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We study the dynamics of the entanglement between two oscillators that are initially prepared in a general
two-mode Gaussian state and evolve while coupled to the same environment. In a previous paper, we showed
that there are three qualitatively different dynamical phases for the entanglement in the long-time limit: sudden
death, sudden death and revival, and no sudden death [Paz and Roncaglia, Phys. Rev. Lett. 100, 220401
(2008)]. Here we generalize and extend those results along several directions: We analyze the fate of entangle-
ment for an environment with a general spectral density providing a complete characterization of the evolution
for Ohmic, sub-Ohmic, and super-Ohmic environments. We consider two different models for the interaction
between the system and the environment (one where the coupling is through position and another where the
coupling is symmetric in position and momentum). Finally, we show that for nonresonant oscillators, the final
entanglement is independent of the initial state and may be nonzero at very low temperatures.
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I. INTRODUCTION

The creation and manipulation of entanglement is an im-
portant issue not only because of its fundamental implica-
tions but also due to its practical applications. In fact, during
the past decade, many new discoveries regarding the physics
of entanglement were made [1]. The development of quan-
tum algorithms and cryptographic schemes was probably the
driving force behind most of the research on entanglement.
In fact, nowadays entanglement is regarded not only as a
peculiar feature of quantum systems but also as a physical
resource. Entanglement manipulation was studied first for
finite-dimensional systems, but later continuous-variable sys-
tems [2] were considered. In fact, several experiments
showed the successful implementation of quantum teleporta-
tion [3] and cryptographic protocols [4] for such systems. In
this context, it is important to take into account the effects
induced by the interaction between a composite (eventually
entangled) quantum system and its surrounding environment.
Indeed, decoherence in some cases can be devastating: Thus,
due to the interaction with the environment, entanglement
within a composite system can disappear in a finite time.
This phenomenon, which was first discussed and analyzed
for systems made out of qubits [5-7], became known as
“sudden death” of entanglement (SD). But the fate of en-
tanglement for a quantum open system is not at all evident,
and some surprising results were also obtained: For example,
it was shown that under certain conditions, the environment
can act as a quantum channel thorough which entanglement
can be created [8]. In this case, even if the initial state of the
system is separable, the final state could be entangled. A
large number of recent papers study this and other issues that
characterize the dynamics of entanglement in systems of qu-
bits interacting with common or independent environments
[8—14]. On the other hand, continuous-variable systems were
also investigated and similar results emerged. For example,
the degradation of entanglement for harmonic systems inter-
acting with bosonic reservoirs was analyzed [15-17]. Also,
the fate of initially entangled states (two-mode squeezed
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states) interacting with a common bath was studied using
different approximations [18—20]. Among the interesting re-
sults that emerged from those works, it is worth mentioning
that in [19] a condition for the existence of sudden death was
deduced under the rotating wave (RW) Markovian assump-
tion. More recently, the non-Markovian regime was also ana-
lyzed [21-23] and a zoo with different long-time behavior
emerged. Thus, it was realized in [21] that non-Markovian
effects modify the condition obtained in [19] for the exis-
tence of SD.

More recently, [24], we provided a unified picture of the
different qualitative dynamics of entanglement for general
Gaussian states in non-Markovian environments. There, we
showed that the asymptotic dynamics of entanglement can be
described by three possible phases: SD (sudden death), SDR
(sudden death and revival), and NSD (no sudden death). The
existence of an exact master equation for quantum Brownian
motion enabled us to obtain analytical expressions for the
asymptotic entanglement and for the boundaries between the
phases. In the present paper, we complete and generalize the
ideas presented in [24]. Here, we consider two different
models for the coupling between the system and the environ-
ment: We analyze not only the case in which the coupling is
bilinear both in the position of the system and the environ-
ment, but also we solve the case in which the coupling be-
tween the system and the environment is symmetric between
position and momentum [this is technically equivalent to the
rotating wave approximation (RWA)]. We analyze in detail
how the phase diagram changes depending on the coupling
to the environment as well as on the environmental spectral
density. For both models, we study the entanglement for
Ohmic, sub-Ohmic, and super-Ohmic spectral densities. Fi-
nally, we study the entanglement between nonresonant oscil-
lators where a master equation is derived. In such a case, we
show that although the nonresonant effect tends to eliminate
entanglement, it is possible to have resilient entanglement at
sufficiently low temperatures.

The paper is organized as follows. In Sec. II, we review
the basic technical tool we will use in our analysis: the mas-
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ter equation. In Sec. III, we show how to use this equation to
analyze the evolution of the entanglement for general Gauss-
ian states. In Sec. IV, we present a detailed analysis of all
qualitatively different evolutions (dynamical phases) of en-
tanglement. In Sec. V, we study the evolution of entangle-
ment for nonresonant oscillators. In Sec. VI, we summarize
and conclude.

II. TWO EXACTLY SOLVABLE MODELS

We will study the evolution of the entanglement between
two harmonic oscillators with coordinates x; and x, (they
constitute our system), which are coupled with a bosonic
environment. We will analyze two different models: First we
will assume that the coupling between the system and the
environment is bilinear in their position [25-28]. Then, we
will analyze the case in which the coupling is symmetric in
position and momentum. In both cases, we will use an exact
master equation to describe the evolution of the reduced den-
sity matrix of the system. In what follows, we will briefly
describe the two models and their solution.

A. Quantum Brownian motion with position coupling

The total Hamiltonian for the universe formed by the sys-
tem and the environment is H=H¢+H,,+H,,,, where
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It is convenient to use coordinates x.=(x; = x,)/\2 since x,
couples to the environment. The Hamiltonian Hy is

=(p3+p)

. (w 2+ xz) + me,_x,x_, (2)

Hy
where the frequencies of the x. oscillators are wi:(w%
+w§)/2 * ¢y, and the coupling constant between them is
c,.=(w]-w3)/2. Below we will analytically solve a special
but very important case: We consider the two oscillators to
be resonant, i.e., we take w;=w, (in this case the x. oscilla-
tors are decoupled, as c,_=0).

This model (known as quantum Brownian motion) can be
solved exactly [28]. Thus only two parameters are necessary
to characterize the effect of the environment on the system.
The first one is the initial state of the environment (assumed
to be thermal, with initial temperature 7). The second one is
the spectral density of the environment, which is a function
of the frequency defined as J(w)==,c28w-w,)/2m,w,.
One can show that the reduced density matrix p, obtained
from the state of the universe by tracing out the environmen-
tal oscillators, obeys an exact master equation that is written
as [28,29]
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p=- i[HRvp] - i?’(t)[x+,{P+’P}]
- D(t)[x+’ [X+,P]] _f(t)[x+’ [P+,P]] . (3)

Here, the renormalized Hamiltonian is
m
HRZHs+ ngz(t)xi (4)

The coefficients dw*(f), ¥(t), D(1), and f(t) depend on the
spectral density of the environment [D(r) and f(z) also de-
pend on the initial temperature T]. The explicit form of these
coefficients is rather cumbersome and was studied in detail
elsewhere [28,30]. Some results on the behavior of the coef-
ficients for typical environmental spectral densities will be
described below. In particular, we will consider the family of
spectral densities of the form

2 ® n-1
J(w) = ;myow(x> O(A - w), (5)

where A is the cutoff frequency and v, is a coupling con-
stant. Depending on the value of n, the spectral densities are
known as Ohmic (n=1), sub-Ohmic (n<1), and super-
Ohmic (n>1).

