AB
��N��
̂AB
�n,N−n����N��AB,

EM���n
�N��AB� = S�TrA���n

�N��AB
�n
�N���� . �2.4�

Here S��̂� is the von Neumann entropy of �̂, ��n
�N��AB is the

state of the system after detecting n particles at site A, and
EM����� is the entropy of entanglement of the state ���. In the
current context EM����� corresponds to the entanglement of
the spatial modes that are occupied by the particles.

B. Particle entanglement of system and reference ancilla

Two of us previously showed �8� that two copies of a
shared single-particle system contained particle entangle-
ment whereas �as noted above� each of the systems does not.
Evidently one system behaves as a reference for the other.
We further developed this concept in Ref. �6� where we
showed that a shared particle ancilla can be used as a refer-
ence to increase the accessible the entanglement in another
system. We now examine the problem of finding the state of
the reference ancilla that yields the maximum value of the

particle entanglement of the combined system and reference
ancilla for a given state of the system. We confine our analy-
sis to situations where the system and reference ancilla are in
pure states to avoid unnecessary detail. Also in accordance
with our assumption that the particle number is conserved,
we constrain the total number of particles in each of the
system and the reference ancilla to be fixed �27�. Our focus
will initially be on the simplest case, that of a single-shared
particle in the state:

���1��AB =
1

2

��0,1�AB + �1,0�AB� , �2.5�

where the ket �n ,m�AB represents the occupation of spatial
modes at the sites A and B by n and m identical particles,
respectively, in second quantization notation. It is straightfor-
ward to show that this state possesses no particle entangle-
ment, i.e., EP����1��AB�=0 �8,9�. Let the reference ancilla
consist of M particles of the same type as the system and be
prepared in the pure state,

���M��AB = �
n=0

M

cn�n,M − n�AB, �2.6�

for which the coefficients cn satisfy the normalization condi-
tion


��M����M�� = �
n=0

M

�cn�2 = 1 �2.7�

but are otherwise undetermined. This ancilla state has been
intentionally constructed to have no particle entanglement
itself, i.e., EP����M��AB�=0. Any particle entanglement in the
combined system and ancilla state, i.e., in

�C�M+1��AB = ���1��AB � ���M��AB, �2.8�

will therefore be due to the ancilla’s ability to ameliorate the
effects of the local U-SSR.

Expanding �C�M+1��AB in terms of states with fixed local
particle number yields

�C�M+1�� = �
n=0

M+1


pn�Cn
�M+1�� , �2.9�

where pn= 
C�M+1��
̂AB
�n,M+1−n��C�M+1�� and

�Cn
�M+1�� =

1

pn


̂AB
�M+1,n��C�M+1�� �2.10�

is a state of representing a total of n particles at site A and
�M +1−n� at site B. For convenience, we omit the site labels
AB here and below when they are implied by the context.

The projection operator 
̂AB
�n,M+1−n� is of the same basic form

as the one in Eq. �2.4� but here it projects onto the subspace
of states of the combined system plus ancilla with a total of
exactly n particles at A and �M +1−n� at B. That is, it dis-
tinguishes between the sites but it is insensitive to the indi-
vidual modes at each site. Making use of Eq. �2.5� we find
that
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�Cn
�M+1�� =

1

2pn

�cn−1�1,0� � �n − 1,M − n + 1�

+ cn�0,1� � �n,M − n�� �2.11�

for n=0,1 , . . . ,M +1. To make expressions more compact
here and in the following, we have introduced two extra
coefficients c−1 and cM+1 whose values are zero, i.e.,

�c−1�2 = �cM+1�2 = 0. �2.12�

We shall refer to Eq. �2.12� as the “boundary conditions.” As
before, the value of pn ensures that 
Cn

�M+1� �Cn
�M+1��=1 and is

easily found to be given by

pn =
1

2
��cn−1�2 + �cn�2� �2.13�

for 0�n�M +1. Taking the partial trace of �Cn
�M+1��
Cn

�M+1��
over a basis representing states at site B yields

�cn−1�2

2pn
��n − 1� � �1�
1� � 
n − 1�� +

�cn�2

2pn
��n� � �0�
0� � 
n�� .

�2.14�

The entanglement of modes EM��Cn
�M+1��� is given by the von

Neumann entropy of Eq. �2.14�, i.e.,

EM��Cn
�M+1��� = −

1

2pn
�cn−1�2 log2� �cn−1�2

2pn
�

−
1

2pn
�cn�2 log2� �cn�2

2pn
� , �2.15�

and so, from Eq. �2.3�, the particle entanglement is the aver-
age

EP��C�M+1��� = �
n=0

M+1

pnEM��Cn
�M+1���

=
1

2 log2 e
�
n=0

M+1

�− 2�cn�2 ln��cn�2�

+ ��cn−1�2 + �cn�2�ln��cn−1�2 + �cn�2�� .

