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We propose a strictly local protocol that is completely equivalent to global quantum state reconstruction for
a bipartite system. We show that the joint density matrix of an arbitrary two-mode Gaussian state, entangled or
not, is obtained via local operations and classical communication only. In contrast to previous proposals,
simultaneous homodyne measurements on both modes are replaced with local homodyne detections and a set
of local projective measurements.
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The feasibility of a quantum information task is related to
the reduced or absence of nonlocal resources needed to its
implementation and is an important asset for quantum com-
munication purposes �1�, setting the limit for its widespread
use. However, quantum state tomography �QST� �2,3�, a key
tool in quantum information, is performed mostly through
nonlocal operations. QST is a complete state reconstruction
scheme implemented through a set of measurements over an
ensemble of identical quantum systems. For qubit systems it
corresponds to the determination of all the Stokes parameters
�4�. For Gaussian continuous variable �CV� systems, as
given by quantized electromagnetic field modes, it stands on
a set of joint quadrature measurements, from which the joint
density matrix � is reconstructed. Thus for Gaussian states,
QST is equivalent to the measurement of global covariance
matrices of the modes. For a two-mode Gaussian state most
QST protocols to date either require simultaneous homodyne
measurements �HMs� on both modes �5–7�, with an exquisite
control of both local oscillator �LO� phases, or require pre-
vious nonlocal operations on the modes to achieve a com-
plete state reconstruction �8�. It is desirable, therefore, the
construction of a QST protocol not requiring any nonlocal
operation and no phase locking. In other words, a process
operationally equivalent to QST, but without unnecessary
nonlocal resources to its implementation.

In this Rapid Communication we show how one can re-
construct the whole density matrix �12 of an arbitrary two-
mode Gaussian state via local operations and classical com-
munication �LOCC� only. Since simultaneous HMs of the
two modes �5,6� are not required, there is no need for con-
strained control of the LO phases, thus increasing the overall
efficiency of the protocol and also reducing the computa-
tional postprocessing of data �see Ref. �9� for an interesting
single homodyning alternative scheme�. Instead, a set of lo-
cal parity and vacuum projections plus local squeezing are
required. Our protocol is built basically on three premises: �i�
Alice and Bob can implement independent single mode local
QST, certifying that they have a Gaussian state. Actually,
after confirming �or being informed previously� that one
deals with a Gaussian state, only HMs of the variances of the

modes will suffice. �ii� Both Alice and Bob are able to imple-
ment local squeezing and a local rotation on the quadratures
of their modes. �iii� Bob �Alice� can make two types of local
measurements: even �odd� parity projections and vacuum
projections of his �her� mode.

A bipartite two-mode Gaussian state �12 is completely de-
scribed �10,11� by its Gaussian characteristic function C�z�
=Tr�D�z��12�=e−�1/2�z†Vz, where z†= �z1

� ,z1 ,z2
� ,z2� are com-

plex numbers, D�z�=e−z†Ev is the displacement operator,
with E=diag�Z ,Z�, Z=diag�1,−1�, and v= �v1 ,v2 ,v3 ,v4�T

= �a1 ,a1
† ,a2 ,a2

†�T as the annihilation and creation operators of
modes 1 and 2, respectively. T is the transposition, so that v
is a column vector, and we have assumed all the first-order
moments to be null �12�. The covariance matrix V describing
all the second-order moments Vij = �−1�i+j�viv j

†+v j
†vi� /2 is

given by

V = �V1 C

C† V2
� =	

n1 m1 ms mc

m1
� n1 mc

� ms
�

ms
� mc n2 m2

mc
� ms m2

� n2


 . �1�

Here V1 and V2 are the local covariance matrices of modes 1
and 2, respectively, giving the local properties of the two
modes while C is the correlation between them. Finally, in
addition to being positive semidefinite, V�0, a physical
Gaussian state must satisfy the generalized uncertainty prin-
ciple, V+ 1

2E�0 �10�.
The main goal of Alice and Bob is to obtain via LOCC the

matrix V. Therefore, the first logical and trivial step consists
in the measurement of V1 and V2 by Alice and Bob, respec-
tively. These two covariance matrices are locally obtained
via any standard single-mode HM technique �or local QST�.
Up to now no classical communication is needed and only
after finishing this task Bob �Alice� informs Alice �Bob� of
his �her� result. It is worth noting that we assume Alice and
Bob have at their disposal a trustful source, in the sense that
it produces as many as needed identical copies of the two-
mode Gaussian state.

