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We present a polymer quantization of the −� /r2 potential on the positive real line and compute numerically
the bound state eigenenergies in terms of the dimensionless coupling constant �. The singularity at the origin
is handled in two ways: first, by regularizing the potential and adopting either symmetric or antisymmetric
boundary conditions; second, by keeping the potential unregularized but allowing the singularity to be bal-
anced by an antisymmetric boundary condition. The results are compared to the semiclassical limit of the
polymer theory and to the conventional Schrödinger quantization on L2�R+�. The various quantization schemes
are in excellent agreement for the highly excited states but differ for the low-lying states, and the polymer
spectrum is bounded below even when the Schrödinger spectrum is not. We find, as expected, that for the
antisymmetric boundary condition the regularization of the potential is redundant: the polymer quantum theory
is well defined even with the unregularized potential and the regularization of the potential does not signifi-
cantly affect the spectrum.

DOI: 10.1103/PhysRevA.79.032104 PACS number�s�: 03.65.Ca, 04.60.Ds, 04.70.Dy

I. INTRODUCTION

One of the most important outcomes expected of a suc-
cessful theory of quantum gravity is a clear and unambigu-
ous solution to the problems associated with the curvature
singularities that are predicted by classical general relativity.
This expectation is natural since quantum mechanics is
known to cure classical singularities in other contexts, such
as the hydrogen atom.

In recent years there has been much work suggesting that
loop quantum gravity �LQG� �1� may indeed resolve gravi-
tational singularities at least in the case of symmetry-reduced
models, such as spatially homogeneous �2� and inhomoge-
neous �3� cosmologies and spherically symmetric black holes
�4–6�. Given the simplifications that these models entail, it is
pertinent to ask which features of the LQG quantization
scheme are crucial to the observed singularity resolution.

There are two distinct, but related, features of the LQG
quantization program that appear to play a role in achieving
singularity resolution. The first is the fundamental discrete-
ness that underlies LQG due to its focus on holonomies of
connections and associated graphs embedded in a spatial
manifold �7�. An analogous approach in a purely quantum
mechanical context is so-called polymer quantization �8,9�,
in which the Hamiltonian dynamics occurs on a discrete spa-
tial lattice and the basic observables are the operators asso-
ciated with location on the lattice and translation between
lattice points. Polymer quantization provides a quantization
scheme that is mathematically and physically distinct from
Schrödinger quantization.

The second apparently key ingredient in the LQG singu-
larity resolution mechanism is the regularization of the sin-

gular terms in the Hamiltonian using a trick first introduced
in this context by Thiemann �7�. The regularization is
achieved by first writing a classical inverse triad as the �sin-
gular� Poisson bracket of classical phase space functions
whose quantum counterparts are known, and then defining
the inverse triad operator as the commutator of these quan-
tum counterparts. When applied to simple models this pro-
cedure gives rise to quantum operators with bounded spectra.
The singularity is therefore kinematically “removed” from
the spectra of relevant physical operators, such as the inverse
scale factor.

One question that arises concerns the role or perhaps the
necessity of the Thiemann trick in singularity resolution in
LQG. Recall that in the case of the hydrogen atom the sin-
gularity resolution is achieved by defining self-adjoint opera-
tors in a Hilbert space. This requires a careful choice of
boundary conditions on the wave function �10� but does not
require modification of the singular 1 /r potential. An ex-
ample more relevant to quantum gravity is the reduced
Schrödinger quantization of the “throat dynamics” of the
Schwarzschild interior, which on imposition of suitable
boundary conditions produced a discrete, bounded-from-
below spectrum for the black hole mass �11�.

Polymer quantization of the hydrogen atom was recently
examined in �12�, retaining only the s-wave sector and regu-
larizing the 1 /r potential in a way that lets r take values on
the whole real axis. The choice of symmetric versus antisym-
metric boundary conditions at the singularity was found to
have a signficant effect on the ground state even after the
singularity itself had been regularized. In particular, in the
limit of small lattice separation the ground state eigenenergy
showed evidence of convergence towards the ground state
energy of the conventionally quantized Schrödinger theory
only for the antisymmetric boundary condition.