�2.16�

C. Conditions for the optimum reference

The maximization of the particle entanglement in Eq.
�2.16� over the coefficients cn is subject to the normalization
of the ancilla state ���M�� given in Eq. �2.7�. We note that the
optimization can be performed with respect to �cn�2 rather
than cn since the particle entanglement �Eq. �2.16�� and the
constraint �Eq. �2.7�� are both functions of �cn�2 only. Let

F = �2 log2 e�EP��C�M+1��� − 
��
n=0

M

�cn�2 − 1� �2.17�

be the auxiliary function where 
 is a Lagrange multiplier.
The coefficients of the optimal reference state are given

by the extremum of Eq. �2.17� and so satisfy

�F

� �cn�2
= − 2�ln��cn�2� + 1� + �ln��cn−1�2 + �cn�2� + 1�

+ �ln��cn�2 + �cn+1�2� + 1� − 


= ln� ��cn−1�2 + �cn�2���cn�2 + �cn+1�2�
�cn�4 � − 
 = 0

�2.18�

for n=0,1 , . . . ,M. This equation can be expressed in terms
of a recurrence relation as follows:

��cn�4 = �cn�4 + �cn−1�2�cn+1�2 + �cn�2��cn−1�2 + �cn+1�2�
�2.19�

for n=0,1 , . . . ,M, where we have set �=e
. The boundary
conditions in Eq. �2.12� ensure the recurrence relation has
the correct form for n=0 and n=M.

To find the solution it is convenient to first rearrange the
recurrence relation as

�cn+1�2 =
�� − 1��cn�4 − �cn�2�cn−1�2

�cn�2 + �cn−1�2
. �2.20�

Iterations of this starting from n=0 lead to explicit expres-
sions for the coefficients in which �cn�2 is a polynomial in �
of order n. The details are given in the Appendix. Unfortu-
nately, the derivation of a solution from these expressions
that satisfies the upper boundary condition �cM+1�2=0 and the
normalization condition �Eq. �2.7�� does not appear tractable
analytically. Nevertheless we note that the system state �Eq.
�2.5�� is symmetric with respect to the interchange of labels,
�n ,m�AB� �m ,n�AB, at each site A and B, which implies that
if there is a unique optimal reference state, it will also be
symmetric under the same operation. Indeed we also show in
the Appendix using the polynomial expressions that

�cn�2 = �cM−n�2 �2.21�

for n=0,1 , . . . ,M. This result will be useful later.
The optimal reference state for any given value of M can

be determined numerically by computing the values of � and
the set of coefficients ��cn�2� that satisfy the recurrence rela-
tion �Eq. �2.20��, the normalization condition �Eq. �2.7��, and
the boundary conditions �Eq. �2.12��. We note that the recur-
rence relation is invariant to scaling of the coefficients, and
so normalization can be ignored when finding a solution to
the recurrence relation that simultaneously satisfies the
boundary conditions �Eq. �2.12��. This means we can ini-
tially fix the coefficient �c0�2 to some arbitrary value, say 1.
The recurrence relation taken with �c0�2=1 and the lower
boundary condition �c−1�2=0 implies that all the coefficients
�cn�2 for n=2,3 , . . . , �M +1� are functions of �, viz., �cn����2.
The value of � we need that satisfies the upper boundary
condition �cM+1�2=0 is the zero of �cM+1����2 that yields non-
negative coefficients �cn����2 for n=1,2 , . . . ,M. The ap-
proach we adopted was as follows: �i� make an initial guess
of the value of �, �ii� use the value of �, the lower boundary
condition �c−1�2=0, the choice �c0�2=1, and the recurrence
relation �Eq. �2.19�� to compute the values of the coefficients
�c1�2 , �c2�2 , . . . , �cM+1�2, �iii� adjust the value of � according to
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a bisection method designed to locate the zero of �cM+1�2, and
�iv� repeat steps �ii� and �iii� until a desired tolerance of the
zero is reached. Finally, the resulting values of the coeffi-
cients ��cn�2� were scaled so that they satisfied the normaliza-
tion condition �Eq. �2.7��. In Fig. 1 we plot the numerically
determined solution to the recurrence relation �Eq. �2.19��
for M =29. The figure clearly illustrates the predicted sym-
metry about n= �M +1� /2.

In Fig. 2 we plot the particle entanglement, EP��C�M+1���,
of the combined system plus ancilla against the total number
of particles, M, in the ancilla. The fact that EP��C�M+1����0
whereas EP����1���=EP����M���=0 shows that the ancilla
partially shields the entanglement of the system from the
local U-SSR.

D. Ansatz for the optimal reference

The numerical solution depicted in Fig. 1 suggests that the
analytical solution may be of a trigonometric form. To check,
we now consider the ansatz for the solution to the recurrence
relation of the form

�cn�2 = B−1�A − cos�z�n��� , �2.22�

where

z�n� = �n + � . �2.23�

Here A, B, �, and � are constant for a given value of M, i.e.,
a given number of particles in the ancilla. We note that the
numerical solution in Fig. 1 comprises almost one full cycle
of the cosine function. This implies � can be expressed con-
veniently in the form

� =
2�

M + 2�
, �2.24�

where � is an adjustable parameter. Moreover the symmetry
condition �Eq. �A8�� implies a condition on the value of � as
follows. Replacing the left and right sides of Eq. �2.21� using
the ansatz �Eq. �2.22�� and the expression for � in Eq. �2.24�
shows

cos� 2�

M + 2�
n + �� = cos� 2�

M + 2�
�M − n� + �� ,

�2.25�

which is satisfied by

� =
2��

M + 2�
. �2.26�

Hence the final form of our ansatz, given by Eqs.
�2.22�–�2.26� is

�cn�2 = B−1�A − cos�2��n + ��
M + 2�

�� �2.27�

and depends on just three parameters, A, B, and �.
We now check the validity of the ansatz by substituting it

into the recurrence relation Eq. �2.19�. To simplify matters
we use the form given by Eqs. �2.22� and �2.23�. The result
of the substitution is