The next nontrivial step is the determination of C. To
achieve such a goal, Alice and Bob need to work collabora-
tively �13�. First, on a subensemble of the copies, Bob imple-
ments parity measurements on his mode and informs Alice

*rigolin@ifi.unicamp.br
†marcos@ifi.unicamp.br

PHYSICAL REVIEW A 79, 030302�R� �2009�

RAPID COMMUNICATIONS

1050-2947/2009/79�3�/030302�4� ©2009 The American Physical Society030302-1

http://dx.doi.org/10.1103/PhysRevA.79.030302


the respective outcomes for each copy, i.e., even parity �even
number of photons� or odd parity �odd number of photons�.
With this information Alice separates her copies in two dis-
tinct groups, the even and the odd ones �13�, as depicted
in Fig. 1. Alice’s even group can be described by the
non-normalized density matrix �1

e =Tr2�P2
e�12P2

e�
=
n=0

�
2�2n��12�2n�2, where P2

e =I1 � 
n=0
� �2n�2 2�2n�, I1

is the identity operator, and �n�2 is the nth Fock state
for mode 2. Using a similar notation, Alice’s odd group is
given as �1

o=Tr2�P2
o�12P2

o�=
n=0
�

2�2n+1��12�2n+1�2. But
one can show that �14� �1=2�det�V2���1

e −�1
o�

=�dz1 ez1
†Za1e−�1/2�z1

†
�1z1, where dz1= �1 /��d Re�z1�d Im�z1�

and �1 is the Schur complement �15� of V2,

�1 = V1 − CV2
−1C† = ��1 �1

�1
� �1

� . �2�

However, any one-mode Gaussian operator can be written as

�dz1 ez1
†Za1e−�1/2�z1

†
�1z1, with �1 being its covariance matrix

�10�. Therefore, �1 is a Gaussian operator whose covariance
matrix elements are �1=2�det�V2���a1

†a1�e− �a1
†a1�o� and

�1=2�det�V2���a1
2�e− �a1

2�o�, where �·�e=Tr�·�1
e� and

�·�o=Tr�·�1
o�. Summing up, �1 can be obtained with the

knowledge of det�V2� and the second moments of �1
e and �1

o,
all of which determined via LOCC �16�. Defining 	= �n1
−�1��n2

2− �m2�2� and 
= �m1−�1��n2
2− �m2�2�, Eq. �2� gives

two independent equations, which alone cannot give ms and
mc unequivocally,

	 = n2��mc�2 + �ms�2� − 2 Re�m2msmc
�� , �3�


 = 2n2msmc − m2
�mc

2 − m2ms
2. �4�

A unique solution, though, can be obtained if we consider
an additional subensemble on which Bob performs another
kind of projective measurement. The results of this measure-
ment are communicated to Alice who builds a local covari-
ance matrix that is related to the original one through the
Schur complement structure, similar to Eq. �2�. In the present
case we consider the simplest choice, i.e., Bob is able to
perform a vacuum state projection on his copies: photon-
number measurements with no outcome. For each measure-
ment, Bob informs Alice to which copies a no-photon result
��2→ �0�2 2�0�� occurred. Alice, then, proceeds in a similar

fashion as before but considering only the vacuum-projected
subensemble �Fig. 1, right�, described by the density matrix
�1

vac=Tr2��0�2 2�0��12� /Tr12��0�2 2�0��12�. One can show that

�14� �1
vac=�dz1 ez1

†Za1e−�1/2�z1
†
�1z1, where

�1 = V1 − C�V2 +
1

2
I�−1

C† = ��1 �1

�1
� �1

� , �5�

with I as the identity matrix of dimension 2. Here, �1
= �a1

†a1�vac and �1= �a1
2�vac, where �·�vac=Tr�·�1

vac�. Explicitly,
Eq. �5� gives us two more equations:


 = �n2 +
1

2
���mc�2 + �ms�2� − 2 Re�m2msmc

�� , �6�

� = 2�n2 +
1

2
�msmc − m2

�mc
2 − m2ms

2, �7�

in which 
= �n1−�1���n2+1 /2�2− �m2�2� and �= �m1
−�1���n2+1 /2�2− �m2�2�. It is worth noting that 
 and �, as
well as 	 and 
, are functions of parameters locally obtained
by Alice and Bob. In order to solve Eqs. �3�, �4�, �6�, and �7�
for mc and ms we write mj = �mj�ei�j, where j=1, 2, c, s, and
� j is real. In this notation, our task is to determine �c, �s, �mc�,
and �ms� with the aid of �1 and �1 obtained by Alice via
LOCC. The other quantities n1, n2, �m1�, �m2�, �1, and �2 are
easily obtained via local HM of modes 1 and 2.

