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Unexpected reemergence of the von Neumann theorem
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It is shown here that the “simple test of quantumness for a single system” of Alicki and Van Ryn has exactly
the same relation to the discussion of the problem of describing the quantum system via a classical probabilistic
scheme (that is in terms of hidden variables or within a realistic theory) as the von Neumann theorem
[Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932); Mathematical Foundations of
Quantum Mechanics (Princeton University, Princeton, NJ, 1955)]. The latter one was shown by Bell [Rev.
Mod. Phys. 38, 447 (1966)] to stem from an assumption that the hidden variable values for a sum of two
noncommuting observables have to be, for each individual system, equal to sums of eigenvalues of the two
operators. One cannot find a justification for such an assumption to hold for noncommeasurable variables. On
the positive side, the criterion may be useful in rejecting models which are based on stochastic classical fields.

Nevertheless, the example used by the authors has a classical optical realization.
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I. INTRODUCTION

The no-go theorem for classical probabilistic (i.e., hidden
variable) description of single-quantum systems in Ref. [1],
called by Alicki and Van Ryn a simple test of quantumness
for a single system, reads

If one can find two non-negative observables A and B,
such that B—A is a non-negative operator too, and a
state for which the averages of these observables and
their squares have the following property 0=<(A),,
=(B),, and (A?),,>(B?),,, then these measurements
on the system are not describable in terms of “minimal
classical models.”

This formulation of the test is in Ref. [2], in which the claim
is scaled down a bit. Also, Alicki and Van Ryn admitted in
[2] that the criterion does not test general hidden variable
models but rather “eliminated a well-defined classical theory
for some specific systems.”

While one cannot challenge the logical value of this the-
sis, the following question can be put: which specific hidden
variable models are excluded by the criterion? It will be
shown here that the criterion in [1,2] excludes the same class
of hidden variable models as the von Neumann theorem [3].
The latter one was shown [4] to be too restrictive in its as-
sumptions to be useful in the discussion of whether one can
find classical probabilistic models of quantum-mechanical
processes. It will be shown that minimal classical models are
equivalent to von Neumann’s assumptions on properties of
“dispersion free states.” These assumptions are doubtful; see
[4,5].

The usefulness of the criterion in the discussion of the
foundations of quantum mechanics is highly limited. Never-
theless, it may be useful in pinpointing phenomena which
have no description in terms of stochastic classical fields.
However, the example given in [1,2] and realized in [6] does
have a classical model like every second-order (in terms of
the fields) photonic interference effect. The observed phe-
nomena can be interpreted as nonclassical only due to the
statistical properties of the parametric down-conversion
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(PDC) process, which are revealed in correlation experi-
ments (at least fourth-order ones).

II. RELATION WITH THE VON NEUMANN THEOREM

“Any real linear combination of any two Hermitian opera-
tors [say A and B] represents an observable, and the same
linear combination of its expectation values is the expecta-
tion value of the combination (quotation after Bell [4]).” If
one, following von Neumann, assumes that the same rule
must hold also for all dispersion free states (i.e., determinis-
tic classical models, the average over which should give the
quantum averages), this immediately transfers this rule to the
possible experimental results. That is, for the hidden disper-
sion free states von Neumann [3] tacitly assumed that v(A
+B)=v(A)+v(B), even if the quantum observables do not
commute (are noncommeasurable). In more physical terms,
if one has a system governed by hidden variables, then the
allowed pure (classical) states are such that the above rule
holds in each individual run of an experiment. But as the
very conditions to measure A+B, A and B are different, see
footnote [12], there is no reason whatsoever to assume this
[4]. The von Neumann no-go theorem [3] is inconsequential
[5].

Alicki and Van Ryn [1,2] based their reasoning on the
following theorem: 0 <A < B=> A%< B? holds for all A and B
belonging to an algebra A if and only if the algebra A is
commutative (i.e., isomorphic to the algebra of continuous
functions on a certain compact space). Therefore, the task
now is to show that the assumptions of von Neumann [3]
when applied to two observables A and B are sufficient and
necessary for the following: if for all states p one has 0
=Tr(pA)=Tr(pB) then Tr(pA?)=<Tr(pB?).

To prove the sufficiency one can start with a variant of the
assumption of von Neumann: v(B—A)=v(B)-v(A). Since
the eigenvalues of B—A are non-negative one must have
v(B-A)=0. Thus v(B)=v(A) for each individual hidden
variable steered system (dispersion free state). The non-
negativity of A and B implies that v(A)=0 and v(B)=0.
This obviously implies that for an individual system v(B?)
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=[v(B)]*>v(A?)=[v(A)]>. The equations stem again from
the quantum rules concerning eigenvalues of commuting ob-
servables, whereas the inequality has only an algebraic ori-
gin. This implies that after averaging, for all triples A=0,
B=0, and B—A=0, one always has

<A>8V = <B>21V = <A2>aV = <BZ>8V (1)

The next task is to prove that the above rule [Eq. (1)]
implies the von Neumann assumptions [3]. This can be done
using the very theorem on the C* algebras that Alicki and
Van Ryn [1,2] used to get their result. Let A be a C* algebra:
if all pairs, for which one has B=A=0, follow that B2
=A2, then A is a commutative algebra. With commutativity
the von Neumann assumptions [3] are true for all observ-
ables A and B. There is no problem with commeasurability,
and even pure quantum states which are dispersion free for
these observables (i.e., their eigenstates) satisfy the von Neu-
mann assumption [3] v(B-A)=v(B)-v(A).

III. NONMINIMAL MODELS

Can one give a hidden variable model that reproduces the
predictions of the example given in Refs. [1,2]? Of course,
such a model will not be “minimal.” However, this will not
be put here as such a model can be found already in [6]. As
a matter of fact already in Ref. [7] one can find an explicit
hidden variable model for all (von Neumann) measurements
on spin 1/2 (qubit).