�� − 1��A − cos�z�n���2

= �A − cos�z�n + 1����A − cos�z�n − 1���

+ �A − cos�z�n���

	 �2A − cos�z�n + 1�� − cos�z�n − 1��� , �2.28�

which is independent of the normalization constant B. Using
trigonometric identities and grouping terms it is easy to show
that the right-hand side of this equation can be expressed as

RHS = 3A2 + cos2��� − 1 + �1 + 2 cos����

	 �− 2A cos�z�n�� + cos2�z�n��� . �2.29�

Similarly the left-hand side of Eq. �2.22� is

LHS = �� − 1��A2 − 2A cos�z�n�� + cos2�z�n��� .

�2.30�

Comparing the coefficients of cos�z�n�� and cos2�z�n�� in
Eqs. �2.29� and �2.30� shows that the value of � that satisfies
the recurrence relation is given by

0 5 10 15 20 25 29
0

0.01
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0.03

0.04
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0.06

0.07

n

c |
n|2

FIG. 1. Optimal reference state for a system comprising a
single-shared particle. The probability �cn�2 is plotted as a function
of the number of particles n at site A for the numerical solution
�crosses� and our ansatz �solid curve� for an ancilla with a total of
M =29. For the ansatz we used the values A=1 and �= 3

2 which are
correct to O�M−2�.
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FIG. 2. The amount of particle entanglement EP versus the num-
ber of particles in the reference ancilla, M, for a system consisting
of a single-shared particle. The ancilla is in the optimal reference
state discussed in the text.
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� − 1 = 2 cos��� + 1. �2.31�

Comparing the constant terms in these equations similarly
shows that ��−1�A2=3A2−sin2���. These last two results
imply that

A2 =
sin2���

2�1 − cos����
=

1 + cos���
2

. �2.32�

Eliminating cos��� and sin��� in Eq. �2.32� using Eq. �2.31�
then yields

� = 4A2. �2.33�

These results show that the ansatz does indeed satisfy the
recurrence relation for particular values of the parameters A,
B, and �.

To determine the actual values of the parameters we need
to apply additional conditions. We first consider the bound-
ary conditions �c−1�2=0 and �cM+1�2=0. Setting n=−1 in the
detailed form of the ansatz �Eq. �2.27�� yields

B−1�A − cos�2��� − 1�
M + 2�

�� = 0, �2.34�

which gives an expression for A in terms of � as

A = cos�2��� − 1�
M + 2�

� . �2.35�

The same result is obtained for n=M +1 due to the symmetry
condition �Eq. �2.21��. Next we note that the analytic solu-
tion �c1�2= �c0�2��−1� given in Eq. �2.19� yields another ex-
pression involving A and � as follows. Using the ansatz �Eq.
�2.27�� to replace the coefficients �c0�2 and �c1�2 and Eq.
�2.33� to replace � gives

A − cos�2��1 + ��
M + 2�

� = �A − cos� 2��

M + 2�
���4A2 − 1� .

�2.36�

This analysis shows that our ansatz, which depends on the
values of just three parameters, A, B, and �, satisfies all the
conditions for the optimal reference state provided Eqs.
�2.35� and �2.36� are satisfied. Indeed the values of the pa-
rameters � and A are determined by solving Eqs. �2.35� and
�2.36� simultaneously, and the value of B determined from
the normalization condition �Eq. �2.7��. Once these values
are determined, our ansatz �Eq. �2.27�� provides an exact
analytical expression for the optimal reference state for any
value of M.

We can also find approximate values for A, B, and � in the
large M regime. Substituting for A using Eq. �2.35� and sim-
plifying yields

sin� 2��

M + 2�
�sin� 2�

M + 2�
�

= sin�2��� −
1

2
�

M + 2�
�sin� 2�

1

2

M + 2�
�

	�4 cos2�2��� − 1�
M + 2�

� − 1� ,

which, in the large M regime, gives

� =
3

2
+ O�M−2� . �2.37�

Similarly, we find from Eq. �2.35� in the same regime that

A = 1 + O�M−2� . �2.38�

The normalization constant B is found by evaluating
�n�cn�2=1 using the ansatz �Eq. �2.27��, i.e.,

B = �
n=0

M �A − cos�2��n + ��
M + 2�

�� . �2.39�

For the case where M is odd we find, using the symmetry
condition �Eq. �2.21��, that

B = 2 �
n=0

�M−1�/2

f�n� , �2.40�

where

f�x� = �A − cos�2��x + ��
M + 2�

�� �2.41�

is a monotonically increasing function over the range from
x=0 to x= M+1

2 . We note that

2	
0

�M+1�/2

dxf�x� � B � 2	
0

�M+1�/2

dxf�x − 1� , �2.42�

that is,

A�M + 1� + 1 + � � B � A�M + 1� − 3 + � , �2.43�

and so

B−1 =
1

A�M + 1�
+ O�M−2� . �2.44�

The same result is also found for the case where M is even.
Hence in the large M regime the analytical form of the op-
timal reference state is

�cn�2 =
1

M + 1
�1 − cos�2��n + 3/2�

M + 3
�� + O�M−2�

=
2

M + 1
sin2���n + 3/2�

M + 3
� + O�M−2� . �2.45�

For comparison, in Fig. 1 we have also plotted as the solid
curve the values of the probabilities �cn�2 given by the ansatz
in Eq. �2.27� for M =29 for the values �= 3

2 and A=1, which
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are correct to O�M−2�. The figure shows that the ansatz with
these approximate values of � and A is in relatively close
agreement with the exact numerical solution �crosses� at this
value of M.