To study analytically the long-time regime, we just need
to assume (as is the case for realistic environments) that the
coefficients of the master equation approach asymptotic val-
ues after a temperature-dependent time. The time-dependent
frequencies Qiz(t): wi2+ Sw*(t)/2 approach cutoff indepen-
dent values only if the bare frequencies w,;, have an appro-
priate dependence on the cutoff. The coupling constant c; ,
must also be renormalized in the same way so that the time-
dependent coupling Cy,(f)=c,+ dw*(t)/2 approaches a finite
cutoff independent value. The behavior of the diffusion co-
efficients D(r) and f(r) is more complicated and depends on
the initial temperature. A word on notation: upper case letters
will be used to denote renormalized quantities. The time la-
bel will be omitted when referring to the asymptotic value of
the corresponding function (i.e., {); , denotes the asymptotic
value of the renormalized frequency of the oscillators, etc.).

The master equation is a powerful tool to understand the
qualitative behavior of the system. For this purpose, it is
convenient to use it to obtain simple evolution equations for
the second moments of x. and p.. Thus, it is simple to show
that the second moments of x, and p, satisfy the following
equations:

d(phH\ m ., d 2y(r> D(z)
Er(%) + EQZ(I)EO&) =— =)+ (6)

1) ) vh g0
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where ()(¢) is the renormalized frequency of the x, oscillator.
In turn, the evolution equations for the second moments of x_
and p_ are simply the ones of a free oscillator (i.e., they can
be obtained from the above ones by considering vanishing
values for all the coefficients of the master equation).
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From the above equations, the interpretation of the coef-
ficients appearing in the master equation is transparent: (z)
is responsible for relaxation since it induces the decay of
energy, and D(r) is a normal diffusive term that induces heat-
ing increasing the momentum dispersion. In turn, f(z), the
so-called anomalous diffusion coefficient, is responsible for
the squeezing of the asymptotic state (see below) or, in other
words, of a violation of the equipartition principle: Thus, in
the stationary state (which is reached only if the environment
is such that the coefficients approach constant asymptotic
values), Eq. (7) implies that the expectation value of kinetic
and potential energy differs by a factor that is proportional to
f(¢). The role of this term will be very important in our
analysis below.

Our analysis will be based on the use of the above equa-
tions to study the long-time regime for cases in which the
environment is such that the coefficients of the master equa-
tion do approach a constant asymptotic value. Thus, it will be
useful to write down the explicit asymptotic values of the
dispersions A%x,=(x2) and A%p,=(p?). From the above
equations, we find that

A —\/2 QAx, =1/ b i (8)
P+= 2)/’ 4= 2m2y m’

and ({x,,p,}»=0. It is worth noticing that depending on the
sign of the asymptotic value of f, the nature of the relation
between the variances, or squeezing, may change quite dra-
matically. The sign of f indicates what observable is being
effectively localized. In fact, if the coefficient f is positive,
the asymptotic state is localized in position (i.e., the equilib-
rium state is squeezed along position), which is a feature of
low temperatures.

B. Quantum Brownian motion with coupling symmetric in
position and momentum

We will also consider another exactly solvable model that
is very similar to the above one. The only difference is that
the system and the environment are coupled through differ-
ent observables. The interaction Hamiltonian between the
two resonant oscillators and the environment is

(mﬂ&)% A

mw n=1 MyWn

N
Hint = (xl + XZ)E Cudnt

n=1

Ty (9)

In the case c¢,=c,, the total interaction can be rewritten in
terms of creation and annihilation operators of the x, oscil-
lator (denoted a and ') and the environmental ones (denoted
as b, and b)). Thus,

N
Hiy = E

|
n=1 \mm,ww,

_
22 .
XS (abl+a'by). (10)

This is the same type of interaction that one obtains by mak-
ing the so-called rotating-wave approximation (RWA) for the
model with Hamiltonian (2). It is worth pointing out that we
will discuss this as a separate model with its own exact so-
lution (and not necessarily as an approximation to the previ-
ous one). Here, the system interacts with the environment
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both through position and momentum. As in the previous
case, interactions within the system are induced through the
environment. Such interactions generate a renormalization of
the system’s parameters. To be able to properly renormalize
all the parameters in the Hamiltonian of the system, we
should include the most general type of interactions in such
Hamiltonian. In this case, it includes not only coupling be-
tween the oscillators coordinates but also momentum cou-
pling. Thus, the Hamiltonian of the system is

2, 2
5 _Pitps 2. 2 Ci2
(X7 +x3) + mcpxx, + mwzplpz-

m
§= S’

2m 2

In the resonant case we are considering here, this Hamil-
tonian is simply written in terms of coordinates x. as
the sum of two decoupled oscillators with frequencies
ot =0*(1*cp/0?)(1£E,/0*)  and  masses  me.
=m/(1+ &,/ w?).

In this case, it is possible to obtain an exact master equa-
tion for the reduced density matrix p. For the zero-
temperature case, the exact master equation was obtained by
An et al. [31]. Their result can be generalized to finite tem-
perature (details of the derivation will be presented else-
where) and reads

p=—ilHp,p] = i¥0) (%, {p1, Y] = [posfxsp}])

- 5(¢)([X+7[x+’p]] + ﬁ[pw [P+’p]]> . (11)

Here, the renormalized Hamiltonian H R 1S

2
A= Ho+ 5@2@(1 P +1m+xi). (12)
2mowi 2

The main features of this master equation are simple to
understand: Not surprisingly, this equation looks like the
symmetrized version of Eq. (3). Thus, the damping coeffi-
cient () appears multiplying a term that is symmetric under
canonical interchange of position and momentum. This is
also the case for the normal diffusive term [proportional to

D(1)]. The absence of the anomalous diffusion is precisely an
expected consequence of the same symmetry since this term
is antisymmetric in Eq. (3). Renormalization is also symmet-
ric since this type of coupling induces renormalization not
only on the oscillator frequency but also on its mass. In fact,
renormalized frequencies and masses of each oscillator

can be defined as Q,(1)=ow[1+80%1)/2w?], M(1)=m/[1
+802(1)/2w?]. In turn, renormalized coupling constants are
Cro(t)=c1p+ 802(1) 12, Cy(1)=C 1o+ 803 (1) /2.

From the master equation, we can obtain equations of
motion for the second moments of the x, oscillator,

d —
Z<pi> = - M(DQ*(){x,.p,}) — 4¥()(p2) +2D(1),

d, o 1 AN . 25
dl<x+>_ M([)<{X+,P+}> 47(t)<x+>+M(t)zﬂz(t)D(t)’
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(p})
M(t)

= 2M ()P (D)(x7) — 47O {x,.p4)),

(13)

d
E<{x+vp+}> =2

where M) =m/{1+[8Q0X1)+¢,)/0?} and Q()=wfl
+[80%(1)+¢,]/ w?} are the mass and the frequency of the
oscillator x,. The role of each term is transparent: () is an

effective damping rate inducing decay toward the ground

state while D(¢) is a symmetrized diffusion constant inducing
the spread of the state both in position and momentum. As-
suming these coefficients approach constant asymptotic val-
ues, we can easily derive the long-time values of position
and momentum dispersions to be given by

D
Ap,=MQAx, = e (14)

~9

and ({x,,p,})=0.