�i� Determination of �c and �s. Subtracting Eq. �4� from
Eq. �7� we have �−
=msmc, which gives

�msmc� = �� − 
� , �8�

�s + �c = Arg�� − 
� , �9�

where Arg�z� is the phase of the complex number z. By the
same token, subtracting Eq. �3� from Eq. �6� we have

�mc�2 + �ms�2 = 2�
 − 	� . �10�

Inserting Eqs. �8� and �10� into Eq. �6� we get, 
= �2n2
+1��
−	�−2�m2��−
��cos��2+�s−�c�. We could have used
Eq. �3� as well. Solving, then, for �s−�c we obtain

�s − �c = cos−1��
n2 − 	�n2 + 1/2��/�m2�� − 
��� − �2.

�11�

Equations �9� and �11� can be easily solved to give �c and �s,
the phases of mc and ms. It is worth mentioning that Eq. �11�
is only valid when ���−
�m2��0. Later we show how to
overcome this limitation.

�ii� Determination of �mc� and �ms�. From Eq. �10� we note
that if we had �mc�2− �ms�2 the problem would be solved.
Manipulating the real and imaginary parts of Eq. �7� we get

�mc�2 − �ms�2 = ���sin��� − �c − �s�/��m2�sin��2 − �c + �s�� .

�12�

Here �� is the phase of �. Equations �10� and �12� can be
directly solved to give �mc� and �ms�, the moduli of mc and ms.
Equation �12� is only valid for �m2 sin��2−�c+�s���0. Thus,
all the covariance matrix elements can be locally recon-
structed with a set of appropriate measurements and classical

FIG. 1. �Color online� Left: Alice separates her copies in two
groups conditioned on an even �green, top� or odd �red, bottom�
parity result obtained by Bob. Right: Alice selects copies corre-
sponding to Bob’s no-photon results.
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communication, establishing the following important con-
nection to Gaussian QST: global QST is completely equiva-
lent to local covariance matrix HM, local parity and
vacuum-state projections, and classical communication. This
is our central result and in the rest of this Rapid Communi-
cation we show how the necessary conditions ���−
�m2�
�0 and �m2 sin��2−�c+�s���0 can always be obtained by
the addition of local squeezing �17�.

�iii� Overcoming ���−
�m2�=0 or �m2 sin��2−�c+�s��=0.
To properly solve these problems we must know which
quantity is zero. The simplest check is implemented when
Bob reconstructs V2, which allows him to know if m2=0.
Alice and Bob can also discover if mc=ms=0 �implying �
−
=msmc=0� by testing if V1=�1=�1, since the absence of
correlation �C=0� between the modes cannot change what
the parties measure locally �see Eqs. �2� and �5��. Also, if
V1��1 or V1��1 Alice and Bob are sure that C�0 and
the first nontrivial check sets in. They must discover if either
mc=0 and ms�0 or mc�0 and ms=0 or both mc�0 and
ms�0. If either mc or ms is zero it is obvious that �I3�
= �det�C��= ��ms�2− �mc�2�= �ms�2+ �mc�2. But one can show �13�
that �I3�=�det�V2�det�V1−�1� and using Eq. �10� we see that
if �I3�=2�
−	� we know for sure that either ms or mc is zero.
If we do not have an equality mc�0 and ms�0. For our
purposes, as we explain below, we do not need to know
which quantity, mc or ms, is zero �18�. Finally, to discover if
sin��2−�c+�s�=0 we use Eq. �11� and the phase of m2. Of
course, Eq. �11� is only valid if �m2��−
���0. Therefore, if
�m2��−
��=0 we first need to solve this problem in order to
test if sin��2−�c+�s�=0. Since now we know which param-
eter is zero we are ready to show how Alice and Bob can
overcome this situation allowing them to use Eqs. �9�–�12� to
obtain C. See Table I for an overview of the strategies to
solve these problems.

If m2=0 the most general solution �19� is achieved imple-
menting a local symplectic transformation �local quadrature
squeezing and rotation� on mode 2 �20�, S=diag�I1 ,S2�,
where I1 is a 2�2 identity matrix acting on system 1 and S2
is given as