E. General nature of the optimal reference states

To see why the optimal reference state has the general
form shown in Fig. 1 and Eq. �2.45� consider two reference
states in opposing limiting cases. First, in the limit of a nar-
row particle-number distribution only one coefficient is non-
zero; it is straightforward to show using Eq. �2.16� that the
particle entanglement EP��C�M+1��� is zero for this reference
state. In the other extreme, the particle-number distribution is
uniform with �cn�2=1 / �M +1� for n=0,1 , . . . ,M; the right-
hand side of Eq. �2.16� is 1−M / �M +1� for this reference
state. Clearly a reference system with broad particle-number
distribution has an advantage for making particle entangle-
ment accessible. However, the reason for EP��C�M+1��� being
less than 1 bit in the broad particle-number distribution case
can be traced to the boundary conditions �Eq. �2.12��. This
suggests that a distribution which vanishes near the bound-
aries n=0 and n=M also has an advantage. Evidently the
particle-number distribution of the optimal reference state
balances these two opposing effects, breadth of the distribu-
tion with vanishing values near the boundaries, to maximize
EP��C�M+1���.

Our derivation of the optimal state fixes only the modulus
of the coefficients cn in Eq. �2.6�. The arguments of the com-
plex numbers, cn, are completely arbitrary. This is somewhat
surprising given the role of the ancilla is presumed to act as
a phase reference. We now explore how the ability to act as
a reference for the U-SSR differs from the ability to act as a
phase reference. First note that the asymmetry of a state de-
pends solely on the modulus of number state coefficients cn
�6�. For example, consider the state of the reference ancilla
representing a uniform sharing of particles with arbitrary
complex arguments given by

���M��AB =
1


M + 1
�
n=0

M

ei�n�n,M − n�AB, �2.46�

where ��n :0��n�2�� are an unordered set of phase angles.

Under the local group operation T̂A�k��=e−iN̂Ak� � 1B, where
�=2� / �N+1�, this state transforms to

1

M + 1

�
n=0

M

ei��n−n�k��n,M − n�AB, �2.47�

which is orthogonal to ���M��AB for integer k satisfying 1
�k�N. This shows that ���M��AB is asymmetric with respect
to U�1� and thus breaks the local U�1� symmetry �28�. As
this result is independent of the values of the phase angles
��n� it confirms that only the moduli of the number state
coefficients are important in terms of the U�1�-SSR. More-
over, Eq. �2.16� shows that the particle entanglement of a
system consisting of a shared particle and an ancilla in ref-
erence state ���M��AB is independent of the phases, ��n�, of
the reference state.

Next consider the phase properties of the state ���M��AB
for various choices of the set of phase angles ��n�. For this
we use the Pegg-Barnett phase formalism for physical states
in the infinite-s limit �29–31�. The joint phase probability
density P���A ,�B� for phase angles �A and �B which describe
the phase operators �̂A and �̂B of the ancilla spatial modes at
sites A and B, respectively, is given by

P��A,�B� =
1

�2��2��
n,m

ei�n�A+m�B�
n,m���M��AB�2
.

�2.48�

For the reference state ���M��AB in Eq. �2.46� this can be
rewritten as

P��A,�B� =
1

2�
Q��A − �B� , �2.49�

where

Q��A − �B� =
1

2��M + 1���n=0

M

ei�n��A−�B�+�n��2

�2.50�

is the probability density for the phase difference �̂A− �̂B and
the factor 1 /2� in Eq. �2.49� is the uniform phase probability
density for the phase operator of either spatial mode. The
highly correlated nature of the phase difference stems from
the sharing of a fixed number M of particles between the two
modes. We now focus on the phase difference properties for
different choices of the set of values ��n :n=0,1 , . . . ,M�.
Figure 3 shows the phase probability density Q��A−�B� for
the set where �n=�n, whereas Fig. 4 is for the set where the
value of �n has been chosen randomly for each value of n.
Evidently these two sets of �n values correspond to states
with quite different phase properties. We note, however, that
both states equally alleviate the U-SSR. Clearly there is a
fundamental difference between the ability to act as a phase
reference and the ability to act as a reference for the U-SSR,
viz., the complex arguments of the number state coefficients
are crucial for the former but are unimportant for the latter.
While this conclusion applies to the specific case of a single-
shared particle system as considered in Eq. �2.16�, we show
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−
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)

FIG. 3. The probability density of the phase difference where
�n=�n.
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later in Sec. IV that it also extends to arbitrary systems
states.