Contrary to what happened in the nonsymmetric case,
governed by the master equation (3), the asymptotic state
satisfies the equipartition principle since the expectation val-
ues of kinetic and potential energies are identical. Analo-
gously, as will be mentioned below, the asymptotic state of
the x, oscillator is not squeezed.

III. EVOLUTION OF ENTANGLEMENT FOR
GAUSSIAN STATES

We will assume that the initial state of the system is
Gaussian. As the complete evolution is linear, the Gaussian
nature of the state will be preserved for all times. This en-
ables us to analytically compute the entanglement between
the two oscillators in the following way: Entanglement for
Gaussian states is entirely determined by the properties of
the covariance matrix defined as

Vi) = {risrip)/2 = (ri)r;), (15)

where i,j=1,...,4 and r=(x;,p;,x,,p,). In fact, a good
measure of entanglement for such states is the so-called loga-
rithmic negativity E [32,33], which can be computed as
[32-34]

E = max{0,— In(2v;,)}, (16)

where v,,;, is the smallest symplectic eigenvalue of the par-
tially transposed covariance matrix. There are known expres-
sions for E for particularly relevant Gaussian states which
will be used as initial conditions in our study. For this reason,
it is useful to mention them here: For the two-mode squeezed
state, obtained from the vacuum by acting with the operator
exp[-r(ajai—aja,)], we have Ey=2|r|. For this state, the
dispersions satisfy the minimum uncertainty condition
ox,0p,=0dx_0p_=1/2. The squeezing factor determines the
ratio between variances since mQdx,/dp,.=8p_/(mQbx_)
=exp(2r). As r—oo, the state becomes localized in the p,
and x_ variables approaching an ideal Einstein-Podolsky-
Rosen (EPR) state [35].

Now we consider a general initial Gaussian state of the
two oscillators. From the appropriate master equation (3) or
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(11), we showed how to obtain equations for the covariances.
These equations split into two blocks of 2 X 2. The evolution
of the first block formed with the second moments of x_ and
p_ corresponds to a free oscillator with frequency w_, which
can always be expressed in terms of two dispersions dx_ and
dp_. The evolution equations for the second block, formed
with the second moments of x, and p,, were discussed above
and yield equilibrium values Ax, and Ap,. It can be also
easily proved that the off-diagonal block, containing the cor-
relations between the oscillators (x,,x_), vanishes in the
asymptotic regime. These simple observations are almost all
we need to fully analyze the evolution of the entanglement
between initial Gaussian states. Thus, using the diagonal
block form of the covariance matrix in the (x,,x_) bases (and
changing basis to obtain covariances of the original x, , os-
cillators), it is simple to find the smallest symplectic eigen-
value of such a matrix and compute the logarithmic negativ-
ity. The result is

E (1) — max{0,E(?)}, (17)

where the function E(7) is defined as

E(1) = Ex+ AEAG(1). (18)
Here G(z) is an oscillatory function with period 7/ w_ that
takes values in the interval {—1, + 1}. Its explicit form will be

given below. The mean value E v and the amplitude AE y that
characterize the oscillations of E(f) are simply written as

E/\/z max{ r rcrit|} - Scrit’ (1 9)

k)

AE \r=min{

rcril|}- (20)

In the above equations, r is the initial squeezing factor de-
fined as

7

s

1 Ox_
r:—ln[m_w_—}, (21)
2 op_

and r; is related to the squeezing factor of the equilibrium
state for the x, oscillator,

1 A
erit= 5 ln[m . } (22)
Finally, S is defined as
1
St = 2 In[4Ax,Ap, 6x_p_], (23)

and turns out to be simply related with the entropy of the
asymptotic state. Thus, the von Neumann entropy of the final
state (S,) is S,=f(o,)+f(0_), where f(o’):((r+%)ln(o-+%)
—(o-—%)ln(o-—%), with o,=Ax,Ap, and o_=dx_d&p_. It is
worth mentioning that in all the above formulas, the disper-
sions Ax, and Ap, are the asymptotic values of the disper-
sions along position and momentum that depend on the tem-
perature and the type of coupling to the environment [and
that, for the models analyzed above, are given by Egs. (8)
and (14)]. For completeness, we give the explicit formula for
G(1t), which is, indeed, not very illuminating,
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AE\G(t) = max{|r

)
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1
Feritl} + > In{cosh[2(r — r.;,) Jcos*(w_t) + cosh[2(r + o) Isin*(w_1)

—\2[sinh?(2r) + sinh?(2r;,) |sin?(w_t)cos*(w_t) + sinh?[2(re;, — 1) Jcos*(w_t) + sinh?[2(ry, + ) Jsin*(w_1)}.

These simple results will enable us to draw the following
conclusions about the dynamics of entanglement for long
times. (i) Evolution of E ) is fully characterized by r;, and
Sei- (ii) Only three qualitatively different scenarios emerge.
First, entanglement may persist for arbitrary long times. This
phase, which we call “NSD” (for no sudden death), is real-
ized when the initial state is such that E v—AE x>0, which
translates into [|r| |7l > Ser- Then, there is a phase where

entanglement undergoes an infinite sequence of events of
“sudden death” and “sudden revival” [36,37]. This occurs if

the initial state is such that |E|< <r<-E_+2|r.|, where
the quantity E, is defined as
Ec = |rcrit| - Scrit- (24)

We denote this phase as “SDR” (for sudden death and re-
vival). Finally, a third phase characterized by a final event of
“sudden death” of entanglement may be realized if |r|
<-E,.. This phase is simply denoted as “SD” (for sudden
death). In what follows, we will analyze these phases for
different spectral densities and coupling strength between the
oscillators and the environment.

Some further physical insight about the origin of the en-
tanglement can be obtain by rewriting Eq. (18) as

E(t) = |rcril| = Seric |r|G(I)

if |r| = |rcril

’

E(t) = |r| - Scrit+ |rcrit|G(t) if |r| > |r

cril| .

In this way, it is clear that for initial values |r|<|r./, the
environment supplies the resource to generate entanglement.
In particular, when |rg;|—S.:=2|r|, then the entanglement
in the final state is larger than the quantum resource (squeez-
ing) available in the initial state. In other cases, the environ-
ment does not act as the supplier but simply degrades the
quantum resource that is already present in the initial state
(either in the form of squeezing or entanglement). Below, we
will analyze this further by using a very convenient tool: a
phase diagram where the fate of entanglement can be graphi-
cally depicted for all initial states.