In the present paper, we perform a similar polymer quan-
tization of the more singular 1 /r2 potential. When the poten-
tial is regularized, we shall find that the choice of the bound-
ary condition again has a significant effect on the lowest-
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lying eigenenergies. However, we shall also find that the
polymer theory with the antisymmetric boundary condition is
well defined even without regularizing the potential, and
with this boundary condition the regularized and unregular-
ized potentials yield closely similar spectra. The boundary
condition at the singularity is hence not only a central piece
of input in polymer quantization, but it can even provide,
along with the modification to the kinetic term, the pivotal
singularity avoidance mechanism. While this is expected
from general arguments that we will make explicit later on, it
is interesting and reassuring to see the mechanism work in
the special case of the 1 /r2 potential, whose degree of diver-
gence is just at the threshold where a conventional
Schrödinger quantization will necessarily result in a spec-
trum that is unbounded below. The polymer treatment of this
system is thus turning a Hamiltonian that is unbounded be-
low into one that has a well-defined ground state.

The 1 /r2 potential is interesting in its own right: it has a
classical scale invariance that is broken by the quantum
theory. In addition, this potential appears frequently in black
hole physics, for example, in the near horizon and near sin-
gularity behavior of the quasinormal mode potential �13,14�,
in the near horizon behavior of scalar field propagation �15�
and in the Hamiltonian constraint in Painlevé-Gullstrand co-
ordinates �16�. It may therefore conceivably be of direct rel-
evance to quantum gravity. There is substantial literature on
Schrödinger quantization of this potential in L2�R+� �see, for
example, �17–23� and the references in �24��, but we are not
aware of previous work on polymer quantization of this po-
tential.

Our paper is organized as follows. In Sec. II we review
the Schrödinger quantization of the 1 /r2 potential in L2�R+�.
In Sec. III we formulate the polymer quantization of this
system on a lattice of fixed size and describe the numerical
method. We also include in this section a computation of the
semiclassical polymer spectrum from the Bohr-Sommerfeld
quantization condition, with a fixed polymerization length
scale. The numerical results are presented in Sec. IV and the
conclusions are collected in Sec. V.

II. SCHRÖDINGER QUANTIZATION

We consider the classical Hamiltonian

H = p2 −
�

r2 , �2.1�

where the phase space is �r , p� with r�0 and ��R is a
constant. We shall take r, p, and � all dimensionless, and on
quantization we set �=1. If physical dimensions are restored,
r and p will become expressed in terms of a single dimen-
sionful scale but � remains dimensionless. That the coupling
constant is dimensionless is the speciality of a scale invariant
potential.

Quantization of H �Eq. �2.1�� is of course subject to the
usual ambiguities. In particular, if one views H as an effec-
tive Hamiltonian that comes from a higher-dimensional con-
figuration space via symmetry reduction, with r being a ra-
dial configuration variable, the appropriate Hilbert space
may be L2(R+ ;m�r�dr), where m is a positive-valued weight

function. If, for example, m�r�=ra, where a�R, then the
ordering

Ĥ = − � �2

�r2 +
a

r

�

�r
� −

�

r2 �2.2�

makes the quantum Hamiltonian Ĥ symmetric. If the wave
function in L2(R+ ;m�r�dr) is denoted by �, we may map �

to �̃�L2�R+ ;dr� by �̃�r�=ra/2��r�, and Ĥ is then mapped in
L2�R+ ;dr� to the Hamiltonian

Ĥ̃ = −
�2

�r2 −
�̃

r2 , �2.3�

where

�̃ ª � −
a

2
�a

2
− 1� . �2.4�

We shall consider any such mappings to have been done and
take the quantum Hamiltonian to be simply

Ĥ = −
�2

�r2 −
�

r2 , �2.5�

acting in the Hilbert space L2�R+ ;dr�.
To guarantee that the time evolution generated by Ĥ �Eq.

�2.5�� is unitary, Ĥ must be specified as a self-adjoint opera-
tor on L2�R+ ;dr� �25�. A comprehensive analysis of how to
do this was given in �19� �see also �17,18,20–23��. We shall
review the results of �19� in a way that displays the spectrum
explicitly for all the qualitatively different ranges of �.

Before proceeding, we mention that several recent quan-
tizations of the 1 /r2 potential first regularize the potential
using various renormalization techniques �20–22�. In particu-
lar, when the spectrum of a self-adjoint extension is un-
bounded below, these renormalization techniques need not
lead to an equivalent quantum theory �23�. We shall here
discuss only the self-adjoint extensions.

To begin, recall �25� that the deficiency indices of Ĥ are
found by considering normalizable solutions to the eigen-

value equation Ĥ�= � i�. An elementary analysis shows that

Ĥ is essentially self-adjoint for ��−3 /4, but for ��−3 /4 a

boundary condition at r=0 is needed to make Ĥ self-adjoint.
Physically, this boundary condition will ensure that no prob-
ability is flowing in or out at r=0.

