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Based on the exact results obtained by Bethe ansatz, we demonstrate the existence of stable bound-pair �BP�
wave packet in Bose-Hubbard model with arbitrary on-site interaction U. In large-U regime, it is found that an
incoming single-particle can coherently pass through a BP wave packet and leave a coherent shift in the
position of it. This suggests a simple scheme for constructing a BP charge qubit to realize a quantum switch,
which is capable of controlling the coherent transport of one and only one photon in a one-dimensional
waveguide.
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I. INTRODUCTION

Most recently, many theoretical and experimental investi-
gations about bound pair �BP� in strongly correlated boson
systems are carried out �1–9� since the experimental obser-
vation of atomic BP in optical lattice �1�. Counter intuitively,
it is found that the trapped rubidium atoms in a three-
dimensional optical lattice can form a stable BP, even though
in free space the two atoms would have repelled each other.
For the problems BP, we can cast back for much earlier
investigations of �-pairing states in Hubbard model for elec-
trons, which possess off-diagonal long-range order
�ODLRO� �10�. Actually, the basic physics of both fermion
and boson BPs is that the periodic potential suppresses the
single-particle �SP� tunneling across the barrier, a process
that would lead to a decay of the pair. Interesting questions
are whether such a BP as composite particle will occur in
moderate U system and whether it can exist stably as a wave
packet. It is crucial for quantum information processing since
the Bose-Hubbard model is the simplest model capturing the
main physics of not only cold atoms in optical lattice but also
photons in nonlinear waveguide �11–13�.

In this paper we will present some exact results obtained
by Bethe ansatz concerning the two-particle problem. We
demonstrate the existence of a stable BP wave packet in
Bose-Hubbard model with arbitrary on-site interaction U. It
is found that the most stable BP wave packets refer to dif-
ferent regions of a bound-pair band �BPB� and have different
group velocities as U varies from zero to infinity, but spread
to the same fidelity when they travel over the same distance.
This feature allows the BP wave packet as a new object to be
a flying and stationary qubit in quantum device. We also
investigate the scattering between a BP wave packet and a
single particle in large-U limit. It is found that an incoming
SP wave packet can coherently pass through a BP and leave
a coherent shift in the position of the BP, which arises from
the exotic effective exchange interaction between them. Fur-
thermore, utilizing on-site U one can confine a BP, rather
than a SP, in two sites to form a charge qubit. This suggests
a simple scheme to realize a quantum switch, which is ca-

pable of controlling the coherent transport of one and only
one photon in a one-dimensional waveguide.

II. WAVE PACKET IN BOUND-PAIR BAND

The simplest model capturing some physics of the nonlin-
earity of photons in a coupled-cavity array and cold atoms in
optical lattice is a Bose-Hubbard model. The Hamiltonian H
is written as follows:

H = − ��
i=1

N

�ai
†ai+1 + H.c.� +

U

2 �
i=1

N

ni�ni − 1� , �1�

where ai
† is the creation operator of the boson at ith site, the

tunneling strength and on-site interaction between bosons are
denoted by � and U. For the sake of clarity and simplicity,
we only consider odd-site system with N=2N0+1, and peri-
odic boundary conditions aN+1=a1.

Consider the two-particle problem, a state in the two-
particle Hilbert space can be written as

��k� = �
k,r

fk�r���r
k� , �2a�

��0
k� =

1
�2N

ei�k/2��
j

eikj�aj
†�2�vac� , �2b�

��r
k� =

1
�N

ei�k�r+1�/2��
j

eikjaj
†aj+r

† �vac� , �2c�

where k=2�n /N, n� �1,N� denotes the momentum, and r
� �1,N0−1� is the distance between two particles. Due to the
translational symmetry of the present system, the
Schrödinger equations for fk�r�, r� �0,N0−1� is easily
shown to be

	 �
j=0

N0−1

Tj
k�� j,r+1 + � j,r−1� − U�r,0 + Tr

k�r,N0
− �k
 fk�r� = 0,

�3�

where Tr
k=−2�2� cos�k /2� for r=0, and −2� cos�k /2� for

r�0, respectively. Obviously, for an arbitrary k, the solution*songtc@nankai.edu.cn

PHYSICAL REVIEW A 79, 032108 �2009�

1050-2947/2009/79�3�/032108�5� ©2009 The American Physical Society032108-1

http://dx.doi.org/10.1103/PhysRevA.79.032108


of Eq. �3� is equivalent to that of a noninteracting N0-site
tight-binding chain with nearest-neighbor hopping amplitude
Tj

k, on-site potentials U, and −2� cos�k /2� at two ends, re-
spectively. In this work, we focus our study on the bound
states. In each k-invariant subspace, there exists only one
bound state for nonzero U, which can be obtained via Bethe
ansatz method. And all the N bound states, indexed by k,
constitute a bound-pair band.