IV. EVOLUTION OF ENTANGLEMENT
A. Phase diagrams for entanglement dynamics

Here we will introduce a convenient tool to study the
different dynamical phases of entanglement. In fact, depend-
ing on the properties of the environment (initial temperature,
damping rate, etc.), a given initial state (parametrized by the
squeezing r and by the product of initial dispersions dx_dp_)
will belong to one of the three phases: SD, NSD, or SDR.
For fixed values of y and dx_dp_, we can always draw a

phase diagram like the one displayed in Fig. 1. To obtain it,
we need to analyze the temperature dependence of the
asymptotic dispersions to obtain both |r.;| and S, as a func-
tion of the temperature. In the phase diagram, the areas cor-
responding to each of the three phases are displayed. As a
reference, we also include two curves that show the tempera-
ture dependence of S and |r;| (dashed and dotted lines,
respectively). The actual diagram shown in Fig. 1 corre-
sponds to a particular case: an environment with Ohmic
spectral density coupled to the system through position with
C1,=0 (then w_=Q and m_=m). We also assumed a pure
initial state with dx_Sp_=1/2. In the following sections, we
will see that other spectral densities will give rise to slightly
different features in the phase diagram but its topology will
remain unaffected. Changes in the initial state (i.e., consid-
ering mixed states with 8x_Sp_>1/2) can also be simply
understood and will be discussed below.

The phase diagram describes all dynamical information of
the asymptotic evolution of entanglement for the case of po-
sition coupling to the environment (see below for symmetric
coupling). Some important features of the phase diagram are
worth mentioning. In particular, we would like to focus first
on the NSD phase present at low temperatures. Its origin is
purely non-Markovian and nonperturbative. Its area shrinks
as the damping rate decreases. The states in this phase are the
ones for which the final entanglement may be larger than the
squeezing invested in the initial state. For such states, the
entanglement comes mostly from the squeezing available in

FIG. 1. Phase diagram for Ohmic environment (=1, m=1,
v=0.1, A=20, C,=0, &x_6p_=1/2). The sudden death (SD), no-
sudden death (NSD) and sudden death and revival (SDR) phases
describe the three different qualitative long-time behaviors for the
entanglement between two oscillators interacting with the same en-
vironment. The SDR phase is centered about the dashed line S
and has a width given by the dotted line |r;|. This is the case for
temperatures above Ty, the one for which Sg=|rei. Below this
temperature, the roles of S and |ry;/ are interchanged. SDR sepa-
rates the SD and NSD phases. The low-temperature NSD island is
due to non-Markovian and nonperturbative effects. E v in the NSD
phase is the distance to the dashed line for |r|>|rl, and the dis-
tance between the dashed and dotted lines for |r|<|rql.
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the environment. This is particularly clear for the case of
coherent states that can become entangled below the critical
temperature T, (see below).

To understand the nature of entanglement in this region of
the phase diagram, it is useful to focus first on the properties
of such a diagram along with its axis. The zero-temperature
line (i.e., the horizontal axis) contains states in the NSD
phase for small and large squeezings. Thus, the NSD phase is
realized at zero temperature when the initial squeezing r is
either |r|=r, or |r|<r,, where

1 1
zl{m} >
1| 28p3T=0

see Fig. 1. For the range of squeezings between r;| and r, (the
region centered about |r.|), the states belong to the SDR
phase. This implies that pure initial states (at 7=0) will never
experience a sudden death. They will never belong to the SD
phase.

It is interesting to notice that for 7=0, the asymptotic
state of the x, oscillator is squeezed in position [i.e.,
mQAx,(T=0) <Ap,(T=0)] and that it also has nonvanishing
entropy [i.e., Ax, (T=0)Ap,(T=0)>1/2]. In the following
section, we will present analytic expressions for Ax, and Ap,
in the case of the Ohmic environment. Here it is sufficient to
mention that the squeezing in position is a consequence of
the fact that, being the interaction with the environment
through the position observable, the asymptotic state tends to
localize more along position than along momentum. The
squeezing r; (ry) is precisely the ratio between the
asymptotic position (momentum) dispersion and the one cor-
responding to the vacuum: a nonvanishing value of r; means
that the asymptotic state of the oscillator x, has a dispersion
along position that is smaller than the vacuum. Therefore, the
states that belong to the low-temperature NSD island are the
ones for which the state of the oscillator x, is narrower in
position than the vacuum dispersion, which is given by
1/2mQ). As the temperature of the environment increases,
the asymptotic value of the position dispersion Ax, also
grows. Therefore, the NSD phase shrinks and completely
disappears above the critical temperature 7,,, which is pre-
cisely the one for which the position dispersion becomes
identical to the one corresponding to the vacuum, i.e.,

T, such that Ax, (T=T,) = ,;— (27)
\2ml)

The vertical axis of the phase diagram is also worth ana-
lyzing since it describes the fate of coherent states (for which
r=0). As mentioned above, for temperatures lower than T,
such states end up entangled due to the interaction with the
environment. But for temperatures larger than 7, such states
always experience an event of sudden death of entanglement
(the states belong to the SD phase).

The high-temperature region of the diagram is rather dif-
ferent from the low-temperature one. Thus, for high tempera-
tures we have E,<<0 (which implies that coherent states do
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Irl

FIG. 2. Phase diagram for Ohmic environment with symmetric
coupling (Q=1, M=1, C,=0, 8x_Sp_=1/2). The phase diagram is
qualitatively different from the one corresponding to the position
coupling. The SD and NSD phases are present. r.;=0 for every
temperature and the asymptotic entanglement is always constant.
Here Ej is the distance from |r| to the line that limits the two
phases.

not get entangled) and also r;; < S, (Which implies that the
region covered by the SDR phase becomes relatively nar-
rower). Hence, initial states with large squeezing [|r]
>In(2Ax,Ap,)/2=S;] retain some of their entanglement
while those with squeezing factors smaller than the critical
value S, suffer from sudden death. However, our analysis
shows that the boundary between SD and NSD phases is
rather subtle: for any finite temperature, the two phases are
separated by a very narrow portion of the SDR phase (in this
phase, there are oscillations of the entanglement whose am-
plitude, |r.;l, depends on the temperature in a way that is
different for different spectral densities, as will be discussed
below). In any case, these oscillations are, indeed, yet an-
other interesting non-Markovian effect identified by our
analysis.

A final comment on the phase diagram: The NSD phase is
characterized by a nonvanishing asymptotic entanglement
that can be quantified in a straightforward way from the
phase diagram itself. The average value of the logarithmic
negativity is simply the distance to the dashed line (which
signals the midpoint of the SDR phase) or just the distance
between the dashed and dotted lines for |r| < |r |-

There is an important qualitative difference between the
cases of position coupling and symmetric coupling. In the
latter case, the symmetry implies that the asymptotic state of
the x, oscillator is not squeezed as r.;=0. The asymptotic
entanglement is E{7)=max{0, E(¢)}, where

1
E(t)=|r| - 3 In[4Ax,Ap, 6x_Sp_]. (28)

This implies that for symmetric coupling, the phase dia-
gram is simpler, as shown in Fig. 2. In this case, there are
only two phases (SDR does not exist). The NSD phase is
characterized by the condition |r|>In(4Ax,Ap,dx_8p_)/2.
In this case, the entanglement achieved in the asymptotic
regime is the difference between |r| and the curve that limits
the two phases. Contrary to what happens for position cou-
pling, initial pure states (with r=0) belong to the SD phase at
zero temperature. For a given value of the temperature 7, the
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asymptotic state has some degree of mixing. The states that
have enough squeezing r to support some entanglement for
such a degree of mixing are denoted as GLEMS (Gaussian
least-entangled mixed states) [34]. As a final comment, we
should point out that for an initial two-mode squeezed state,
the curve defining the boundary of the NSD region [given by
Eq. (28)] coincides with the one obtained in [19], where
entanglement was studied under a Markovian rotating-wave
approximation.