A. ��1 Õ4

For ��1 /4, we write �=1 /4+�2 with ��0.
For E�0, the linearly independent �non-normalizable�

solutions to the eigenvalue equation

Ĥ� = E� �2.6�

are �rJ�i���Er�. These oscillate infinitely many times as
r→0. To find the boundary condition, we consider the linear
combinations

�E�r� ª �r�ei�E−i�/2Ji���Er� + e−i�Ei�/2J−i���Er�� ,

�2.7�

KUNSTATTER, LOUKO, AND ZIPRICK PHYSICAL REVIEW A 79, 032104 �2009�

032104-2



where � is a parameter that a priori could depend on E. As
�E is periodic in � with period 2	, and as replacing � by
�+	 multiplies �E by −1, we may understand � periodic
with period 	. For concreteness, we could choose, for ex-
ample, �� �0,	�.

For the probability flux through r=0 to vanish, we need

�E�r�E� − �E��r�E → 0 as r → 0 �2.8�

for all E and E�, where the overline denotes the complex
conjugate. Using the small argument asymptotic form �Eq.
�9.1.7� in �26��

J
�z� →
�z/2�


��
 + 1�
as z → 0, �2.9�

this is seen to require sin��−���=0, and hence � must be
independent of E. The choice of the constant � hence speci-
fies the boundary condition at the origin.

To find the eigenvalues, we consider the normalizable so-
lutions to Eq. �2.6�. Such solutions exist only when E�0,
and they are �rKi���−Er�. These solutions must satisfy at r
→0 the same boundary condition as �E �Eq. �2.7��. Using
the small argument asymptotic form �Eqs. �9.6.2� and �9.6.7�
in �26��

K
�Z� = K−
�z� →
	

sin�
	�� �z/2�−


��− 
 + 1�
−

�z/2�


��
 + 1�	
as z → 0, �2.10�

this shows that the eigenvalues are

En = E0 exp�− 2	n/��, n � Z , �2.11�

where

E0 = − exp��2� + 	�/�� . �2.12�

This spectrum is an infinite tower, with En→0− as n→
 and
En→−
 as n→−
. The spectrum is unbounded from below.

We note that Schrödinger quantization of a regulated form
of the potential yields a semi-infinite tower of states that is
similar to Eq. �2.11� as n→
 but has a ground state �21�.
The energy of the ground state goes to −
 when the regula-
tor is removed.

B. �=1 Õ4

For �=1 /4, the solutions to the eigenvalue equation �2.6�
for E�0 are �rJ0��Er� and �rN0��Er�. We consider the lin-
ear combinations

�E�r� ª �r
�cos ��J0��Er� + �sin ��

��	

2
N0��Er� − ln��Ee�

2
�J0��Er�	� ,

�2.13�

where � is Euler’s constant and � is again a parameter that
may be understood periodic with period 	 and could a priori
depend on E. As above, we find that � must be a constant

independent of E and its value determines the boundary con-
dition at the origin.

Normalizable solutions to Eq. �2.6� exist only for E�0.
They are �rK0��−Er�, and they must satisfy the same bound-
ary condition as �E �Eq. �2.13�� at r→0. Using the small
argument expansion of K0 �26�, we find that for �=0 there
are no normalizable states, while for 0���	 there is ex-
actly one normalizable state, with the energy

E0 = − 4 exp�− 2� + 2 cot �� . �2.14�

C. −3 Õ4���1 Õ4

For −3 /4���1 /4, we write �=1 /4−
2 with 0�
�1.
The solutions to the eigenvalue equation �2.6� for E�0

are �rJ�
��Er�. Considering the linear combinations

�E�r� ª �r��cos ��E−
/2J
��Er� + �sin ��E
/2J−
��Er�� ,

�2.15�

we find as above that � is a constant, understood periodic
with period 	, and its value specifies the boundary condition
at the origin.

Normalizable solutions to Eq. �2.6� exist only for E�0.
They are �rK
��−Er� and must satisfy the same boundary
condition as �E �Eq. �2.15�� at r→0. Using the small argu-
ment asymptotic form of K
 �26�, we find that there are no
normalizable states for 0���	 /2, while for 	 /2���	
there is exactly one normalizable state, with the energy

E0 = − �− cot ��1/
. �2.16�

We note that in the special case of a free particle, �=0,
the Bessel functions reduce to trigonometric and exponential
functions.

