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We theoretically study the interaction of two time delayed, phase-locked, and nonresonant pulses with a
two-level system in the strong field regime. The population transfer is shown to be extremely sensitive to the
phase shift � between the pulses, with efficient population transfer taking place only for � close to �. This
effect is explained in terms of nonadiabatic jump and rapid adiabatic passage phenomena.
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The interaction of strong fields with quantum systems
leads to a variety of phenomena that have no equivalent in
the weak field regime. Of particular interest are nonadiabatic
transitions between induced adiabatic energy levels when
strong nonresonant light pulses interact with atomic systems
�1�. They can lead to significant asymptotic population trans-
fer to the excited bare state even when the pulse spectrum
does not cover the atomic transition. This is in complete
contrast with the simplified version of light matter interac-
tion, in which, a photon can only be absorbed if the reso-
nance condition is satisfied. This simplified version turns out
to be true only in the weak field regime. Strong pulses intro-
duce adiabatic energy levels in the system and nonadiabatic
transitions between these energy levels are reflected in
asymptotic bare state populations. The excitation can cause
level crossings, in which case adiabatic rapid passage �ARP�
comes into action and leads to a complete inversion of popu-
lation in the system �2–4�. This phenomenon is efficient and
robust against laser parameters. Situations where level cross-
ings do not appear have also been investigated. For symmet-
ric strong pulses, it has been shown that the population trans-
fer is extremely dependent on the shape of the pulse �5�
through nonadiabatic coupling. If asymmetric pulses are
used �which present phase jump or a change of sign for the
amplitude�, the nonadiabatic coupling can be so significant
that complete population transfer can be realized �6–8�. This
result is especially striking when the fields have zero pulse
area. Resonant excitation with zero area pulse leads to no
population transfer whereas nonresonant excitation can lead
to complete population inversion �6�.

In this paper, we study the population transfer induced by
a sequence of two time delayed, identical, and phase locked
pulses interacting nonresonantly with an atomic system. For
the relative phase shift �=� between the two pulses, the
total pulse area is zero and nonadiabatic jump �NAJ� leads to
an almost complete population transfer as already studied by
Vitanov and collaborators in detail in �6�. The originality in
the present study is the very sensitive phase dependence of
nonadiabatic coupling and is a consequence of the high non-
linearity of the interaction. The population transfer efficiency
and asymptotic population in the excited state are severely
affected when the phase shift moves slightly away from �,

whereas for large deviation from �, a double ARP effect is
responsible for vanishing population transfer. This results in
a very narrow peak in asymptotic population in the excited
state as the function of relative phase shift between the two
pulses, as shown in Fig. 3. With the virtue of this increased
sensitivity, this effect can lead to the improvement of the
techniques based on interferometry such as lock-in tech-
niques, metrology, Ramsey spectroscopy, coherent control,
pump-probe techniques, and gyrolaser techniques to name
some �9–11�.

We consider the two-level system with states �a� and �b�
�energies 0 and ��0, respectively� with initially all the popu-
lation in the ground state �a�. The system is driven by a
strong ultrashort field Ed�t�=�0dfd�t�e−i�dt+c.c. where �0d is
the field amplitude, fd�t� is the envelope of the pulse, and c.c.
stands for complex conjugate. The envelope fd�t� consists of
two time delayed Gaussians each having the time duration
�d. The delay between the two Gaussians is � �in units of �d�
and the two are dephased by the relative phase difference �.
In dimensionless time T= t /�d, the envelope is given by

fd��,T� =
1

��
�e−�T + �/2�2

+ ei�e−�T − �/2�2
� . �1�

The central frequency of the pulse �d is detuned from the
resonance �0 and we define dimensionless detuning as �
= ��0−�d��d. The wave function of the system can be written
as

�����,T� = a��,T��a� + b��,T�e−i�d�dT�b� . �2�

The Schrödinger equation with rotating wave approximation
�RWA� leads to the following equations for the evolution of
the system:

i�T�a

b
	��,T� = � 0 − 	df

d
*

− 	dfd �
	�a

b
	��,T� . �3�

Here 	d=
ab�0�d /� characterizes the strength of the driving
field.

The interaction can be better studied by transforming the
system into adiabatic basis. We define a rotation matrix as

R�T� = � cos 	 sin 	

− sin 	 cos 	
	�T� , �4�

where 	�T� is defined as*aziz@irsamc.ups-tlse.fr
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	�T� =
1

2
arctan�2rfd��,T�� . �5�

Here r=	d /� is an important parameter that characterizes the
nonadiabatic coupling. The amplitudes of the wave function
�2� are transformed in adiabatic basis as

��−

�+
	��,T� = R�T��a

b
	��,T� . �6�

By defining R�T� at �=�, we contain all the phase depen-
dence in the amplitudes ��− ,�+�. This �arbitrary� basis
choice will prove to be pertinent in the present case, since the
physics associated with the obtained results will be elegantly
highlighted with this basis change. It should also be noted
that as R�T=��= � 1 0