B. Evolution in the different phases:
Analytic and numerical results

Here we will analyze the above results contrasting the
analytic predictions with the results of an exact numerical
solution of the problem. Numerical solution is indeed exact
in the case of a discrete environment (formed by N oscilla-
tors). It is obtained by using the linearity of the problem to
exactly evolve the complete covariance matrix and to obtain
the full quantum state. Once this is done, one can directly
compute the logarithmic negativity (see [38,39] for another
application of the same method). Whenever possible (posi-
tion coupling with Ohmic spectral density), we compared
this evolution with analytic expressions for the exact reduced
evolution operator, finding complete agreement between both
methods.

1. Position coupling

(a) Ohmic spectral density. Now, we will focus on the
Ohmic environment Eq. (3) (n=1), where the high-frequency
cutoff A defines a characteristic time scale A~! over which
the coefficients y(¢) and dw?(t) vary. For times t> A~!, these
two coefficients settle into asymptotic values: y(f) — y=27,
and Sw’(f)——4Ay/m. It is worth mentioning a technical
point related with the renormalization that seems to have
caused some confusion in the literature. The interaction with
a common environment induces a coupling between the os-
cillators. Thus, even if we consider a vanishing “bare” cou-
pling (i.e., ¢;,=0), the asymptotic value of the coupling will
be nonzero and given by Cj,=dw?/2. It is natural to define
renormalized parameters of the oscillators as the ones char-
acterizing the long-time limit. Thus, for the renormalized
coupling to be C;,=0, we must consider a bare coupling
c1»=—0w?/2 in the original Hamiltonian. This simply says
that the coupling constant between the oscillators must be
renormalized in the same way as their natural frequency
(with the same counterterm). If one does not do this (and
assume, for example, that the bare coupling vanishes), one
would observe high-frequency oscillations at long times
(with a frequency that is set by the cutoff A). On the con-
trary, by adding the appropriate counterterms to the bare
Hamiltonian, one obtains a A-independent long-time limit. In
such a case, we have ,=Q0,=0=w_.

Predictions discussed in the previous sections can be veri-
fied by an exact numerical solution to the problem. For our
numerics, we considered parameters y,=0.1, Q=1, A=20,
m=1, C;,=0 (extension to the case in which the natural os-
cillators interact can be easily done). We considered sepa-
rable squeezed states for which m{)dx, ,/ dp; ,=exp(2r) as
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FIG. 3. Logarithmic negativity for resonant oscillators in the
same environment. (a) For T=0, the NSD phase appears both for
large and small squeezing. Initially separable states, squeezed or
coherent, can get entangled. The asymptotic behavior only depends
on r. The amplitude of oscillations vanishes when r— 0. (b) Initial
states with negative squeezing, having the same asymptotic behav-
ior with a dephasing of /2.

well as two-mode squeezed states for which mQéx,/p,
=6p_/(mQéx_)=exp(2r) (in both cases o_Sp_=1/2). In
Fig. 3, we show the entanglement dynamics in an environ-
ment at zero temperature. We clearly see that the final en-
tanglement achieved by different initial states only depends
upon the squeezing factor r. Initial entangled states reduce
their degree of entanglement while initial separable states do
get entangled through the interaction with a common envi-
ronment. Evolution of separable states with positive and
negative squeezing is compared in Figs. 3(a) and 3(b). In the
first case, entanglement grows much faster. This is due to the
fact that the initial state has a wider spread in the position
observable, which is the one appearing in the interaction
Hamiltonian. In the asymptotic regime, as is predicted, the
dynamics is the same. They oscillate with the same fre-
quency around the same mean value and with the same am-
plitude, but as was expected, they have a phase shift of /2.

The existence of events of sudden death and revival can
also be seen from the numerical solution and is shown in Fig.
4 (our numerical results show full agreement with the analy-
sis presented above concerning the nature of the SDR phase).
In the same figure, we also show the evolution belonging to
the NSD phase. They correspond to a squeezing such that
|| <|Fesie]- In such a case, the amplitude of oscillations in the
asymptotic regime is equal to |r| and the mean value is E,.
An example of the SD phase appears in Fig. 4 along with
another example of the NSD phase for a nonzero tempera-
ture. It is also noticeable that the amplitude of the oscilla-
tions almost vanishes in the high-temperature limit.

We can obtain an analytical expression for the parameters
needed to analyze the entanglement dynamics. Thus, using
the exact expressions obtained in [30], we find that at zero
temperature,

1 m V1 =02
=E(T=0)=—In| -———
n=Ed ) 2 H{Zarccos(y/ﬂ)}’
1| 2-4902 4y {A}
=—In{ —— /Q)+ =L 1| =1,

=, Neeny arccos(y/)) —a g
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FIG. 4. (a) The SDR phase appears for intermediate values of
squeezing at zero temperature. For |r|<|r.q| (dashed line), E N
=E, and the amplitude of oscillations is equal to |r|. (b) T/Q=10,
the SD phase appears for small |r|, and the NSD phase for large
squeezings; oscillations in the steady state are attenuated as the
temperature increases.

1 ¥ In[A/Q)] ]
w=—1In| 1-25 + 29041 - PIO2———— |,
Ferit 4 Il|: QZ HLYEN ‘)/2 aI'CCOS(')’/Q)

1 4 1-2+07
Serit = 1 ln{ 4 122700 2(y1Q)

772 1—;/2/92 arccos

8 vIQ) {A}
+ ———=——=—In| — |arccos(y/Q) .
772 V1 - '}/2/92 (7 )

Q
These formulas have a simpler form in the weak-coupling
limit where

1 A 4y
Scritzzln 1+{In Q -1 —al

In this case, the asymptotic coefficients of the master equa-
tion up to second order in vy are given by

D=~myQ+ 2my2(21n{%} - 1),
fz%yln[%] (29)

A technical comment is in order here: To estimate the
asymptotic behavior using an expansion in powers of the
coupling constant, we need the coefficient D to one order
higher than f. This fact was already noticed in [30] and is
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evident from the fact that critical squeezing is given by

1
Ferit = _1n|:1 - . (30)

4

Estimates for the critical temperature T, (the temperature
for which the position dispersion becomes identical to the
vacuum one) can be obtained as follows: position dispersion

T

at low temperatures is
+iVQ? -
A%(T) = ——+ / Im H(y N 72) ,
Q m »n'm\"QZ — 'y2 27TT

where the function H(z) is the harmonic number. Expanding
this for low temperatures (7/Q<<1),

arccos(y/Q)) 2w ( T)2
bttt ¥ 2z
m1l-(yQ)? 3 A a

mQAx(T) =

8 4
+F[l —2()//9)2](£> , (31)

we can obtain an approximate expression for 7, that accu-
rately reproduces our results for arctan[v1—(y/Q)%/(y/Q)]
<7/2.