D. �Ï−3 Õ4

For ��−3 /4, we write �=1 /4−
2 with 
�1. Ĥ is now
essentially self-adjoint. Any prospective normalizable solu-
tion to Eq. �2.6� would need to have E�0 and take the form
�rK
��−Er�, but since now 
�1, these solutions are not
normalizable and hence do not exist.

III. POLYMER QUANTIZATION

In this section we develop the polymer quantization of the
1 /r2 potential. We proceed as in �12�, briefly reiterating the
main steps for completeness.

It is necessary to extend the r coordinate to negative val-
ues with the replacement r→x�R in order to use central
finite difference schemes at the origin. This will allow us to
introduce at the origin both a symmetric boundary condition
�with the regulated potential developed in Sec. III B� and an
antisymmetric boundary condition.

The polymer Hilbert space on the full real line is spanned
by the basis states

�x0
�x� = 
1, x = x0

0, x � x0,
� �3.1�

with the inner product
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��x,�x�� = �x,x�, �3.2�

where the object on the right-hand side is the Kronecker
delta. The position operator acts by multiplication as

�x̂���x� = x��x� . �3.3�

Defining a momentum operator takes more care. Consider

the translation operator Û, which acts as

�Û����x� = ��x + �� . �3.4�

In ordinary Schrödinger quantization we would have Û�

=ei�p̂. Following �8�, we hence define the momentum opera-
tor and its square as

p̂ =
1

2i�̄
�Û�̄ − Û�̄

† � , �3.5a�

p2̂ =
1

�2 �2 − Û� − Û�
† � , �3.5b�

where �̄ª� /2. We may thus write the polymer Hamiltonian
as

Ĥpol = T̂pol + V̂pol, �3.6�

where

T̂pol =
1

�2 �2 − Û� − Û�
† � , �3.7a�

V̂pol = −
�

x̂2 . �3.7b�

Considering the action of x̂ and Û�, we see that the dy-
namics generated by Eq. �3.6� separates the polymer Hilbert
space into an infinite number of superselection sectors, each
having support on a regular �-spaced lattice ��+n� 
n�Z�.
The choice of �� 
0����� picks the sector. Since we wish
to study singularity resolution, we concentrate on the �=0
sector, which we expect the singularity of the potential to

affect most. We shall discuss the regularization of V̂pol at this
singularity in Sec. III B.

A. Semiclassical polymer theory

Before analyzing the full polymer quantum theory, we
examine the semiclassical polymer spectrum using the Bohr-
Sommerfeld quantization condition.

Following �2,5,6�, we take the classical limit of the poly-
mer Hamiltonian �3.6� by keeping the polymerization scale �

fixed and making the replacement Û�→ei�p, where p is the
classical momentum. Note that this is different from the con-
tinuum limit in which � goes to zero and the quantum theory
is expected to be equivalent to Schrödinger quantization
�27�.

We assume ��0. It follows, as will be verified below,
that the classical polymer orbits never reach the origin, and
we may hence assume the configuration variable x to be

positive and revert to the symbol r. The classical polymer
Hamiltonian thus takes the form

Hpol =
sin2��̄p�

�̄2 −
�

r2 . �3.8�

Note that Hpol reduces to the classical nonpolymerized
Hamiltonian �2.1� in the limit �̄→0.

A first observation is that the kinetic term in Hpol is non-
negative and bounded above by 1 / �̄2. Denoting the time-
independent value of Hpol on a classical solution by E, it
follows that E is bounded above by

E � Emax ª
1

�̄2 , �3.9�

and on a given classical solution r is bounded below by r
�r−, where

r− ª � ��̄2

1 − �̄2E
�1/2

. �3.10�

An elementary analysis shows every classical solution has
a bounce at r=r−. For E�0 this is the only turning point,
and the solution is a scattering solution, with r→
 as t
→ �
. For E�0 there is a second turning point at r=r+
�r−, where

r+ ª � �

− E
�1/2

, �3.11�

and the solution is a bound solution, with r oscillating peri-
odically between r+ and r−. Note that r+ is independent of �̄,
and the outer turning point in fact coincides with the turning
point of the nonpolymerized classical theory.

The classical polymer solutions are thus qualitatively
similar to the classical nonpolymerized solutions at large r,
both for E�0 and for E�0. What is different is that the
polymer energy is bounded from above, and more impor-
tantly that the polymer solutions bounce at r=r−. In this
sense the classical polymer theory has resolved the singular-
ity at r=0. The resolution depends on the polymerization
scale: for fixed E, r−= �̄���1+O��̄2��→0 as �̄→0, and for
fixed �̄, r−→ �̄�� as E→0.