For a large N system, the pair-bound band can be ex-
pressed as

�k = sgn�U��U2 + 16�2 cos2 k

2
�4�

with the wave function

fk�r� � �sgn��k��r�1 + �k
2�−1/4 	 �1, �r = 0�

�2e−�
k�r, �r � 0�  ,

�5�

where �k=4� cos�k /2� /U and 
k=ln�1 /�k+�1+ �1 /�k�2�.
The spectrum of BP �Eq. �4�� is in agreement with that ob-
tained from the Green’s function method �1�. The size of the
BP for every bound state can be characterized by

�k = ��
r

�rfk�r��2 = � 2�2�

U
cos� k

2
�� , �6�

which depends not only on � /U but also on k. It can be seen
that even for weak U, the size of BP still remains small for
long-wave eigenstates, which is crucial for the following dis-
cussion. On the other hand, for each eigenstate, the BP is
delocalized as a composite particle. Nevertheless, it has been
argued that approximately nonspreading wave packet can be
achieved by a superposition of eigenstates within a linear
region, so as to the populated energy levels are equally
spaced �14,15�. Note that there exists a linear region in the
vicinity of k0 in the BPB spectrum �Eq. �4�� for any value of
U. Here k0 is determined by the condition,

��2�k/�k2�k=k0
= 0, �7�

or its more explicit form cos k0=���2−1�−�, where �
= �U2 /8�2+1�. Within such a region, a Gaussian wave packet
can be constructed in the form

���k0,Nc�� =
1

�
�

k

e−�1/2�2��k − k0�2−iNc�k−k0���k� , �8�

where Nc� �1,N� is the center of it in real space, and 

=�ke
−�1/2�2��k − k0�2

is the normalization factor. The dynamics
of such a wave packet is governed by the effective Hamil-
tonian,

Heff = �
k

�̃k��k���k� �9�

approximately. Here the effective linear dispersion relation is

�̃k = �k0
+ vg�k − k0� , �10�

where

vg = � ��k

�k
�

k=k0

= 2��1 −
U2

8�2��1 +
16�2

U2 − 1� �11�

is the group velocity of the wave packet �Eq. �8�� in real
space.

Now we first investigate the dynamics of such wave
packet for any value of U under the linear approximation.

Taking the state �Eq. �8�� as an initial state ��̃�t=0��, its time

evolution driven by Heff presents ��̃�t��=e−iHefft���k0 ,Nc��
=ei����k0 ,Nc+vgt��. The overall phase factor ei� has no ef-
fect on the final result. It is obvious that the wave packet
moves along the ring with velocity vg. In this sense, the time
evolution of some states governed by Heff can be described
as a spatial translation by the operator U�t�=exp�−ikvgt�
�T�l� with a displacement l=vgt. This shows that the shape
of the wave packet in the real space does not change approxi-
mately during its travel. However, for the exact time evolu-
tion, state ���t��=e−iHt���k0 ,Nc�� is slightly different from

state ��̃�t�� due to the nonlinearity of the dispersion �Eq.
�4��. The overlap between two states that evolve from the
same initial wave function under two different Hamiltonians
H and Heff, respectively, is defined as the Loschmidt echo

�LE� or quantum fidelity F�t�= ���t� ��̃�t�� which can be
employed to depict the deformation of a traveling-wave
packet. A straightforward calculation shows that

F�t� =
1


�

k

e−�k − k0�2/�2
cos	1

6
�k − k0�3vgt
 , �12�

which is based on the fact ��3�k /�k3�k=k0
=−vg.

Remarkably, the fact that the fidelity �Eq. �12�� only de-
pends on vgt means that the wave packets with fixed � but
different k0 share the same fidelities after they travel the
same distance l=vgt. It indicates that a slower wave packet
in strong U system has longer life time comparing to a faster
one in a weak U system. This feature can be utilized to
quantum information processing: weak U system can be a
quantum channel for quantum state transfer, while strong U
system can be employed for quantum state storage.