III. COMPARISON OF THE OPTIMAL REFERENCE
FRAME TO OTHER STATES

States with broad particle-number distributions are known
to have well-defined phase properties �29–32�. So it is inter-
esting to compare our optimal reference states with classes of
states that have been optimized for other phase-dependent
quantities. We define a figure of merit, D, based on the ex-
cess particle entanglement that is made accessible by the
optimal reference state as follows:

D =
EP��Copt

�M+1��� − EP��C�M+1���
EP��Copt

�M+1���
, �3.1�

where

�Copt
�M+1�� = ���1�� � ��opt

�M�� , �3.2�

�C�M+1�� = ���1�� � ���M�� �3.3�

for single particle system state ���1��, optimal reference an-
cilla state ��opt

�M��, and arbitrary reference ancilla state ���M��.
We now consider a number of states whose phase properties
are important in some way. All the states are constructed on
the state space HR which is spanned by the number state
basis ��n ,M −n� :n=0,1 , . . . ,M�.

The Berry-Wiseman phase optimized states �33� of a two-
mode optical field give the optimum phase-shift estimation
in a Mach-Zehnder apparatus for a fixed total number of
particles �photons� under ideal canonical phase measure-
ments. These states have the form

��� � �
n=0

M

sin���n + ��
M + 2�

��n,M − n� , �3.4�

where M is the number of particles and �=1. The Summy-
Pegg phase optimized states �32� of a single mode optical
field give the minimum phase variance for a fixed upper
bound in the particle �photon� number distribution. Their
two-mode version on the state space HR is given by Eq. �3.4�

with a parameter value of ��0.84 for M �10. The variance
of the optimized phase quantity for both classes of states
scales as 1 /M2. A class of states with less phase resolution is
given by the single-mode coherent states �
���n
n�n� /
n!,
where �n� is the usual number state. These states have a
phase variance which scales as 1 / �
�2 and are optimized in
the sense that they approximate number-phase minimum un-
certainty states �30� for �
��1. To make a comparison with
our optimal reference state we construct a two-mode version
in the state space HR with an analogous number state expan-
sion to �
� as follows:

��� � �
n=0

M 
�M

2
�n

n!
�n,M − n� . �3.5�

The parameter that is analogous to the field amplitude 
 in
�
� has the value 
M /2 here. Thus in the large M regime the
variance of the two-mode phase operator scales as 2 /M. We
also consider reference states whose particle-number prob-
ability distribution �cn�2 corresponds to a binomial distribu-
tion, i.e.,

��� = �
n=0

M ��M

n
�pn�1 − p��M−n��1/2

�n,M − n� , �3.6�

for which we set p=0.5 to make the distribution symmetric.
These states are a two-mode generalization of the single
mode binomial states of Stoler et al. �34�. Finally we include
in our comparison the shared phase state,

��� =
1


M + 1
�
n=0

M

�n,M − n� , �3.7�

which is a two-mode version of the single-mode Pegg-
Barnett phase state with zero phase �29,31�. This state be-
longs to the class of states on HR with maximum asymmetry
with respect to the particle-number SSR �6�. The change in
the von Neumann entropy of these states due to the action of
the SSR is the maximum value of log2 M and so these states
play an important role in terms of breaking the symmetry
represented by the SSR �6�.

Figure 5 shows that the figure of merit D of all states, at
least after a certain value of M, are monotonically decreasing
with M. However, the decrease in D for increasing M for the
Berry-Wiseman and the two-mode Summy-Pegg minimized
phase variance states is far greater than the two-mode ver-
sions of the coherent and binomial states. The reason for this
can be traced to our earlier observation in Sec. II E that
broad particle-number distributions are an advantage in mak-
ing the entanglement accessible. In particular the former two
states have a particle-number standard deviation that scales
as M, whereas the two-mode coherent states have a particle-
number standard deviation that scales as 
M. Compared to
the maximum possible width M of the distribution, the
former are relatively broad and the latter is relatively narrow.
We note that the figure of merit D for the coherent and bi-
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FIG. 4. The probability density of the phase difference for a
randomly chosen set of �n values.
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nomial states become closer as M increases as expected from
the fact that the associated particle-number distributions ap-
proach each other as M→�.

IV. OPTIMAL REFERENCE STATES FOR GENERAL
PURE STATES

We now generalize our results to the case where there are
N particles in the system and, as before, M particles in the
ancilla. Consider the tensor product of two arbitrary states of
the system and ancilla for this case given by

�C�M+N��AB = ���N��AB � ���M��AB,

where the system and ancilla states are

���N��AB = �
n=0

N

dn�n,N − n�AB, �4.1�

���M��AB = �
n=0

M

cn�n,M − n�AB, �4.2�

respectively. The coefficients cn and dn are subject to the
normalization conditions,

�
n=0

N

�dn�2 = �
m=0

M

�cm�2 = 1. �4.3�

Neither the system nor the ancilla contain entanglement of
particles, i.e., EP����M��AB�=EP����M��AB�=0. To simplify
the notation we shall omit the subscripts A and B from here
onward. The state of the combined system can be expressed
as

�CM+N� = �
n=0

N

�
m=0

M

dncm�n,N − n� � �m,M − m�

= �
k=0

N+M


pk�Ck
�M+N�� , �4.4�

where �Ck
�M+N�� is a state containing exactly k particles at site

A and �N+M −k� at site B. Also pn is a normalization con-
stant, i.e.,

�Ck
�M+N�� =

1

pk

�
n=0

N

�
m=0

M

�n+m,kdncm�n,N − n� � �m,M − m� ,

�4.5�

pk = �
n=0

N

�
m=0

M

�dncm�2�n+m,k. �4.6�

The calculation of EP in Sec. II for a system comprising one
particle is easily extended to the case N particles as follows.
We find that

EP��C�M+N��� = �
k=0

N+M

pkEM��Ck
�M+N���

= − �
k=0

N+M

pk�
n=0

N

�
m=0

M �dncm�2

pk
�n+m,k log2

�dncm�2

pk

= − �
k=0

N+M

�
n=0

N

�
m=0

M

�dncm�2�n+m,k log2
�dncm�2

pk
.