As the E�0 solutions are periodic, we can use the Bohr-
Sommerfeld quantization condition to estimate the semiclas-
sical quantum spectrum. A subtlety here is that semiclassical
estimates already in ordinary Schrödinger quantization with
a 1 /r2 term involve a shift in the coefficient of this term �28�.
Anticipating a similar shift here, we look at the Bohr-
Sommerfeld quantization condition with � replaced by �eff,
and we will then determine �eff by comparison with the
Schrödinger quantization.

For a classical solution with given E, formula �3.8� im-
plies �with � replaced by �eff�

r =
�̄��eff

�sin2��̄p� − �̄2E
. �3.12�

Taking E�0, the phase space integral J�E�ª �rdp over a
full cycle is hence
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J�E� = � rdp = 2��eff�
0

	/�2�̄� �̄dp

�sin2��̄p� − �̄2E
�p = y/�̄�

= 2��eff�
0

	/2 dy

�sin2�y� − �̄2E

=
2��eff

�1 − �̄2E
�

0

	/2 dy

�1 − �1 − �̄2E�−1 cos2�y�

=
2��eff

�1 − �̄2E
K��1 − �̄2E�−1/2� , �3.13�

where K is the complete elliptic integral of the first kind �29�.
In the limit �̄2E→0, the expansion �8.113.3� in �29� yields

J�E� = 2��eff�ln� 4

�̄�− E
� + O��̄�− E�	 . �3.14�

The Bohr-Sommerfeld quantization condition now states that
the eigenenergies of the highly excited states are given as-
ymptotically by J�E�=2	n, where n�1 is an integer. By Eq.
�3.14�, this gives the asymptotic eigenenergies

En = −
16

�̄2 exp�− 2	n/��eff�, n → 
 . �3.15�

The Bohr-Sommerfeld estimate �3.15� agrees with the
spectrum �2.11� obtained from conventional Schrödinger
quantization for ��1 /4, provided �eff=�− 1

4 and we choose
in Eq. �2.11� the self-adjoint extension for which

� = −
	

2
+ � ln�4/�̄� �mod 	� . �3.16�

The shift �eff=�− 1
4 is exactly that which arises in ordinary

Schrödinger quantization of potentials that include an 1 /r2

term: the reason there is the matching of the small r behavior
of the exact eigenstates to the WKB approximation. For a
lucid analysis of this phenomenon in the quasinormal mode
context, see the discussion between Eqs. �23� and �28� in
�28�. Note, however, that in our system the Bohr-
Sommerfeld condition cannot be applied directly to the un-
polymerized theory, since J�E� �Eq. �3.13�� diverges as �̄
→0.

B. Full quantum polymer theory

We now return to the full polymer quantum theory, with
the Hamiltonian �3.6� and ��R.

We write the basis states in Dirac notation as 
m��, where
m�Z. Writing a state in this basis as �=�mcm
m��, it fol-
lows from �3.2� that the inner product reads ���1� ,��2��
=�mcm

�1�cm
�2�. The Hilbert space is thus L2�Z�. It will be use-

ful to decompose this Hilbert space as the direct sum L2�Z�
=L2

s�Z� � L2
a�Z�, where the states in the symmetric sector

L2
s�Z� satisfy cm=c−m and the states in the antisymmetric sec-

tor L2
a�Z� satisfy cm=−c−m.

The action of T̂pol �Eq. �3.7a�� reads

T̂pol��
m

cm
m��� =
1

�2�
m

�2cm − cm+1 − cm−1�
m�� .

�3.17�

T̂pol is clearly a bounded operator on L2�Z�. T̂pol is manifestly
symmetric, and an explicit solution of the eigenvalue equa-

tion T̂pol�=E�, given in Eq. �3.31� below, shows that there

are no normalizable solutions with E= � i. T̂pol is hence es-
sentially self-adjoint ��30�, Theorem X.2�. It is also positive,

since �� , T̂pol���0 for any ��0 by the Cauchy-Schwarz
inequality.

The action of V̂pol �Eq. �3.7b�� reads

V̂pol��
m

cm
m��� = −
�

�2�
m

fm
polcm
m�� , �3.18�

where

fm
pol

ª

1

m2 . �3.19�

As Eq. �3.18� is ill defined on any state for which cm�0, V̂pol
is not a densely defined operator on L2�Z�. We consider two
ways to handle this singularity.