On the other hand, for high temperatures we can use the
appropriate approximations to obtain

1 2y A+Q
rcmzzln 1+Eln A_all

So= o mn| 25 |+ L] 14 22 g 222
a2 M) Ta M T a—al

In this regime, r; approaches a temperature-independent
value that decreases with the high-frequency cutoff and in-
creases with the coupling constant y. As a consequence, the
asymptotic entanglement is approximately constant. The be-
havior of S is simpler: as expected, it behaves as the en-
tropy, growing as In(7) for high temperatures. The narrow
passage between the SD and the NSD phases closes as 1/A
and moves to larger and larger values of squeezings. For
completeness, we include the diffusion coefficients in the
high-temperature regime up to first order in . They are

D = 2mnyT,

_ ﬁ A+Q
f~—Tran[A_Q]T. (32)

(b) Sub-Ohmic spectral density. Here we will analyze the
behavior of entanglement in an environment with a sub-
Ohmic spectral density as Eq. (5) with n=1/2. In this case,
the oscillators of the infrared and the resonant bands are
coupled more strongly to the system (since 1 <<A) and the
environment induces more dissipation. As a consequence, the
equilibrium state of the oscillator x, is noticeably more
squeezed along position than the one corresponding to the
Ohmic case [40]. Therefore, considering Eq. (20), we expect
a larger value for |r;| at zero temperature, which, in turn,
would imply that the oscillations of the entanglement in the
steady state will have larger amplitude. In addition, the en-
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FIG. 5. Logarithmic negativity for resonant oscillators in a sub-
Ohmic environment. (a) For 7=0, the NSD phase appears both for
large and small squeezing. The amplitude of oscillations is higher
than in the Ohmic case. As a consequence, the entanglement
achieved for initial coherent states is also higher. (b) For 7/Q=10,
appreciable oscillations are present in the asymptotic regime.

tanglement for initial coherent states will be larger as well as
the critical temperature 7. Below, we will show only the
numerical results, since there are no available analytic ex-
pressions for the coefficients of the master equation. We used
the same parameters as in the previous subsection, noticing
that in this case dw?(f) ——8(27y,)/ TA.

In Fig. 5, we show the dynamics of entanglement for two
resonant oscillators immersed in a bath at zero temperature.
There we can appreciate oscillations of entanglement in the
steady state with larger amplitude than in the Ohmic case but
with the same frequency. For initial coherent states, the en-
tanglement achieved is greater than in the Ohmic case. As
mentioned above, this is a consequence of the coupling be-
tween the system and the resonant bands of the environment
that produce a substantial squeezing in the steady state. We
can also notice that the system approaches equilibrium ear-
lier than in the Ohmic case due to the fact that dissipation is
stronger than in the Ohmic case.

The asymptotic features of the entanglement observed in
the figures for specific cases can be summarized in the phase
diagram shown in Fig. 6. The shape of this diagram is essen-
tially the same as the preceding case. In the low-temperature
regime, we find again an NSD island with an area that is
larger than the one corresponding to the Ohmic case. Also
the value of |r| at zero temperature is larger than for the
Ohmic environment, and it decreases with the temperature.
As a consequence, we also observe a SDR region at high
temperature whose width is given by |r.;/. In this case, the
oscillations that appear in the Ohmic spectral density are
enhanced.

Even though there are no analytic expressions for this
environment, we can obtain approximate formulas in the
weak coupling and high cutoff regime. We can use them to
get some qualitative understanding of the expected behavior,
but they are useless to draw quantitative conclusions (since
we can only obtain all coefficients of the master equation up
to first order in 7, but, as indicated above, to estimate quan-
tities such as rg; and S.;, we would need to have the
asymptotic form of the coefficient D to one order higher).
Thus, to lowest order we find Y(f) — Yeup=27oVA /L, which
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FIG. 6. Phase diagram for sub-Ohmic environment. The SD,
NSD, and SDR phases that describe the three different qualitative
long-time behaviors for the entanglement are present. The low-
temperature NSD island is bigger than the one corresponding to the
Ohmic environment.

grows with the cutoff as expected. At zero temperature, the
diffusion coefficients are

D= m’YSubQ’ (33)

~ (1 3\/& {AJ’QD (34)
f~75ub —7T Qn A—Q .

Again, the two coefficients grow with the coupling and the
cutoff frequency. The anomalous diffusion coefficient f is
larger than the one corresponding to the Ohmic case. This
produces a stronger localization of the asymptotic state in the
position observable. We can also obtain the high-temperature
expressions in the weak-coupling limit,

D = 2mygT, (35)
T

=~ —2Yub < 36

f ‘)/subQ ( )

In this case, all the coefficients are proportional to the tem-
perature. The fact that the asymptotic state is squeezed at
high temperatures is a consequence of the fact that the coef-
ficient f approaches significantly higher values than the ones
corresponding to the Ohmic case.

(c) Super-Ohmic spectral density. A super-Ohmic envi-
ronment has a spectral density characterized by a higher
population of high-frequency bands. A typical example is
given by Eq. (5) with n=3. Super-Ohmic environments are
weakly dissipative. In fact, in this case the dissipation coef-
ficient approaches an asymptotic value given by y(t) — vy,
=2v,(Q/A)>. The frequency shift is Sw?(t) ——4(2y,)A/3.
Thus, dissipation strictly vanishes in the infinite cutoff limit.
In such a case the oscillator x, does not reach equilibrium, a
fact that was also noticed in [41] and is related with the
phenomenon of recoherence that could be induced by this
type of environment (i.e., decoherence is reversible in this
case). In this limit, we cannot apply the analysis presented in
the previous sections, which requires the oscillator x, to ap-
proach equilibrium. Thus, for a super-Ohmic environment
we expect to observe an oscillatory behavior for the en-
tanglement up to very long times. This is precisely what is
observed in Fig. 7, where we show the results of the numeri-
cal solution for two different initial states. Oscillations of
entanglement persist for low and high temperatures. The am-
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FIG. 7. Logarithmic negativity for resonant oscillators in a
super-Ohmic environment with ,=0.15. (a) For T=0, we do not
observe that the entanglement achieves equilibrium. Oscillations are
present for long times. (b) At 7/ =10, the entanglement oscillates
with smaller amplitude.

plitude of the oscillations decreases very slowly with time
simply due to the fact that we consider a finite value for the
high-frequency cutoff. For this reason, the value of the dis-
sipation coefficient is not strictly zero but very small. This
implies that the system would reach an equilibrium in the
extremely long-time limit (i.e., for times of the order of
1/ Ysuper» an estimate that is consistent with the numerically
observed behavior). It is worth noticing that the result we
present here for the super-Ohmic environment is not compat-
ible with the ones reported in [22] (the super-Ohmic results
of that paper seem to be simply in error; a more detailed
comparison with such results will be presented below).

For zero temperature, we can also obtain the asymptotic
behavior of the diffusive coefficients in the weak-coupling
limit. These coefficients behave as f=~2vyy/ 7+ Y, In[(A?
-0%)/0%)/ m=27y,/ 7 and D=m yq,. Thus, in this case
the anomalous diffusion f is proportional to the coupling
constant and becomes independent of the cutoff. It takes the
smallest value, comparing the three spectral densities that we
considered, which is a signature of the weak coupling be-
tween the system and the resonant band of the environment.
On the other hand, D vanishes in the infinite cutoff limit (as
mentioned above, 7, vanishes as well). In the high-
temperature regime, we have f=2vy,7/mA and D
~2mTy,, Here the small value of f produces a squeezing
of the asymptotic state that is smaller than the one achieved
for Ohmic and sub-Ohmic environments.