The above discussion tells us that a state of type �Eq. �8��
is nonspreading only within certain approximate limits. Next
we investigate the profile of such a state in real space. It is
well known that for a SP case, if we replace ��k� as �k�
= �1 /�N�� je

ikjaj
†�vac�, the SP wave function is

���k0,Nc�� =
1

�
�

j

e−��2/2��j − Nc�2+ik0jaj
†�vac� , �13�

which is also a wave packet of Gaussian type �15�. For two-
particle state �Eq. �8��, its profile in real space can be de-
scribed by the distribution of the average particle density,

�ni�t�� = ���t��ai
†ai���t�� = �ai���t���2. �14�

In Fig. 1�a� we plot �ni�t�� for the wave packets with �
=2 /15 at time t=0 and �=15 /� in the systems with U=0.1,
0.5, 1, 5, 10, and 20 in the unit of �. It shows that the profile
of the wave packets in the real space is also Gaussian type
and nonspreading. It also indicates that the shape of the wave
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packets does not change apparently for different U, which is
in agreement with the following observation from Eq. �15�
that the size of a BP remains small for �U�≿0.2�.

For a given �, the size of a composite particle in the form
of a nonspreading wave packet is a function only of the ratio
� /U,

�k0
=

1
�2
��1 +

16�2

U2 − 1, �15�

which determines the size of the wave packet. To demon-
strate the features of a BP wave packet for arbitrary U sys-
tem, its velocity vg and size �k0

are plotted in Fig. 1�b�. For
U /�=0.2–10, we have �k0

=0.2–3.1, which is sufficiently
small that we can have many pairs in the lattice without
having substantial overlap between them. It implies a new
phase, a gas of BPs which has been predicted in large U
limits �3�, can also exist in moderate U system. It is worthy
to stress that, although a SP wave packet �Eq. �13�� and a BP
wave packet �Eq. �8�� share some common properties, on-site
interaction U is able to govern a BP rather than a SP wave
packet. In this sense, the SP and BP wave packets can be
regarded as two different types of particles. Nevertheless the
interaction between them is exotic since the constituent of
BP is essentially SP.

III. COHERENT SHIFT

In the following we restrict ourselves to large U limit.
Consider a three-body problem. The spectrum consists of
three bands around 0, U, and 3U. We are interested in the
middle band, which corresponds to a SP and a BP. Using
perturbation method, the corresponding effective Hamil-
tonian is

H̃ = − ��
i=1

N

ãi
†ãi+1 +

2�2

U
�
i=1

N

b̃i
†b̃i+1 − 2��

i=1

N

b̃i+1
† b̃iãi

†ãi+1 + H.c.

+ U�
i=1

N

b̃i
†b̃i, �16�

where ãi and b̃i denote the hardcore bosons satisfying the
following commutation relations:

�ãj, ãi
†� = �b̃j, ãi

†� = �b̃j, b̃i
†� = 0 �i � j� ,

�ãi, ãi
†� = �b̃i, b̃i

†� = 1;�b̃i, ãi
†� = �b̃i, ãi� = 0. �17�

The first two terms describe the hopping of SP and BP, the
third term describes the interaction between the two kinds of
particles, the process of which is schematically illustrated in
Fig. 1�c�. Now we focus on the scattering between SP and
BP wave packets. In short-time duration, a BP is relative
stationary comparing with a moving SP wave packet. Then

the swapping operation b̃i+1
† b̃iãi

†ãi+1 allows the incoming SP
wave packet to “pass through” the BP and shift its position
with a unit lattice spacing. To demonstrate this process, nu-
merical simulation is performed for the time evolution of
such two wave packets. The initial state is
���� /2,NSP������ /2,NBP�� with NSP�NBP. In the simplest
case of replacing the swapping term 2� by �, the final state is
���� /2,NSP������ /2,NBP−1�� with NSP�NBP. Actually,
factor 2 can cause a slight reflection of the incoming SP
wave packet from the above fact. Figure 2 is the stroboscopic
picture of the profiles of two evolving wave packets obtained
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FIG. 1. �Color online� �a� Plots of �ni�t�� the wave packets with �=2 /15 at time t=0 �dot� and t=�=15 /� �empty circle� in the systems
with U=0.1–20 in the unit of �. �b� Plots of vg in the unit of � �dashed line� and size �k0