The first way is to regulate V̂pol explicitly. Recall that for
x�R \ �0� we can write

sgn�x�
�
x


= 2
d��
x
�

dx
, �3.20�

and on our lattice this can be implemented as the finite dif-
ference expression

sgn�x�
�
x


→
1

�
��
xm+1
 − �
xm−1
� + O��2� . �3.21�

We hence define the regulated polymer version of
sgn�x� /�
x
 by dropping the O��2� term in Eq. �3.21�, and

we define the regulated polymer potential V̂pol
reg by raising this

to the fourth power,

�

�xm�2 →
�

�4 ��
xm+1
 − �
xm−1
�4, �3.22�

or

V̂pol
reg��

m

cm
m��� = −
�

�2�
m

fm
regcm
m�� , �3.23�

where

fm
reg

ª ��
m + 1
 − �
m − 1
�4. �3.24�

V̂pol
reg is clearly a bounded essentially self-adjoint operator on

L2�Z�, and its operator norm is 4
�
 / ��2�.
The regulated polymer Hamiltonian can now be defined

by
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Ĥpol
reg = T̂pol + V̂pol

reg. �3.25�

It follows by the Kato-Rellich theorem ��30�, Theorem X.12�
that Ĥpol

reg is essentially self-adjoint on L2�Z� and bounded

below by −4
�
 / ��2�. Further, both T̂pol and V̂pol
reg leave L2

s�Z�
and L2

a�Z� invariant, and their boundedness and self-
adjointness properties mentioned above hold also for their

restrictions to L2
s�Z� and L2

a�Z�. It follows that Ĥpol
reg restricts to

both L2
s�Z� and L2

a�Z� as a self-adjoint operator bounded be-
low by −4
�
 / ��2�. We denote both of these restrictions by

Ĥpol
reg, leaving the domain to be understood from the context.

The second way to handle the singularity of V̂pol �Eq.
�3.18�� is to restrict at the outset to the antisymmetric sub-

space L2
a�Z�, where V̂pol is essentially self-adjoint and its op-

erator norm is 
�
 / ��2�. It follows as above that the unregu-
lated polymer Hamiltonian

Ĥpol = T̂pol + V̂pol �3.26�

on L2
a�Z� is essentially self-adjoint and bounded below by

−
�
 / ��2�.
Two comments are in order. First, Ĥreg can be written in

terms of operators as

Ĥreg =
1

�2 �2 − Û� − Û�
† � −

�

�4 �Û�
�
x̂
Û�

† − Û�
†�
x̂
Û��4.

�3.27�

The potential in Eq. �3.27� can hence be viewed as arising by
the substitution

sgn�x�
�
x


→
2

i�
Û�

† ��
x
,Û�� , �3.28�

in place of Eq. �3.20�. This method is similar to Thiemann’s
regularization of inverse triad operators in loop quantum
gravity �7�.

Second, the regulated potential vanishes at the origin but
is greater in absolute value than the unregulated potential for

m
�1. However, the difference is significant only for the
lowest few 
m
, and the two potentials quickly converge as

m
→
, as shown in Fig. 1. The regulated and unregulated
potentials hence differ significantly only near the singularity.

C. Eigenstates and the numerical method

We are now ready to look for the eigenstates of the
Hamiltonian. Writing the eigenstate as �=�mcm
m�� and de-
noting the eigenvalue by E, the regulated eigenvalue equa-

tion Ĥpol
reg�=E� and the unregulated eigenvalue equation

Ĥpol�=E� both give a recursion relation that takes the form

cm�2 − �2E − �fm� = cm+1 + cm−1, �3.29�

where fm= fm
reg �Eq. �3.24�� for the regulated potential and

fm= fm
pol �Eq. �3.19�� for the unregulated potential. Note that

the polymerization scale � enters this recursion relation only
in the combination �2E, whether or not the potential is regu-
lated. This is a direct consequence of the scale invariance of
the potential.

From now on, we take ��0 and E�0.
We use the “shooting method” that was applied in �12� to

the polymerized 1 / 
x
 potential. For large 
m
, Eq. �3.29� is
approximated by

cm�2 − �2E� = cm+1 + cm−1. �3.30�

The linearly independent solutions to Eq. �3.30� are

cm = �1 −
�2E

2
+��1 −

�2E

2
�2

− 1	�m

. �3.31�

The upper �respectively, lower� sign gives coefficients that
increase �decrease� exponentially as m→
. We can therefore
use Eq. �3.31� with the lower sign to set the initial conditions
at large positive m �31�.