2. Coupling symmetric in position and momentum

Here we will consider the case in which the coupling to
the environment is symmetric in position and momentum.
This model at zero temperature was studied previously in
[22] with a two-mode squeezed state as the initial condition.
Here we extend these results by considering arbitrary initial
Gaussian states and arbitrary temperatures (we also take the
opportunity to correct some erroneous results reported in
[22]). The main conclusion concerning entanglement dynam-
ics was announced before: only two phases (NSD and SD)
exist. This conclusion follows from the fact that the master
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FIG. 8. Entanglement dynamics for resonant oscillators in an
environment with symmetric coupling. (a) Environment at zero
temperature; the asymptotic entanglement depends on the squeezing
r and is constant. Ohmic and sub-Ohmic environments arrive at the
same equilibrium entangled state. (b) Environment at 7/Q=10; the
final entanglement depends upon the initial squeezing for both spec-
tral densities.

equation is symmetric under canonical interchange between
position and momentum. It is independent of the precise
form of the asymptotic values of the coefficients appearing in
the equation as long as equilibrium exists (which is not the
case for the super-Ohmic environment).

We confirm this by a detailed study of the numerical so-
lution using the same parameters of the previous sections.

Here we also considered C12=€‘12=0 (then, Q=w_ and M
=m_). In Fig. 8, we show the dynamics of entanglement for
Ohmic and sub-Ohmic spectral densities. Our results show
that at zero temperature, entanglement is reduced to exactly
half of its initial value [22]. This is a prediction of Eq. (19),
which is valid both for Ohmic and sub-Ohmic spectral den-
sities, since in all those cases the asymptotic state of the
oscillator x, is the ground state. In fact, the form of the
master equation at zero temperature ensures the stability of
the ground state. As the asymptotic state is pure, then this
process can be thought of as a way to create pure Gaussian
entangled states from initial separable ones. Another obvious
consequence of the symmetric coupling is that the behavior
of initial states with negative or positive squeezing is identi-
cal. In Fig. 8, we show an example of the behavior of en-
tanglement at temperature different from zero. As we dis-
cussed above, the steady state has nonzero entanglement.
These results are summarized in the simple phase diagram of
Fig. 2, which is essentially the same both for Ohmic and
sub-Ohmic environments.

For a super-Ohmic environment, the dissipative coeffi-
cient ¥ scales as 1/A”. In Fig. 9, we show that entanglement
oscillates for very long times, a simple consequence of the
vanishingly small value of the dissipative coefficient. This
contradicts the results obtained in [22], where it was shown
that for a super-Ohmic environment entanglement achieves
equilibrium before the Ohmic and sub-Ohmic cases. From
our previous analysis, based on the use of the master equa-
tion, we can simply conclude that the results of [22] do not
seem to be reliable. On the contrary, our numerical results
support the simple conclusion obtained analytically by using
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FIG. 9. Oscillators with symmetric coupling immersed in a
super-Ohmic environment. 7=0, the entanglement oscillates ap-
proaching approximately its initial value. The amplitude of oscilla-
tions decreases slowly since we are considering a finite cutoff. We
also observe oscillations of entanglement for higher temperatures.

the master equation, which is local in time. Thus, entangle-
ment oscillates slowly decaying with a rate that is roughly
given by ¥ (which goes to zero in the infinite cutoff limit).

It is simple to obtain analytic estimates for the asymptotic
values of the time-dependent coefficients using a perturba-
tive approximation. In that case, the dissipation constant is
¥— 4y (Q/A)"'=2J(Q) 7/ Qm. This shows that a sub-
Ohmic environment induces stronger dissipation than an
Ohmic one. Also, for supra-Ohmic environments (n>1)
there is not equilibrium in the infinite cutoff (Markovian)
limit. In the same way, we can obtain the diffusion coeffi-
cient, which is given by 5=2J(Q)Wcoth(2—QT). Using this ex-
pression, the asymptotic dispersions for the x, oscillator are

MQ Q
MPQPAx; = Apl=—— coth(—). 37
BEAPE T 2T G37)
These approximate expressions enable us to recover the re-
sults reported in [19].

V. NONRESONANT OSCILLATORS

The above properties are valid under a single important
assumption: the two oscillators are resonant. If this is not the
case, the analysis becomes more complicated. The master
equation is no longer valid since the x. modes are coupled.
As x_ is not isolated, it also approaches equilibrium. To ana-
lyze this, we can obtain a perturbative master equation (as-
suming the interaction is through the position). It reads

p=—i[Hp.p] - iY(O[x0{ps p}] - DOLx, [, p]]
- JOL.[poopll =i 802 (O fap}] = 17,0

X[xs{p-.pt] = Do (Olxs [x-. pl] = fo(Dxs [p-.p]].
(38)

As seen in the above equation, the x. oscillators interact
with a coupling constant c,_=(w?—w3)/2 while x, is directly
coupled to the environment. One of the terms coupling x. in
Eq. (38) is a renormalization of the coupling constant. There
is also a diffusive and a dissipative term. All the coefficients
labeled with = indices are proportional to the detuning A
=(w;—w,) (all of them vanish in the resonant limit). We can
obtain asymptotic dispersions of the two oscillators, but the
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0.75

FIG. 10. Dynamics of entanglement for oscillators in an initial
separable state r=2. The dynamics of nonresonant oscillators along
with the resonant case is shown for (a) Ohmic and (b) sub-Ohmic
environments at 7/Q=10 with ,=0.1.

corresponding formulas are rather cumbersome. The most
important generic conclusions that we can draw from the
above nonresonant master equation are the following. (i) As
there is a final equilibrium state for both * oscillators, the
final entanglement becomes independent of the initial state.
(ii) The approach to equilibrium proceeds with two different
time scales (one of the decay rates is proportional to the
detuning). (iii) For sufficiently high temperatures, the generic
fate of the asymptotic regime is SD and the final state con-
tains no entanglement. (iv) However, for very low tempera-
tures the final state can be entangled. The origin of the final
entanglement resides again in the squeezing of the equilib-
rium state. If the = oscillators reach a final state with differ-
ent squeezing (the squeezing of the x, oscillator is different
from that of the x_ mode), then the final state may be en-
tangled. For very low temperatures, this condition may be
verified and entanglement may be present in the final state.

In Fig. 10, we show how things change when we move
away from the resonance condition if the environment is in a
finite-temperature state (7/(=10). There we show the dy-
namics for Ohmic and sub-Ohmic spectral densities. For
early times, initial separable states become entangled due to
the action of the environment. However, entanglement de-
cays much faster for nonresonant oscillators and the state
becomes disentangled in a finite time (SD). We can also ob-
serve that the sub-Ohmic environment can retain entangle-
ment a bit longer than the Ohmic one. This is due to the fact
that the bare coupling (which is later canceled by the cou-
pling induced by the environment) produces more entangle-
ment at short times in the sub-Ohmic case. One can also
notice little differences between the evolution corresponding
to nonresonant oscillators with higher (or lower) frequencies.
Indeed, this is due to the fact that the virtual interaction, c,_,
depends on the square of the frequencies and not upon the
difference between them. As both virtual oscillators approach
an equilibrium state (which is characterized also by nonvan-
ishing correlations between them), the final entanglement
turns out to be independent of the initial state. Thus, the
generic fate of entanglement at sufficiently high temperature
is sudden death.