�4.7�

We again find that the particle entanglement is independent
of the complex phases of the number state coefficients cn of
the reference state. This shows that our conclusion in Sec.
II E for the special case of a single-shared-particle system
state, namely, that a phase reference and a reference for the
U-SSR are fundamentally different, applies also to the gen-
eral case of arbitrary system states.

A. Infinite-particle ancilla state

One may suspect that in the limit of M→�, the ancilla
could resemble a classical reference and completely shield
the system from the local-particle-number SSR. We now
show this using the uniformly distributed ancilla state with
cn=1 /
M +1 for M �N. The state with exactly k particles at
site A for N�k�M is given by

�Ck
�M+N�� =

1

pk

�
n=0

N

dn�n,N − n� � ��k − n�,M − �k − n�� ,

and so

EP��Ck
�M+N��� = EM��Ck

�M+N��� , �4.8�

and the probability pk in Eq. �4.6� of finding this state is
simply
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FIG. 5. A comparison of the logarithm of the figure of merit D
from Eq. �3.1� for the following states: the shared phase states ���,
two-mode versions of the coherent states �*�, binomial states �+�,
Summy-Pegg phase optimized states �	�, and Berry-Wiseman
phase optimized states ���. The value of D represents the relative
effectiveness of a given reference state compared to the optimal
reference state. The effectiveness of all states increases as the total
number of particles M increases for large M.
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pk = �
n=0

N �dn�2

M + 1
=

1

M + 1
. �4.9�

The contribution to EP��C�M+N��� from these states is

X = �
k=N

M

pkEM��Ck
�M+N��� =

M + 1 − N

M + 1
EM����N��� .

It is straightforward to show that the remaining 2N states
�Ck

�M+N�� for 0�k�N and M �k�N+M have
EM��Ck

�M+N����EM����N��� and pk�1 / �M +1� and so their
contribution to EP��C�M+N��� is less than

Y =
2N

M + 1
EM����N��� .

These last two results give bounds on EP��C�M+N��� as

X � EP��C�� � X + Y .

In the limit M→�, X→EM����N���, and Y →0, and so

EP��C�M+N��� → EM����N��� .

The infinite-particle ancilla effectively shields the system
from the particle-number SSR and makes all of its entangle-
ment accessible. We note that the class of perfect reference
ancillae for the SSR include states that are poor phase refer-
ences.

B. Conditions for general optimal ancilla states

We now use the Lagrange multiplier method to find con-
ditions for the coefficients cn of the optimal ancilla state for
an arbitrary, but fixed, value of M. We want to maximize the
particle entanglement EP��C�M+N��� over �cn�2 subject to the
normalization constraint �n=0

M �cn�2=1. The optimal ancilla
state for any system state is given by the extremum of the
auxiliary function,

F = EP��C�M+N��� − 
1��
n=0

M

�cn�2 − 1� , �4.10�

where EP��C�M+N��� is given by Eq. �4.7� and 
1 is the
Lagrange multiplier. Setting the derivative �F /��cm�2 to zero
we find with a little effort that


1 = �
n=0

N

�− �dn�2 log2��dncm�2� + �dn�2 log2 pn+m�

�4.11�

for m=0,1 , . . . ,M and where pk is given by Eq. �4.6�.
It is easy to show that the symmetry condition Eq. �2.21�

does not hold in general. Consider, for example, the simplest
case given by N=M =1, where both the system and ancilla
contain a single-shared particle. Substituting these values
into Eq. �4.11� yields for m=0,


1 = �c1�2 log2
�c1d0�2 + �c0d1�2

�c0d0�2

and for m=1,


1 = �c0�2 log2
�c1d0�2 + �c0d1�2

�c0d1�2
.

The simultaneous solution of these equations is given by

2x − 1

x
= �d0

d1
�2

,

where x= �c1 /c0�2. This implies that the optimum reference
state for a nonsymmetric system state, �c0�� �c1�, is also non-
symmetric with �d0�� �d1�.

The analytical treatment of system and ancilla states with
arbitrary values of N and M, respectively, is beyond the
scope the current paper. Instead we focus here on the situa-
tion where the system state is of a simple form, namely, a
shared phase state with dn=1 /
N+1, i.e., we set

���N�� =
1


N + 1
�
n=0

N

�n,N − n� . �4.12�

We further restrain the problem to the case where N=M to
make the problem tractable.