To set up the shooting problem, we choose a value for
�2E and begin with some m0�� �

�2
E
 to find cm0
and cm0−1

using the approximation �3.31�. We then iterate downwards
with Eq. �3.29�. In the antisymmetric sector, we stop the
iteration at c0 and shoot for values of �2E for which c0=0.
This shooting problem is well defined both for the unregu-
lated potential �3.18� and for the regulated potential �3.23�,
since the computation of c0 via Eq. �3.29� does not require
evaluation of fm at m=0. In the symmetric sector, we stop at
the iteration at c−1 and shoot for values of �2E for which
c−1=c1. As the computation of c−1 requires evaluation of fm
at m=0, the symmetric sector is well defined only for the
regulated potential.

FIG. 1. �Color online� The solid �red� line is the regulated −1 /x2

potential ��=1, �=1�. The dashed �blue� line is the unregulated
potential.
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IV. RESULTS

We shall now compare the spectra of full polymer quan-
tization, Bohr-Sommerfeld polymer quantization, and ordi-
nary Schrödinger quantization. We are particularly interested
in the sensitivity of the results to the choice of the symmetric
versus the antisymmetric sector.

First of all, we find that when the potential is regulated,
the choice of the symmetric versus antisymmetric boundary
condition in the full polymer quantum theory has no signifi-
cant qualitative effect for sufficiently large �, the only dif-
ference being slightly lower eigenvalues for the symmetric
boundary condition. The lowest five eigenvalues in the two
sectors are shown in Table I for �=2. This is in sharp con-
trast with what was found in �12� for the 1 /r potential, where
the symmetric sector contained a low-lying eigenvalue that
appeared to tend to −
 as the polymerization scale was de-
creased.

Another key feature is that for sufficiently large � there is
indeed a negative energy ground state. For 3���4, the
plots of the lowest eigenvalues as a function of � in Fig. 2
and 3 show that the analytic lower bound obtained in Sec.
III B is accurate within a factor of 1.2 for the regulated po-
tential in the antisymmetric sector and within a factor of 2
for the unregulated potential.

Figures 2 and 3 also indicate that the lowest eigenvalues
converge towards zero as � decreases, for both the unregu-
lated and regulated potentials, with the unregulated eigenval-
ues reaching zero slightly before the regulated. Near En=0
the relationship is quadratic in � while the plots straighten
out to a linear relationship for larger �.

The numerics become slow as the energies are close to
zero. We were unable to investigate systematically whether
bound states exist for ��1 /4, and, in particular, to make a
comparison with the single bound state that occurs in
Schrödinger quantization with certain self-adjoint exten-
sions. For � slightly below 1 /4, we do find one bound state,
but we do not know whether the absence of further bound
states is a genuine property of the system of an artifact of
insufficient computational power. This would be worthy of
further investigation. The eigenvalues show a similar depen-
dence on � for both regulated and unregulated potentials,
with the energies for the regulated potential being lower than
those for the unregulated version as one would expect from
comparing the potentials as in Fig. 1.

For ��1 /4, we find that the eigenvalues En depend on n
exponentially, except for the lowest few eigenvalues �n
=0,1�. The coefficient in the exponent is in close agreement
with the exact Schrödinger spectrum �2.11� and with the
Bohr-Sommerfeld polymer spectrum �3.15� with �eff=�
−1 /4. Representative spectra are shown as semilogarithmic
plots in Figs. 4 and 5, where the linear fit is computed using
only the points with n�2. By matching the linear fit to the
Schrödinger spectrum �2.11� and reading off the self-
adjointness parameter �, we can determine the self-adjoint
extension of the Schrödinger Hamiltonian that matches the

TABLE I. The lowest five eigenvalues of the regulated potential
with antisymmetric and symmetric boundary conditions ��=2, �
=1�.

Antisymmetric Symmetric

E0 −6.14 −6.37

E1 −2.35�10−2 −2.43�10−2

E2 −2.03�10−4 −2.10�10−4

E3 −1.76�10−6 −1.82�10−6

E4 −1.52�10−8 −1.57�10−8

FIG. 2. �Color online� The lowest two energy levels as a func-
tion of � for the unregulated potential with antisymmetric boundary
conditions.

FIG. 3. �Color online� The lowest two energy levels as a func-
tion of � for the regulated potential with antisymmetric boundary
conditions.

FIG. 4. �Color online� ln�En� vs n for the unregulated potential
with antisymmetric boundary conditions with linear fits �R2=1�.
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polymer theory for the highly excited states. The results,
shown in Figs. 6 and 7, show that the self-adjointness param-
eter � depends linearly on the coupling parameter �, and the
slope in this relation is within 10% of the slope obtained
from the Bohr-Sommerfeld estimate �3.16�, ln 8�2.0794
�for �=1, �̄=1 /2�.

