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Dispersion interaction between two atoms out of thermal equilibrium
with external electromagnetic fields
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The van der Waals—Casimir-Polder potential is calculated for two atoms out of equilibrium with external
thermal electromagnetic field. The effects of absorption and spontaneous or stimulated emission are shown to
strongly modify the potential. We demonstrate that the potential decays like R™> at large distances (much
slower than at the equilibrium) can be attractive, repulsive, and resonant depending on the initial states of the

atoms and electromagnetic field.
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I. INTRODUCTION

The dispersion forces such as Casimir, Casimir-Polder
(CP), and van der Waals forces are of particular interest not
only as the beautiful manifestation of the zero-point fluctua-
tions of electromagnetic (EM) field but also important tech-
nologically, e.g., in atomic force microscopy. Thus, the thor-
ough understanding of the dispersion interaction under
realistic conditions (e.g., in external electromagnetic fields)
is required.

Recent progress has been made in understanding the non-
equilibrium CP force between an atom and a substrate em-
bedded in electromagnetic field. Antezza ef al. [1] considered
the case when the substrate and the environment were at
different temperatures. They demonstrated theoretically that
the nonequilibrium CP force drops like 1/z* at large dis-
tances z, which is slower than the equilibrium force (1/z%).
Moreover the nonequilibrium force can be either attractive or
repulsive depending on the ratio of the substrate temperature
to the environment one. These results were verified experi-
mentally [2] and excellent agreement with theoretical predic-
tions has been achieved.

There are results for the CP force between an atom and a
substrate if the substrate is in the equilibrium with the envi-
ronment, but the atom is not [3,4]. It has been shown that if
the atom is not thermalized, one should take into account
possible absorption and spontaneous or stimulated emission
of a thermal photon by the atom. These contributions result
in the strong modification of the CP force even if the atom is
in its ground state.

Recent theoretical and experimental progress in nonequi-
librium Casimir physics inspired us to consider the nonequi-
librium dispersion interaction between two atoms in EM
field.

If two atoms are in the equilibrium with thermal EM field
at temperature T the interaction potential is well known [5],

2T <
Ueq = — Fgo (1 - 5,[,0/2) a’A(lgn)aB(lgn)

XeRER +2ER + SER +65,R +3) (1)

where ayp) is the polarizability of atom A (B), R is the
distance between the atoms, and &,=27mnT is the Mazubara
frequency. For short distances R (R<<\, where \ is the char-
acteristic wavelength of atomic transitions) the retardation
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and thermal effects are negligible, and one finds the
temperature-independent London—van der Waals potential
UxR™®. For the distances large compared with \, but still
short compared with the parameter Ny=c/T, N<<R<<\y, the
retardation effects are significant, but thermal effects are still
negligible. In this case one obtains the temperature-
independent Casimir-Polder potential UR~’. The thermal
effects are significant if R> \;. In this case the potential is
UxTR™. The equilibrium potential is always attractive. In
this paper we study the dispersion interaction between two
atoms, provided they are not in the equilibrium with external
thermal EM field.

II. INTERACTION BETWEEN A GROUND-STATE ATOM
AND A MAGNETODIELECTRIC MEDIUM IN
ELECTROMAGNETIC FIELD

We start with the CP interaction between a single ground-
state atom (atom A) at a position R, and an arbitrary dielec-
tric medium in the presence of thermal EM field. The field
and the medium are not necessarily at thermal equilibrium.
For the sake of simplicity we consider a two-level atom.
Generalization to a multilevel atom is straightforward. Fol-
lowing the earlier treatment for a dipole interaction of a
ground-state atom with a dielectric medium in EM vacuum
[6], we generalize our previous results to the case of EM
field surrounding the atom and the medium using the
Keldysh Green’s function method [7,8]. The derivation con-
sists of two main steps. First, we derive the interaction po-
tential in terms of the Green’s tensors of the EM field sur-
rounding the atom. Then we calculate the Green’s tensors for
the EM field modified by the medium. We suppose that the
number of photons at the transition frequencies of atom A is
negligible N(w4) =0, where w, is the transition frequency of
atom A. Thus, atom A does not transfer to its excited state. In
this case we can treat the CP potential as the energy shift of
the ground level of the atom U=A¢, [9]. Later we will gen-
eralize the result to an arbitrary initial state of atom A and
arbitrary number of photons at the transition frequency of
atom A using symmetry properties of the potential.