A shared phase state has a symmetry between the sites in
the sense that it is invariant under an interchange or site
labels, i.e., AB�BA. The corresponding optimal reference
state has the same symmetry with coefficients of the form,

�cm�2 = �cM−m�2 �4.13�

for m=0,1 , . . . ,M. The proof of this is as follows. We find
from Eqs. �4.6� and �4.11� the set of equations


1 = − log2� 1

N + 1
�cm�2� +

1

N + 1�
n=0

N

log2 pn+m �4.14�

for m=0,1 , . . . ,M, where

pk =
1

N + 1 �
j=k−N

k

�cj�2. �4.15�

Here, for compactness, we have extended the set of coeffi-
cients cn by adding coefficients cn=0 for n�0 and n�M.
Taking the exponential of both sides of Eq. �4.14� yields

��cm�2�N+1� = �
n=0

N � �
j=n+m−N

n+m

�cj�2� . �4.16�

Omitting the zero terms �cj�2 for j�0 and j�M and setting
N=M we find

��cm�2�M+1� = �
n=0

M−m ��
j=0

n+m

�cj�2� �
n=M−m

M � �
j=n+m−M

M

�cj�2�
= �

n=m

M ��
j=0

n

�cj�2��
n=0

m ��
j=n

M

�cj�2� , �4.17�

where we have made use of the normalization �Eq. �4.3�� to
include an extra factor in the first line. Using this result we
find the relationship between the coefficients �cm�2 for se-
quential values of the index m is
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��cm+1�2�M+1� = ��cm�2�M+1�

1 − �
j=0

m

�cj�2

�
j=0

m

�cj�2
, �4.18�

��cm−1�2�M+1� = ��cm�2�M+1�

1 − �
j=m

M

�cj�2

�
j=m

M

�cj�2
. �4.19�

We also find by setting specific values of m in Eq. �4.17� that

��c0�2�M+1� = �
n=0

M ��
j=0

n

�cj�2� , �4.20�

��cM�2�M+1� = ��
j=0

M

�cj�2��
n=0

M−1 ��
j=n

M

�cj�2� , �4.21�

and so �c0�2= �cM�2. Using this result together with Eqs. �4.18�
and �4.19� with the specific values of m=0 and m=M, re-
spectively, shows that �c1�2= �cM−1�2. Repeating this analysis
for sequential values of m completes the proof of the sym-
metry in Eq. �4.13�.

Another property of the optimal state is that the distribu-
tion �cm�2 is unimodal which can be seen as follows. First we
define the difference �m+1,m as

�m+1,m = �cm+1�2�M+1� − �cm�2�M+1�, �4.22�

which, from Eq. �4.18�, is given by

�m+1,m = �cm�2�M+1�� 1 − 2�
j=0

m

�cj�2

�
j=0

m

�cj�2 � . �4.23�

From the symmetry property �Eq. �4.13�� of the optimal state
and the normalization condition �Eq. �4.3�� we know that

�
m=0

�M/2�

�cm�2 = �
m=�M/2�+1

M

�cn�2 =
1

2
, �4.24�

where �M /2� is the largest integer satisfying �M /2��M /2.
Next we use this result to determine the positivity of the
differences �m+1,m. Consider if the expression 1–2� j=0

m �cj�2
in Eq. �4.23� were zero for a value of m less than �M /2�.
This would imply that �cm+1�2 , �cm+2�2 , . . . , �c�M/2��2=0 and by
Eq. �4.23� that �m+1,m=0, which would mean that �cm�2
= �cm+1�2=0 and so 1–2� j=0

m−1�cj�2=0. It follows, by induction,
that the coefficients �cj�2 would be zero for j
=0,1 , . . . , �M /2� which contradicts Eq. �4.24�. Hence
1–2� j=0

m �cj�2=0 only for m= �M /2� and so from Eq. �4.23�
� j+1,j �0 for j=0,1 , . . . , ��M /2�−1�. Taking account of the
symmetry Eq. �4.13� then shows that the distribution �cn�2 is
monotonically increasing over the index m for m
=0,1 , . . . , �M /2� and monotonically decreasing for m

= �M /2� , ��M /2�+1� , . . . ,M. This completes the proof of the
unimodal property.

In summary, the optimal state for a system in the shared
phase state �Eq. �4.12�� and a reference ancilla with an equal
maximum number of particles, i.e., with M =N, has coeffi-
cients �cm� that are symmetric about a modal point and are
monotonically increasing before this point and are monotoni-
cally decreasing after it. These properties are reminiscent of
the ansatz used for a single-shared particle case which sug-
gests that the optimal state would be well approximated by a
trial state ��trial

�M�� which is of the form Eq. �2.27� for a suit-
able choice of the parameters A and �, and a range of M
values. Exact analytical solutions or better approximations
are beyond the scope of this paper. However, one can solve
the N=M case numerically using either Eq. �4.18� or �4.19�.
Figure 6 shows the particle-number distribution for the exact
optimal reference state with N=M =29 compared with that of
the trial state for the parameter values A=1.9 and �=8.9. The
figure confirms our intuition that the exact solution in the
N=M case can be approximated by a state which is of the
form Eq. �2.27�. The inner product 
�opt

�M� ��trial
�M�� of the exact

solution with the trial state differs from one by 6	10−6.