S2 = �e−is2 cosh r2 sinh r2

sinh r2 eis2 cosh r2
� �13�

with s2 and r2 being real parameters. The correlation matrix

Ṽ is connected to V by Ṽ=SVS† �20� or, equivalently for

j=1,2, Ṽ j =S jV jS j
† and C̃=S1CS2

†. Applying S to Eq. �1�, the

off-diagonal term of Ṽ2 is m̃2=e−2is2m2 cosh2 r2
+m2

� sinh2 r2+e−is2n2 sinh�2r2�. Setting s2=0 and using m2
=0 we have

m̃2 = n2 sinh�2r2� , �14�

i.e., a covariance matrix with m̃2�0. After this operation we

can proceed with the original protocol to reconstruct Ṽ,

which can be transformed back to give V=S−1ṼS†−1 with
S−1=diag�I1 ,S2

−1� and

S2
−1 = �eis2 cosh r2 − sinh r2

− sinh r2 e−is2 cosh r2
� . �15�

If either ms=0 or mc=0, or equivalently �−
=0, we can

obtain another matrix C̃=S1CS2
†, where both parameters are

not zero via a local squeezing operation alone. This leads to

m̃s = eis2ms cosh r2 + mc sinh r2, �16�

m̃c = e−is2mc cosh r2 + ms sinh r2. �17�

Setting s2=0 in Eqs. �16� and �17� we see that m̃s and m̃c are
combinations of ms and mc. Therefore, if ms=0 or mc=0 the
present coefficients are necessarily different from zero when-
ever we apply a local squeezing operation on mode 2. As
anticipated, we do not need to know which quantity was
originally zero. As before, after this local transformation we

proceed with the original protocol obtaining Ṽ and then V. It
is worth noting that when the two situations occur simulta-
neously, i.e., m2=0 and ms=0 or mc=0, the same local
squeezing operation solves at once both problems, as can be
seen in Eqs. �14�, �16�, and �17�.

Lastly, after being sure that �m2mcms��0 we can proceed
to test if sin��2−�c+�s�=0 using Eq. �11� and the phase of
m2, which are all quantities locally determined. In case of a
positive result, there exist three possible solutions. The first
one is valid when m2�m1 and is achieved reversing the roles
of Alice and Bob in the protocol, as discussed above. The
remaining two possibilities, and more general, is to locally
and unitary transform mode 1 or mode 2 before we imple-
ment the protocol, in the same fashion as before. Therefore,
we need to show that there exists at least one local unitary
operation acting on mode 1 or mode 2 that eliminates such a
problem.

Let us begin with mode 2. Applying the symplectic local
transformation S2 we get, after assuming that sin��2−�c
+�s�=0,

tan��̃2 + �̃s − �̃c� = 2A� sin��2 − s2�sinh�2r2�/B�, �18�

A� = �m2���mc�2 + �ms�2� � 2n2�mcms� , �19�

B� = � 3�m2mcms� − n2��mc�2 + �ms�2� + �� �m2mcms�

+ n2��mc�2 + �ms�2��cosh�4r2� � 2�m2mcms�cos�2�2

− 2s2�sinh2�2r2� + A� cos��2 − s2�sinh�4r2� . �20�

Here A� �B�� stand for the two possible values for the co-
sine, i.e., cos��2−�c+�s�= �1, respectively. From Eqs. �18�
and �19� we see that a local squeezing alone �r2�0 and s2

=0� on mode 2 can make tan��̃2+ �̃s− �̃c��0 if m2 is not real
��2�0�. However, whenever m2 is real a rotation on the
quadratures �s2�0� is mandatory. There is one last loophole

TABLE I. Overview of the general strategies. Here j=2,s ,c.

mj =0 sin��2−�c+�s�=0

Local squeezing Yes Yes

Local quadrature rotation No Yes
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to fix, namely, the rare instances in which A+=0 �note that
A− is always different from zero�. This is fixed by allowing
the other party, in this case Alice, to implement a local
squeezing on mode 1. As shown in Eqs. �16� and �17� this
operation allows Alice to change at her will the phases of ms
and mc without altering �2, solving completely the last prob-
lem. By the way, this is the other possible solution for the
sin��2−�c+�s�=0 case, i.e., a local squeezing directly on
mode 1.

In summary, we have shown a strictly local protocol in
which a two-mode Gaussian state is completely recon-
structed without relying on simultaneous HMs or nonlocal
resources. Actually, the only resources needed for this proto-
col are the ability to perform single-mode HM, local parity
and vacuum projective measurements, and classical commu-
nication. We also showed the complete equivalence of this

local protocol to QST for Gaussian states. This equivalence
is important for quantum communication purposes since now
we can achieve the same goals of QST without nonlocal
resources and simultaneous HMs. The set of local parity
measurements required here, however, may restrict the
implementation of the protocol, apart from instances where
this measurement can be, in principle, performed �22�. Fi-
nally, this present protocol raises several interesting prob-
lems yet to be solved. First, it is unknown if a similar local
protocol can be devised for more than two modes and, sec-
ond, if there exist other optimal sets of measurements, other
than parity and vacuum projections, allowing the complete
state reconstruction of a two-mode �or many-mode� Gaussian
�or non-Gaussian� state in a simpler local way.
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