The Hamiltonian of the atom-A-EM-field-medium sys-
tem reads (A=1, c=1) H=H,+H’', where the Hamiltonian
of free system is Hy=2&b!bi+ S [k|(a), a0 +1/2)
+H° The interaction Hamiltonian is H=H

med* med

— [ (X)dE(X) (X)dr, where ay, is the annihilation opera-
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tor of the state {k,\} of the EM field, ¢ is the bare energy of
atom A in the state i, b; is the annihilation operator of this
state, Y(X)==,;¢,(r,R,)b; with ¢ as the wave function of
atom A, X={r,}, and E is the operator of EM field. d is the
dipole moment of the atom, H°_, is the Hamiltonian of the
medium, provided it does not interact with the EM field,
H| ., is the part of the Hamiltonian of the medium describing
the interaction with the EM field.

The Keldysh Green’s functions of atom A and EM field in
the interaction representation are [7,8]

Gy (X,X") = = KT (X) g, (X)S.),

DY (X.X') = - T.E/(X)E}, (X')S,), )

where S, is the scattering matrix S,
=T, exp[2,-; »(-1)'ifH]dt] given on the Keldysh time con-
tour, which goes in time from —o to oo(/=1) and then from oo
to —»([=2), T, is the time-ordering operator on the Keldysh
contour.

For our purpose we need only the Green’s function G,
defined in the Heisenberg representation (the operators are
marked with tilde) as G,(X,X")=—i(¢"(X") (X)) [8]. It is
proportional to the density matrix of atom A. The Green’s
function G, obeys an integral equation, which for the qua-
siclassical case is the standard kinetic equation [8].

The solution of the integral equation for G, for the case
of single atom A interacting with EM field can be found with
the help of the method proposed in Refs. [6,10]. Treating the
high-order correlation functions of atomic operators, which
emerge in perturbation series, we implement exact Wick’s
theorem [11] representing the atomic time-ordered operators
as

T(X) i (X') = g(X) g (X): +ig),(X.X"),  (3)

where :---: means normal ordering,

g”,(X X' )_ - l<T lr//l(X) i//[f(X )>vac (4)

is the free atomic propagator, (---),,c means the averaging
over vacuum electronic state. The average of normal prod-
ucts over the initial state occupied by a single atom
Gi(X) gbj,(X’)l/fll(Xl)z,b};(Xz)' -+:»=0 for all the orders but the
first one. For the first order it is proportional to the Green’s
function G?z for a free atom.

Expanding S, in the perturbation series and summing up
all corresponding diagrams, we find [6,10]

Glz(X,X')=G(1)2(X,X’)+fG?z(X,Xl)Mzz(Xsz)
X gzz(xz,X')dxldxz‘Ff811M11G(1)2dX1dX2
+f811M11G(1)2M22822dX1"'dX4

- f g1M 282,dX,dX, (5)
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where g is the atomic propagator obeying the Dyson equa-
tion in the energy representation

0
glzl(E,l',l',) = g”/(E,r,r,) + f g?]l(E,r,rl)Mlllz(E,rIrZ)
Xglzl/(E,rz,l")dl‘]dl‘z.

My (X, X")=i(=1)"* d"d” g, (X, X' )Dl,l (X',X) is the mass
operator. We assume Einstein summation assumption
throughout the paper. Under the assumption that atom A does
not change its initial state, the last term of Eq. (5) can be
omitted [6]. We should stress that Eq. (5) is not an integral
equation like the standard Keldysh one, but represents the
solution for G,. We suppose that at the initial moment of
time 7, atom A was in its initial unperturbed state 0. Then
Gy=—icpy(r) py(x"Yexp[—iey(t—1")]6(t— 1) Ot' 1)
Direct calculation yields