�solid line� for the BP Gaussian wave packets. �c�
Schematic of the exchange interaction between SP and BP.
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FIG. 2. �Color online� The stroboscopic picture of the profiles of
evolving SP and BP wave packets obtained by numerical simula-
tions: line �a� denotes the center of SP wave packet, while lines �b�
and �c� denote the centers of BP wave packets before and after
scattering.
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by numerical simulations for the Hamiltonian �16�: line �a�
denotes the center of SP wave packet, while lines �b� and �c�
denote the centers of BP wave packets before and after scat-
tering. It is clear that the incoming SP wave packet keeps the
same speed during the whole process, while the BP wave
packet get a coherent shift with a unit of lattice spacing.

Bound-pair charge qubit

Now we apply the novel feature of coherent shift of a BP
to construct a quantum switch. Considering a four-site chain
in strong on-site interaction limit, the dynamics of a SP and a
BP obeys the Hamiltonian

HCQ = − ��ãs
†ãs+1 + ãs+2

† ãs+3� − �0ãs+1
† ãs+2 +

2�0
2

U0
b̃s+1

† b̃s+2

− 2�0b̃s+1
† b̃s+2ãs+2

† ãs+1 + H.c. + U �
i=s,s+3

b̃i
†b̃i

+ U0 �
i=s+1,s+2

b̃i
†b̃i, �18�

which is schematically illustrated in Fig. 3�a�. We focus on
the case of that there is a single BP in the site s+1 and s
+2, which can be realized under the condition U�U0. No-
tice that this setup is equivalent to the system of confining a
composite in an effective double-well potential and can be

regarded as a charge qubit. Such a qubit has a novel feature
due to the coherent shift induced by the scattering with a SP.
To demonstrate this, we take 2�0=� for simplicity and study
the dynamical process via time evolution. We embed such a
charge qubit into a chain as illustrated in Figs. 3�b� and 3�c�.
Let us first assume that initially the qubit is in the “right”

state �R�= b̃s+2
† �vac�, while a SP wave packet of type �Eq.

�13�� ���� /2,Nc�s������� /2,L�� �similarly, we define
�����2,Nc�s+2�������� /2,R��� is coming from the
left. Comparing to the speed of the SP wave packet vg=2�,
state �R� can be regarded as a stationary state during the
whole scattering process. Then according to the Hamiltonian
HCQ, the incoming wave will pass through the qubit freely

but leaves the qubit to be in the “left” state �L�= b̃s+1
† �vac�,

i.e.,

����/2,L���R� → ����/2,L���L� . �19�

In contrast, if the qubit is in state �L�, the scattering process
is

����/2,L���L� → ���− �/2,L���L� , �20�

i.e., the incoming wave packet is totally reflected and the
qubit remains to be in state �L�. These two processes are
illustrated schematically in Figs. 3�b� and 3�c�. Remarkably,
if a sequent wave packets scatter with the BP qubit in �R�
state, the first one can pass freely, but the subsequent ones
will be reflected totally. This suggests a simple scheme to
realize a quantum switch to control the coherent transport of
a photon in a one-dimensional waveguide. The photon block-
ade �16� can be utilized to construct a photon-pair qubit in
coupled-cavity array. Nevertheless, different from schemes
in Refs. �17,18�, our scheme allows one and only one photon
passing over the switch.

IV. CONCLUSION

In conclusion, we have studied the existence of localized
BP in Bose-Hubbard model with arbitrary on-site interaction
U. We have shown that BP wave packets refer to different
regimes of a bound-pair band and have different group ve-
locities as U varies from zero to infinity, but spread to the
same fidelity when they travel over the same distance. It
proposed a new object to be a flying or stationary qubit in
quantum device. Furthermore, the coherent shift in large-U
system suggests a BP qubit as a quantum switch embedded
in a one-dimensional waveguide. Our analysis can be ex-
tended to a fermion Hubbard system with a minor correction.
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FIG. 3. �Color online� �a� A confined BP as a charge qubit with
states �R� and �L�. ��b� and �c�� A BP qubit as a quantum switch to
control the transport of a SP wave packet. In the case with the qubit
in state �R�, a moving SP wave packet will pass through the qubit
freely but leaves the qubit to be in the �L� state. In contrast, if the
qubit is in state �L�, the coming wave packet will be totally reflected
and remains the qubit to be in state �L�.
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