It is interesting to notice that for any detuning, it is pos-
sible to find temperatures below which the asymptotic state
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FIG. 11. Asymptotic entanglement between nonresonant oscil-
lators as a function of the temperature for different detunings A
=w;—w, (Ohmic spectral density). We can find a critical tempera-
ture for every detuning below which the state is entangled. They are
compared with the entanglement for r=0 and A=0.

is entangled. The origin of this asymptotic entanglement, as
mentioned above, lies on the final squeezing of the x.
modes. The dependence of the final entanglement with tem-
perature is analyzed in Fig. 11. The curve is reminiscent of a
phase transition with critical temperature depending upon the
detuning. The existence of entanglement in the asymptotic
state is not really a total surprise and is clearly related to
recent findings of the existence of entanglement in the
ground state of harmonic chains similar to the one we stud-
ied here [42].

VI. CONCLUSIONS

We presented a complete study of the evolution of the
entanglement between two oscillators interacting with the
same environment. We extended the analytical and numerical
results previously presented in [24]. We considered two re-
lated models for the interaction between the system and the
environment: one where the coupling is through position and
another where the coupling is symmetric in position and mo-
mentum. In both cases, we used an exact master equation as
our main analytical tool. For position coupling, we presented
a phase diagram valid for Ohmic and sub-Ohmic spectral
densities, and we showed that it contains three phases (SD,
NSD, and SDR). For both spectral densities, the phase dia-
gram is qualitatively the same. The main difference is that
the sub-Ohmic environment tends to enhance the amplitude
of the entanglement oscillations (which is due to the fact that
the asymptotic state induced by a sub-Ohmic environment
has larger squeezing than the one corresponding to the
Ohmic case). On the other hand, we showed that a qualita-
tively different phase diagram emerges when the coupling is
symmetric. In that case, the SDR phase is absent and the
asymptotic entanglement does not oscillate. Our results
clearly show that initial separable states can get entangled
and that initially entangled states can suffer from sudden
death.

For position coupling, we showed that there is a range of
temperatures where SD never occurs. In fact, this is the case
for T<T,, where T, is the temperature where the position
dispersion of the x, oscillator becomes identical to the one
corresponding to vacuum (below T,, such dispersion is
smaller due to squeezing). On the other hand, for symmetric
coupling the SD phase is present for every temperature.

Our results can be extended in several ways. In fact, in the
paper we have focused on the case in which the renormalized
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oscillators do not interact, but our analysis can be applied to
the cases in which C;, does not vanish. In this case, as (),
#()_, the boundaries between different phases change
slightly but the phase diagram remains qualitatively the
same. For example, the formula for rg; given in Eq. (22)
tells us that when Q, # Q_, r.; may be nonzero even if the
state of the x, oscillator is not squeezed. In this case, the
resource for the asymptotic entanglement is, not surprisingly,
supplied by the interaction. On the other hand, when the
coupling is symmetric, the asymptotic evolution does not
change considerably by adding an interaction between the
oscillators. Indeed, in this case, we always have MQ)
=m_w_=mw. Therefore, r.; vanishes and there are no en-
tanglement oscillations in the long-time regime. There is
only one exception to this rule: If one introduces a nonsym-
metric coupling between the oscillators, i.e., cj5# Cj,, then
we get MO #m_w_. Our results also change if the initial
states of the system are mixed. However, the change in the
phase diagram is simple to understand. In fact, the degree of
purity of the initial state is characterized by the product
Ox_Op_, which only enters in the expressions of S.; and
changes the mean value of the final entanglement [as seen in
Eqgs. (19) and (23)]. It is simple to see that the entanglement
achieved for pure states is greater than the one obtained for
mixed initial states with the same degree of squeezing. The
phase diagram for mixed states can be simply obtained from
the one corresponding to pure states by shifting the curve
Seric to the right. This has the effect of moving up the hori-
zontal axis (see Fig. 1). As a consequence, the value of T
changes and the low-temperature NSD island may disappear
depending on the degree of impurity of the initial state.
The existence of asymptotic entanglement between reso-
nant oscillators x; and x, can be understood in terms of the
following quantum-optical analogy: We can think of these
oscillators as two modes of the electromagnetic field. The
evolution of such modes, interacting with the environment, is
equivalent to the following sequence of operations: (i) a
50:50 beam splitter superposes both modes (creating the x.
oscillators out of the original ones); (ii) while one of the
output modes (x_) evolves freely, the other is replaced by a
new one with dispersions along its quadratures given by the
equilibrium values (this operation entirely replaces the inter-
action between x, and the environment); (iii) another 50:50
beam splitter is applied (which gives rise to the final state of
the x;, oscillators out of the virtual x. ones). Following
[43], we can conclude that the nonclassicality at the output
modes (after the second beam splitter) must arise from some
form of nonclassicality at the input. This can exist if the
equilibrium state has some degree of squeezing (this is the
case for position coupling) or if the initial state is nonclassi-
cal (either entangled or squeezed). The (pure) initial state
that is least favorable for producing entanglement at the out-
put is the coherent state. The condition for the existence of
entanglement in the final state for such initial states is rg;
>1/21n(2Ax,Ap,). Thus, to fulfill this condition, we need
the environment to produce an equilibrium state where the
variance of one of its quadratures is smaller than the vacuum
limit, i.e., min{A%x,,A%p,}<1/2 (for m=1, Q_=1). We
showed that this happens for position coupling and tempera-
tures below T,,. Moreover, the above description of the prob-
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lem enables us to draw a stronger conclusion: For symmetric
coupling, initial coherent states will never get entangled
(even at intermediate times). This result, confirmed by our
numerical simulations, can be seen as follows: For initial
coherent states, the oscillators x, and x_ are not squeezed
initially. Moreover, x_ does not evolve for this type of cou-
pling while the oscillator x, will change its variances but will
never become squeezed due to the nature of the interaction,
which is symmetric in position and momentum. Therefore,
the two modes will have vanishing squeezing during the en-
tire evolution and, as a consequence, the oscillators x; , will
never be entangled.

Finally, we studied the behavior of nonresonant oscillators
by using both numerical and analytical tools. In this context,
we obtained a master equation where the two virtual oscilla-
tors (x, and x_) are coupled. Both oscillators approach an
equilibrium state where they are not only correlated but also
may have slightly different variances. We showed the exis-
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tence of an entangled state at very low temperatures. Thus,
we conclude that the generic fate of entanglement in a finite-
temperature environment is not only to become independent
of the initial state. Also, we showed that there is a low-
temperature threshold that depends on the detuning above
which the entanglement undergoes a sudden death. This is
probably related with the entanglement studied in harmonic
chains [42]. A more detailed analysis of the possible sce-
narios for nonresonant oscillators will be presented else-
where.
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