Gy =—iy(r) py(r" Jexp[— i€yt — t')expliM?, (t — 1)]
X expl— iMoy(t' — 1,)]16(r — 15) 6(t" — 1), (6)

with M), =(¢sM ;). Thus, the energy shift of the ground
level of atom A is U=Ae,;=Re MY,. Im M describes the de-
cay of the level 0 as a result of excitations. After some

simple algebra, and using explicit expression for free atomic

propagator g%\ (E,r,r')= E,d)'g)j'ig) we obtain

i (7 :
U=Re M), =- Re;j ay "(w)D]] (0,R4,Ry)dw.
0

)

This formula generalizes the one obtained in [6] to the case
of external EM field. The polarizability of the atom at the
initial state O is given by the standard formula

@ d ) (8)

+
w-10 wy4+w+i0

a'd
V V((l)) (
(I)A -

with w, as the transition frequency of the atom from the
ground state 0 to the excited state, d” is the vth projection of
the electric-dipole matrix element between the ground state
and the excited one, i0 describes the analytical properties of
the polarizability.

The Green’s tensor Dy; is the sum of the retarded tensor
Dy and D;, [7,8], the latter is proportional to the density

matrix of photons Dl”gr(X,X’)=—i<EV’(X’)EV(X)). Thus

—Re—f v l'(oo)D (0,R,,Ry)dw

—Re—f v "(w)D (0,R4,Ry)dw. 9)

The first term of Eq. (9) is the standard potential for the
ground-state atom interacting with the vacuum EM field in
the presence of an arbitrary dielectric body [12]. The second
term describes the interaction of the atom with the external
EM field.
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As an example we consider a ground-state atom embed-
ded in the system EM field—dielectric medium, provided the
medium and the field are at thermal equilibrium, but the
atom is not. We suppose that the atom does not change its
initial state, which means that the time scales are short com-
pared to the inverse ground-state heating rates of the atom
I'-!'. This situation has been recently considered by
Buhmann and Scheel [3] (see also [4]). Substituting the
Green’s tensors of equilibrium EM field Dj(w,R,,Ry)
=Re Dg(w,R,,Ry)+i Im Dg(w,R,,Ry)coth w/2T [5] we
find

U= TE ( mo)az "(i&,)DY” (i€,)

— 132 N(w)ldy|* Re D (w;)0(w;).  (10)
J

This result coincides with Eq. (25) of [3].

III. INTERACTION BETWEEN TWO ATOMS IN
ELECTROMAGNETIC FIELD

Now we consider the dispersion interaction between two
atoms in EM field. Let a two-level atom B be at a position
Rp. It can be either excited with probability p, or in its
ground state with probability p,. For simplicity we suppose
that the atoms are exposed to isotropic unpolarized EM field,
i.e., Ny, depends only on |k|=w, Ny, =N(w). We will attack
the problem perturbatively. The Green’s tensor D;, can be
calculated with the help of Keldysh technique [7,8]. For
positive frequencies we get

Diy(0,R4,Ry)
=D (o,R4,Ry)
- 2N(w)Dy(w. Ry Rp) ap(w) Dy(w.Rp.Ry)
+ N(w)2mridgdy 8w — a)B)pg|D (0,R4,Rp)
~[N(w) + 112midgd&(w — wp)p|DR(w, R4, Rp)[.
(11)

Here we suppressed the tensor indices v. D° is the free
photon Green’s tensor. The first term of Eq. (11) describes
the free EM field and results in optical Stark shift of the level
of atom A. We will omit this term. The second term is pro-
portional to the scattering part of the EM Green’s tensor and
the number of photons. It describes the scattering of real
photons on atom B. The third term is responsible for the
absorption of a real photon by ground-state atom B. The last
term is due to spontaneous or stimulated emission of a pho-
ton by excited atom B. To support this interpretation, we use
the explicit expression for the Green’s tensor DY [5],

w0 ’ i 1
Dy, (a),r,l‘)=a)2|:5 <1+&_((1)T)2>

o 3 3i exp(iwR)
+5"s s—— 1| |———,
(wR)* R R

(12)
where s'=(r—r")"/R, R=
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2 4
DY = R—“;[l +1/(wR)? +3/(wR)*], (13)

which is proportional to the correlation function of the field
created by a classical dipole [13].