V. DISCUSSION

We have focused on the situation where the ancilla state
���M�� has a particularly simple form, as given by Eqs. �2.6�
and �4.2�, corresponding to a single-spatial mode at each site.
Such states automatically satisfy the requirement
EP����M���=0, i.e., that the ancilla does not contain particle
entanglement. Nevertheless our analysis generalizes quite
easily to situations with multiple spatial modes and multiple
ancillae. The most general pure ancilla state of M particles
which contains no particle entanglement has the form

0 5 10 15 20 25 29
0

0.01
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0.03

0.04
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n

c |
n|2

FIG. 6. Comparison of the particle-number distributions for the
optimal reference state ��opt

�M�� �	� and the trial state ��trial
�M�� �—� for

N=M =29. The comparison shows that the optimal reference state is
very well approximated by the trial state. Moreover, a comparison
with the optimal state for N=1, M =29 �- -� shows that the optimal
particle-number distribution broadens out as the number of particles
in the system, N, increases. Finally we note that distribution for the
optimal reference state �	� satisfies the symmetry and unimodal
properties derived analytically.
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���M�� = �
m=0

M

cm���m��A � ���M − m��B, �5.1�

where ���n���, for �=� or �, is an arbitrary normalized state
of exactly n particles at site � in the second quantization
formalism. For example, if the part of the ancilla at site �
involves the three mutually orthogonal spatial modes � · ��

� � · �� � � · ��, then the general expression for ���n��� is

���n��� = �
i,j,k

f i,j,k�i�A � �j�A � �k�A�i+j+k,n, �5.2�

where f i,j,k are normalized coefficients. Notice that the set of
states at each site are orthonormal, viz., �
��n� ���m���

=�n,m. To incorporate these more general ancilla states in our
previous analysis we need only replace the ancilla states �n��

in the above with ����n���. However, as our analysis used
only the orthogonality property of the set of �n�� and not its
detailed structure, the coefficients �cm�2 for the optimal an-
cilla state would be unchanged. Hence the solutions derived
above represent classes of optimal ancilla states for arbitrary
choices of coefficients of the kind f i,j,k in Eq. �5.2�.

Moreover consider an ancilla which comprises component
subsystems of the form

����M�� = ���M1�� � ���M2�� , �5.3�

where M =M1+M2. The requirement that EP�����M���=0 im-
plies that ����M�� can be expressed in the form

����M�� = �
m=0

M

cm� ���m��A � ���M − m��B, �5.4�

where the tensor product form of Eq. �5.3� restricts the vari-
ability of the coefficients cm� . This is a further constraint on
the coefficients, in addition to the normalization condition,
and so the entanglement made accessible by a composite
ancilla cannot exceed that given by a single-component an-
cilla composed of a maximum of M particles. Hence the use
of multiple ancillae in a tensor product state does not give
any advantage in optimizing the accessible entanglement.

VI. CONCLUSION

Quantum reference frames are of particular theoretical in-
terest and the phenomena of unlocking entanglement has
proven to be a very interesting application. Our analytical
techniques have proven to be fruitful in producing exact so-
lutions in the case of a single-shared particle and guidelines
for sensible approximations for system states of large N.
Much work is needed to produce exact analytical solutions
for more general system states. However, the results ex-
tracted seem to establish the intuition that pure states with a
broad particle-number distribution act as good reference
frames for the particle-number SSR. Indeed, the optimal ref-
erence state in the infinite-particle limit M→� makes all the
entanglement in the single-shared particle accessible.
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APPENDIX: SOLUTION AS A SERIES OF POLYNOMIALS
IN �

Here we explore the nature of the iterative solution of the
recurrence relation �Eq. �2.20�� for the case where the system
consists of a single particle which is equally shared between
the sites. Setting n=0 and using the boundary condition
�c−1�2=0 gives an expression for �c1�2 in terms of �c0�2. Next,
by setting n=1 we find an expression for �c1�2 and so on.
Continuing in this way yields a solution to Eq. �2.20� that is
expressed in terms of just � and �c0�2 as

�cn�2 = Pn����c0�2, �A1�

where Pn��� are polynomials in � of order n given by

P0��� = 1,

P1��� = � − 1,

P2��� = �� − 1��� − 2� ,

P3��� = ��2 − 3� + 1��� − 2� ,

P4��� = �� − 3��� − 1���2 − 3� + 1� ,

P5��� = ��3 − 5�2 + 6� − 1��� − 3��� − 1� ,

P6��� = ��3 − 6�2 + 10� − 4���3 − 5�2 + 6� − 1� ,

�A2�

etc. Due to the normalization condition �Eq. �2.7��, we have
the property that

�
n=0

M

Pn��� =
1

�c0�2
. �A3�

Alternatively, rearranging the recurrence relation �Eq. �2.19��
as

�cn−1�2 =
�� − 1��cn�4 − �cn�2�cn+1�2

�cn�2 + �cn+1�2
, �A4�

leads to a different form of the solution. For this we set n
=M and use the boundary condition cM+1=0 with Eq. �A4� to
get an expression for �cM−1�2 in terms of �cM�2. Continuing in
this way with reducing values of n we find that any coeffi-
cient �cM−n�2 can be written in terms of polynomials in � and
�cM�2. The symmetry of Eq. �2.19� with respect to interchang-
ing n with m=M −n ensures that the polynomials are the
same as those appearing in Eq. �A1�, i.e.,

�cM−n�2 = Pn����cM�2. �A5�

Substituting n=M into Eqs. �A1� and �A5� yields

�c0�2 = PM����cM�2, �cM�2 = PM����c0�2, �A6�

respectively. The simultaneous solution to Eqs. �A6� is
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PM��� = 1, �c0�2 = �cM�2, �A7�

and so from Eqs. �A1� and �A5� we find that

�cn�2 = �cM−n�2 �A8�

for n=0,1 , . . . ,M. Thus the solution which represents the
optimal reference state is symmetric in this sense.
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