Finally, our numerical eigenvalues En are in excellent
agreement with the analytic approximation scheme of �16�,
provided this scheme is understood as the limit of large �
with fixed n. If the numerical results shown in Fig 6 and 7
are indicative of the complementary limit of large n with
fixed �, they show that the approximation scheme of �16�
does not extend to this limit.

V. CONCLUSIONS

We have compared Schrödinger and polymer quantiza-
tions of the 1 /r2 potential on the positive real line. The broad
conclusion is that these quantization schemes are in excellent
agreement for the highly excited states and differ signifi-
cantly only for the low-lying states. In particular, the poly-
mer spectrum is bounded below, whereas the Schrödinger
spectrum is known to be unbounded below when the coeffi-
cient of the potential term is sufficiently negative. We also
find that the Bohr-Sommerfeld semiclassical quantization
condition reproduces correctly the distribution of the highly
excited polymer eigenvalues. At some level this agreement is
not surprising, since one expects that for any mathematically
consistent quantization scheme, in some appropriate large n,
semiclassical limit, the spectra should agree. For antisym-
metric boundary conditions both Schrödinger and regulated
and unregulated polymers obey the criteria, so it is perhaps
not surprising that they agree at least for energies close to
zero. It is somewhat surprising that they agree so well for
low n �where “low” is in the context of the polymer spectra
which are bounded below�.

A central conceptual point was the regularization of the
classical r=0 singularity in the polymer theory. We did this
first by explicitly regulating the potential, using a finite dif-
ferencing scheme that mimics the Thiemann trick used with

the inverse triad operators in LQG �7�: this method allows a
choice of either symmetric or antisymmetric boundary con-
ditions at the origin. We then observed, as prevously noted in
�16�, that the singularity can alternatively be handled by
leaving the potential unchanged but just imposing the anti-
symmetric boundary condition at the origin. The numerics
showed that all of these three options gave very similar spec-
tra, and the agreement was excellent for the highly excited
states.

To what extent is the agreement of these three regulariza-
tion options specific to the 1 /r2 potential? Consider the poly-
mer quantization of the Coulomb potential, −1 /r. When the
Coulomb potential is explicitly regulated, it was shown in
�12� that the choice between the symmetric and antisymmet-
ric boundary conditions makes a significant difference for the
ground state energy. We have now computed numerically the
lowest five eigenenergies for the unregulated −1 /r potential
with the antisymmetric boundary condition, with the results
shown in Table II. Comparison with the results in �12� shows
that the regularization of the potential makes no significant
difference with the antisymmetric boundary condition. As
noted in �12�, for sufficiently small lattice spacing the anti-
symmetric boundary condition spectrum tends to that which
is obtained in Schrödinger quantization with the conven-
tional hydrogen s-wave boundary condition �10�.

We conclude that in polymer quantization of certain sin-
gular potentials, a suitably chosen boundary condition suf-
fices to produce a well-defined and arguably physically ac-
ceptable quantum theory, without the need to explicitly

FIG. 6. �Color online� � vs � with �=1 for the unregulated
potential with antisymmetric boundary conditions with a linear fit
�R2=1�.

FIG. 7. �Color online� � vs � with �=1 for the regulated po-
tential with antisymmetric boundary conditions with a linear fit
�R2=1�.

FIG. 5. �Color online� ln�En� vs n for the regulated potential
with antisymmetric boundary conditions with linear fits �R2=1�.
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modify the classical potential near its singularity: the anti-
symmetric boundary condition effectively removes the r=0
eigenstate from the domain of the operator 1 /r2 by requiring
c0=0 in the basis state expansion �mcm
m��. A similar ob-
servation has been made previously in polymer quantization
of a class of cosmological models, as a way to obtain singu-
larity avoidance without recourse to the Thiemann trick

�32,33�, and related discussion of the self-adjointness of
polymer Hamiltonians arising in the cosmological context
has been given in �34�. While we are not aware of a way to
relate our system, with the −1 /r2 potential and no Hamil-
tonian constraints, directly to a specific cosmological model,
it is nonetheless reassuring that the various techniques we
have used in this case for dealing with the singularity all lead
to quantitatively similar spectra. Whether this continues to
hold in polymer quantization of theories that are more
closely related to LQG is an important open question that is
currently under investigation �35�.
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