The interaction potential thus consists of the sum of two
independent terms—the equilibrium potential, U, [Eq. (1)],
and the nonequilibrium one, U,eq,

U=Ug+ Upeqs

Ueq= Re%_j do[N(w) + 1/2]as(w) ag(w)

X [Dp(w,R4Rp) T,

1
Uneq = Re|d3| aA(wB)|D (“)B’RA’RB)|

X{PgN(wB) = p[N(wp) + 11} (14)

The equilibrium potential, Uy, coincides with the one ob-
tained with the help of Lifshitz formula [14] or Milonni-
Smith formula [15]. The nonequilibrium potential, U,,, de-
scribes the absorption of a photon by atom B (first term in
the square brackets) as well as the spontaneous and stimu-
lated emission by atom B (the second term in the curly
brackets). For the thermal equilibrium, the probability to find
an atom in its nth state p, is given by the Boltzmann distri-
bution p,=p, e~8'T_ while the number of photons obeys the
Bose statistics N(w,T)=(e”"—1)7". Thus, Uy,=0 due to the
detailed balance, and we find that Eq. (14) coincides with the
Lifshitz formula [14].

The results obtained above are valid only if atom A is in
its ground state during the interaction process. This means
that the number of photons at the transition energies of atom
A is negligible [N(w4) = 0], while the number of photons at
the frequency of atom B is sufficiently large N(wpg) > N(w,).
Our formalism does not allow us to calculate analytically the
interaction potential for the case when atom A can be excited
by the electromagnetic field. But to extend our result to the
case free from the above mentioned assumption, we can use
the symmetry properties of the potential: (i) the potential is
obviously symmetric with respect to atomic indices; (ii) if
both atoms are thermalized U,.,=0. Using these properties,
we calculate the potential in general case,

2 |dB| |dA| Wy

neq —
179 wi—wB

|D (wBsRAsRB)|2

X{pEN(wp) - pE[N(wp) + 11}(p} - p2)

2|dB| |dA| wp
—D LR, R 2
9 ‘012;_(1{4 | (U)A A B)|

X{pyN(w,) - PoIN(wy) + 11} (pE - pl)  (15)

To obtain the quantitative result we substitute the Green’s
tensor Eq. (13) into Eq. (15),
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4 |dgl’ldal* 0w w3<1+ 1 N 3 )
"4 9R? 2 _ b (wpR)*  (wpR)*

A~ Wp
X{pEN(wp) - p[N(wp) + 11} — p2)
—w3<1+ ! + 3 )
4 (wAR)2 (wAR)4

X{psN(w,) = poIN(ws) + 11}(p} —pf)} (16)

The distance dependence of the nonequilibrium potential
is determined only by the characteristic wavelength of the
atomic transitions and does not depend on the initial states of
the atoms or the state of the EM field. The only exception is
the system of two ground-state atoms in a EM vacuum (for
this case U,,,=0). For the nonretarded regime R<\, the
nonequilibrium potential is Upeq=Ce/ R®, which is the same
as for the equilibrium potential. For the retarded regime
R>N\, Upeq=Cy/ R?. This means that the nonequilibrium po-
tential decays with the distance much more slowly than the
equilibrium one, which drops like R~7 for low temperatures T
(R<N\;=c/T) and R™® for large temperatures (R>\;). The
coefficients C¢ and C, depend on the initial states of the
atoms and the state of EM field. They can be positive or
negative or even resonant.

As an example we consider two two-level atoms embed-
ded in the thermal EM field at temperature 7.

(1) Let both atoms be in their ground states.

If the temperature is low compared to the transition fre-
quencies (T<<w, p), but high compared to the frequency dif-
ference (T>|w,—wg|), we find

U _iexp(_wA/T)|dA|2|dB|2wAwB

"4 gR? w4 + wp

(17)

X —(wlz;+wAwB+wi)——2+ 71
R wAwBR

This result is not resonant and exponentially small compared
to the equilibrium contribution, but the asymptotic behavior
of Eq. (17) for large distances (R>N\) is 1/R?, while the
asymptotics of the equilibrium contribution (R>1/T) is
1/R® [5].