0 1 �, the asymptotic bare state and adia-
batic populations are the same ��b�2= ��+�2 at T= 
� for all
��. The time evolution of the amplitudes is given by

i�T��−

�+
	��,T� = „A�T� + V��,T�…��−

�+
	��,T� . �7�

A�T� represents the Hamiltonian for �=�. It is given by

A�T� =

� − ��T�

2
i�T	�T�

− i�T	�T�
� + ��T�

2
� . �8�

The diagonal terms are the light shifted adiabatic energy lev-
els with ��T�=��1+4r2fd

2�� ,T� being the instantaneous
separation between the levels, and the off-diagonal term �T	
represents the nonadiabatic coupling. V�� ,T� in �7� repre-
sents the correction in energy levels and the coupling when
���. It is given by

V��,T� = cos2 �

2
 sin 2	 cos 2	 − i tan
�

2

cos 2	 + i tan
�

2
− sin 2	 �G�T�

�9�

with G�T�=−2r�e−�T − �� / 2��2
/��. We next consider popula-

tion dynamics for different values of �.
For �=�, the two Gaussians are asymmetric with respect

to each other, the matrix V�� ,T�=0, and the dynamics is
determined by the matrix A�T� given in �8�. For �����d the
two Gaussians dress the system independently from each
other with each having local nonadiabatic coupling that can
not cause significant population transfer. When the two
Gaussians are brought near to each other �with �����d� such
that the falling edge of one Gaussian coincides with the ris-
ing edge of the other, the light shifts and the nonadiabatic
coupling add up nonlinearly. For �=�d, the temporal profile
of the field, the adiabatic energy levels, the nonadiabatic cou-
pling, and the population in adiabatic excited state are shown
in Fig. 1. Energy levels present a modulated structure with a
node at T=0. The nonadiabatic coupling follows the deriva-
tive of the field profile and is given by

�T	�T� =
r�Tfd��,T�

1 + 4r2fd
2��,T�

. �10�

Its absolute value ��T	 � presents a maximum at T=0 where
the light shifts vanish, and goes to zero at 
T0 �solution of
2T tanh��T� /�=1� where the light shifts are at maximum.
Two local maxima appear in the wings at T= 
Tm.

Between 
T0 the nonadiabatic coupling behaves as a �
function for r→�. Indeed, the field vanishes at T=0
�fd�� ,0�=0�, and the nonadiabatic coupling diverges for
r→� ��T	�0�→��. However, the area beneath the
coupling ANC=2
−T0

T0 ��T	��T�dT between 
T0 remains finite.
It is given by ANC=2 arctan 2rfd�� ,T0�, and it behaves
as �ANC�r→�=−�. The characteristic width of the
coupling is �T=ANC /�T	�0�. It behaves as �T
=2 arctan 2rfd�� ,T0� /r�Tfd�� ,0� and vanishes for r→�.
These results show that the central part of the nonadiabatic
coupling around T=0 indeed behaves as a � function with an
area −� �or � if the sequence of the two Gaussians is re-
versed�. Moreover, near T=0, the light shifts are at minimum
with ���, and in the limit of strong pulse �r�1�, the ex-
citation can be considered as resonant. The transition prob-
ability to the excited adiabatic level is thus sin2 ANC

2 �1.
Complete population inversion in adiabatic basis with a sud-
den jump can thus be realized. This is shown in Fig. 1�c�. A
limitation to obtain a perfect 0 to 1 population jump in the
adiabatic states is the population already transferred in the
wing at T=−Tm. At T=Tm, the nonadiabatic coupling can
again modify asymptotic population. This can be avoided if
the evolution is adiabatic in the wings, requiring
��
Tm�� ��T	�
Tm��. This condition can be easily fulfilled
by making detuning large ��1 and maintaining r�1 for
obtaining the desired NAJ at T=0.

When ���, additional contributions from the matrix
V�� ,T� must be taken into account. For arbitrary times and
phase shift values, V contains both nonvanishing diagonal

FIG. 1. �a� Nonadiabatic coupling ��T	 �; it presents a maximum
at T=0, two local maxima at T= 
Tm, and is zero at T= 
T0. �b�
Field profile fd�� ,T� �solid line� and adiabatic energy levels �
��T�

2
�dashed line�. �c� Excited adiabatic state population ��+�2 showing
NAJ. Parameters are �=8, 	d=400 �r=50�, �=1, and �=�.
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and off-diagonal terms. Light shifts and optical coupling be-
tween the adiabatic states are thus modified. As the total
coupling is no longer a � area � function, and the excitation
is no longer resonant, the transition probability to excited
adiabatic state is dramatically affected. In Fig. 2, the excited
state adiabatic population as a function of � is shown just
after the time when a nonadiabatic jump occurs for �=�. It
can be seen that close to �=�, the jump retains some of its
character in a very narrow window while rapidly losing its
efficiency. As we move away from the center, the population
again continues to rise, but this latter rise is not due to NAJ.
It is a transient phenomena caused by level crossings and no
permanent population transfer takes place in the wings, as
can be verified in the plot of asymptotic excited state popu-
lation in Fig. 3. This latter demonstrates the sensitive depen-
dence of transition probably on phase shift. The behavior
around �=� can be explained by analyzing the matrix ele-
ments of V�� ,T�. For small variations of � around � with
�=�+�, ��1, we can neglect the additional light shifts as

these are proportional to �2. Only the coupling between the
adiabatic states is modified. The matrix V at T=0 thus sim-
plifies as V� r��

��
e−�2/4� 0 −i

i 0 �. The modification of the transi-
tion probability follows a subtle scenario sketched in Fig. 4
that represents the transient dynamics for � close to �. Dur-
ing the action of NAJ the modification of the effective pulse
area due to the presence of the additional coupling V is neg-
ligible provided 2� r��

��
e−�2/4�T���, i.e., ��

�
� ��T is the time

over which the NAJ transition occurs�. In Fig. 4 we have
�
� =0.125. This explains why the maximum reached for �
=0.05 and 0.04 is still important. Outside the interaction
window �T, the nonadiabatic coupling �T	 vanishes but
V�� ,T� still acts. This leads to the modification of the popu-
lation transfer for as long as the coupling r��

��
e−�2/4 is larger

than the detuning �, i.e., ��
��e�2/4

r . This modification is in
accordance with the rapid decrease of population observed in
Fig. 4 and the sharp peak observed around �=� in Figs. 2
and 3.

An important feature is the presence of strong decaying
oscillations in the population dynamics �for long times�.
These oscillations are the result of nonresonant contributions
�because of important light shifts� that interfere with the
resonant contribution. Although the nonresonant contribu-
tions to the population are small, they lead to observable
effects because of the interference with the resonant contri-
bution. These �ultrafast� coherent transients have been ob-
served and reported in atomic systems driven by chirped
pulses �12,13�, or submitted to strong fields that induce light
shifts �14–16�.

The realization of very sharp structures with � is in line
with a very good spatial and temporal sensitivity of interfer-
ometers. For instance, when the sequence of two ultrashort
pulses is obtained by sending a single pulse into an interfer-
ometer, we can write �=�d�t, where �t is the delay between
the two pulses. For pulses with 800 nm wavelength, we ob-
tain from Fig. 3, �t�40 as for field strength 	d=400. This
corresponds to spatial resolution �x=c�t of 12 nm.

Outside the peak for �=�, level crossings appear in the

FIG. 2. Adiabatic excited state population profile at time
�T=0.1� just after the nonadiabatic jump �for �=��. Other param-
eters are the same as those in Fig. 1.

FIG. 3. Asymptotic excited state population. Parameters are the
same as those in Fig. 1. In the inset a zoom is made to show the
width of the peak.

FIG. 4. Dynamics of adiabatic excited state population with
�=� �solid line�, �=�+0.04 �dashed line�, and �=�+0.05 �dotted
line�. Other parameters are the same as those in Fig. 1.
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system. These arise because the diagonal element of V,
sin 2	=2rfd�� ,T� changes sign at T=0. Another crossing
appears near the end of the driving field because adiabatic
levels relax back to bare states. Any nonvanishing coupling
at these crossings can cause significant �transient� population
transfer in the adiabatic basis. This explains the transient
adiabatic population in the wings at T=0.1 in Fig. 2. These
crossings and the corresponding adiabatic population profile
for �=0 is shown in Fig. 5. The transient oscillations are
strongly attenuated in this case and only appear near the end
of the pulse when the energy levels are close enough to cause
nonresonant excitations.

We have shown that a sequence of two phase-locked
strong pulses interacting nonresonantly with a two-level
atomic system can lead to complete inversion of population.
The phenomena occurs only for relative phase inside a small
window around �=�. This shows the extreme dependence
of the population transfer on phase, and it can render phase
control of nonadiabatic transitions in the atomic system. The
high degree of phase sensitivity can also be used to formu-
late new techniques for the stabilization of interferometers
and paves the way for a very large range of applications.
Attosecond resolution �corresponding to nanometer spatial
resolution� can be reached in this way with strong pulses.
Finally, a large value of 	d can be obtained using long pulses.

For instance, we have 	d�110
ab�a.u.��d�ns��I�MW /cm2�.
For a transition with 
ab=4 a.u., a laser pulse with a time
duration �d=1 ns, and an energy of 0.1 mJ focused on
1 mm2 spot, we can obtain a value for 	d as large as 440.
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FIG. 5. �a� Modified adiabatic energy levels showing one cross-
ing at T=0, and another near T=2.5; the second crossing is shown
magnified in the inset. �b� Population in adiabatic excited state. The
phase shift is �=0; other parameters are the same as those in Fig. 1.
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