For T<|wy—wg

s

4 exp(= wp/T)|d,[*|dp|* 0,0}

Une=
97 9R? wi—wlzg
><<1+;+L> (wy > wp), (18)
(R (wpR)*) 1T
U = iexp(_wA/T)|dA|2|dB|2wai
neq — —

9R? wﬁ - wé
3

X(l +(wA—R)2+(wA—R)4>’ (wy < wg). (19)

The contributions of the nonequilibrium potential are reso-
nant.
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For a high-temperature case (7> w, p) we obtain the uni-
versal expression, which does not depend on the initial states
of the atoms

Uneq = i2T|dA|2|dB|2wAwB(‘ I+ —24>~ (20)
q 9R (waA) R
The equilibrium contribution at high temperatures
(T>1/R) is [5]
R @
“ 3R6 A B waAR6'
The total potential is
4 217 |2
U= Ueq+ Uneq= ﬁ’r'dA' |dB| Wy wp. (22)

For T> w, g, T>1/R the total interaction potential drops
like 1/R? with the distance R, even though R<<\.

(2) Two excited atoms.

If T<wy p,

4 |dy*|dgl?
U __| l*|dg|* wp 05

TR wy+ wp

1
X —(w§+wAwB+wi)——2+ )
R (,UA(,()BR

. (23)

This result is no more exponentially small (although is not
resonant) compared to the equilibrium potential and could be
greater than the latter. For large distances we once again
obtain the R~> dependence of the potential. If 7> w, 5, we
obtain Eq. (22).

(3) Atom A is in its ground state, atom B is excited.

T< O‘)A,B’
I 4 |dA|2|dB|2wAw4B< 1 3 )
=— + .
4T 9R? wi - wlz; (wgR)*  (wpR)*

(24)

This nonequilibrium contribution is resonant and exceeds the
equilibrium contribution.

For T> w, p we once again obtain the result [Eq. (22)].

In Fig. 1 we show the potential for two atoms embedded
in a thermal electromagnetic field as a function of the dis-
tance between the atoms, if the temperature is of the order of
the transition frequencies. The contribution of the nonequi-
librium term is significant for two ground-state atoms even at
small distances (R<<\), although the R dependence of the
equilibrium potential and the nonequilibrium one is the same
(R7%). For the retarded case R> X\, one can see the slow
down of the interaction potential in comparison with the
equilibrium situation. In the inset we show the spectral de-
pendence of the nonequilibrium potential. The interaction
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-100
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FIG. 1. (Color online) Interaction between two atoms in thermal
EM field. Main figure: the interaction potential U (arbitrary units)
vs the distance R/\ between two two-level atoms (wg=1.05w,)
embedded in the thermal EM field at temperature 7= w,. Thermal-
ized atoms—solid line, ground-state atoms—dashed line, and ex-
cited atoms—dashed-dotted line. Inset: nonequilibrium potential
between two atoms in thermal EM field vs w,/wg. R=0.12\, T
=wy. A is ground-state, B is excited—solid line, ground-state
atoms—dashed line, and excited atoms—dashed-dotted line.

between the ground-state atom and the excited one is reso-
nant, while the interaction between two ground-state atoms
or two excited ones is not.

Now we consider the interaction potential between two
atoms in EM vacuum [N(w,)=N(wg)=0],
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4 |dp*lds|* 0a0p

nea =" gR2 w5 — wp
1 3
X 3(1+ + )B a—pl
{"’B (o * Cwgh )75 P!

1 N 3
(wAR)2 (wAR)4

—wi<1 + )p?(pf—pf)}- (25)
This result coincides with the one obtained by Power and
Thirunamachandran [16,17].

The approach we developed in this presentation is valid
for the initial stage of interaction provided the atoms and the
EM field are not in the equilibrium. Obviously, after the
equilibration the nonequilibrium term is zero and we obtain
the standard equilibrium potential.

In [10] we considered dispersion interaction between two
media of excited atoms. A significant discrepancy between
the results of [10] and the Lifshits formula were found, pro-
vided the EM field was in its vacuum state. According to the
findings of the present paper, the results obtained using the
approach of [10] and the Lifshitz formula coincide, provided
the equilibrium EM field is taken into account.

IV. CONCLUSIONS

In conclusion, we considered the atom-atom dispersion
interaction in EM fields. We showed that the absorption and
emission of photons results in the strong modification of the
interaction potential at the initial stage of the nonequilibrium
dynamics.
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