One can ask the following question concerning the inter-
pretation of the mathematical result in [1,2]. If one can find
two observables A=0 and B=0, such that B—A=0, and a
state for which

<A>3V S <B>aV

and

(A% > (B, (2)

what is the implication of this property for the question of
existence of classical probability models of such averages?
Definitely this is not a general impossibility of a classical
probabilistic model for these two observables, at least for
one qubit (because of the existence of the aforementioned
model in Ref. [6]). However, it is very easy to show that one
can have a plethora of hidden variable models with such a
property. Simply, as it will be shown below, the conjunction
of these inequalities can be achieved if the observable A is
governed by a hidden variable A; whereas the observable B
is governed by an independent hidden variable \,. Then in-
equality (1) in [1,2] does not apply, see [13], and it is defi-
nitely not impossible that

J‘A()\l)Ql(M)dMSfBO\z)Qz()\z)dM

and

f[A()\l)]ZQ1()\1)d7\1 >f[B()\2)]292(7\2)d)\2’

while the joint hidden variable distribution is given by
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0N 1,Np) = 01(\)@2(Ny).

Of course such a model is not minimal anymore.

One can always build such a model for a given pair of
quantum observables, for any quantum state p, by the fol-
lowing construction (which is given here for d-state sys-
tems):

(i) denote the eigenvalues of A and B by A; and B;, re-
spectively, with i,j=1,2,...,d, and calculate the quantum
probabilities for the given state for getting these results,
P(Xy|p), with X=A,B and k=1,2, ... .d,

(i) put for the hidden (variables)
Pyy(A;,B)=P(A;|p)P(B;| p); see [14].

Such a construction is universal, and thus it applies also to
pairs of non-negative quantum observables which have the
property Tr[p(B—A)]=0 for all p. The hidden probabilities
Py reproduce correctly the quantum predictions for A? and
B? for all states even if Tr p(A2—B?)=0. For different state
preparations p we have a different Py, but this is allowed
even in classical physics. The model involves many hidden
variables, but one can always have as many hidden variables
as one wishes because they are hidden anyway.

Thus, the condition in [1,2] is not a condition of a genuine
quantumness but rather one concludes that if condition (2)
holds, then there is no chance to have a classical model in
which for every individual system (or dispersion free state)
one can put v(A-B)=v(A)-v(B), that is for which the
von Neumann assumption [3] is valid.

probability:

Minimality loophole

In Ref. [2] Alicki and Van Ryn scaled down their claim to
the following: condition (2), if satisfied, prohibits a minimal
classical model for the observables. Thus, what was showed
above is that minimal classical models in [2] are equivalent
to the von Neumann assumptions [3] and thus face the criti-
cism in [4,5].

Let us now address the discussion of the “minimality
loophole;” Ref. [2], page 3. One can read: “One could still
argue that there may exist a nonminimal classical algebraic
model (AM) describing the data (minimality loophole). In
this case, the classical observable B—A possesses negative
outcomes (values of the function) which are not detectable
by the differences of averages (B)—(A).” However, for non-
commuting A and B, since B—A is not commeasurable with
neither A nor B, and even the latter ones are noncommeasur-
able too, there is no reason for the eigenvalues to follow the
von Neumann rule [3]. Thus, for an individual system v(B)
—v(A) may be negative, while v(B—A)=0. One can explic-
itly construct a nonminimal model without negative v(B
—A):

(i) denote the eigenvalues of A, B, and B~-A=C as A;, B},
and Cy (all of them are non-negative), respectively, with
i,j,k=1,2,...,d, and calculate the quantum probabilities for
the given state for getting these results, P(X,|p) with X
=A,B,C and k=1,2,...,d,

(i) put for the hidden (variables)
Puy(A;,B;, C)=P(A;| p) P(B;| p) P(C| p).

Obviously, the marginals of such a distribution produce
correct probability distributions for all the variables, e.g.,

probability:
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EA’_EBI_PHV(A,-,BJ-,Ck)=P(Ck|p). Note that the set of allowed
values C;, gives v(B—A)’s. Such hidden variable models are
highly contextual, and thus uninteresting, but since C=B
—A =0, there is no problem with B—A possessing negative
outcomes. Thus, one has a direct counterexample to the

quoted claim.

IV. WELL DEFINED CLASSICAL MODELS

As far as a direct detection of nonexistence of any classi-
cal probabilistic models is concerned, we are left with the
two theorems of Bell, see [5], which do not use the
von Neumann assumptions [3] to limit the hidden variable
theories. The two theorems are based, except for realism, on
noncontextuality assumption [4] or the locality assumption
[7]. The latter one is based on a very strong relativistically
motivated criterion of direct causal independence of events
which are spatially separated (they can have a common cause
but cannot influence each other directly) and the additional
“natural” assumption that one may have stochastic processes
which are statistically independent (for details see [8]).

However, it would be interesting to find a useful realm of
applicability of the criterion in [1,2]. Alicki and Van Ryn
[1,2] wrote that the criterion rules out minimal classical de-
scription. Such a description was shown above to be equiva-
lent to the von Neumann theorem [3] but does this make it
useless, like the theorem? Certainly not. It will be shown
here that the condition makes impossible a classical proba-
bilistic description which is using the tools of classical field
theory or aims at describing the system via phase-space
methods (e.g., Wigner quasidistributions), as suggested by
Alicki and Van Ryn [1,2]. Simply, under the condition [1,2],
an attempt to use such methods would fail—because the qua-
siclassical description requires the possibility of having ei-
ther singular and/or nonpositive distributions. Thus the form
of nonclassicality detected by the criterion in, e.g., quantum
optics is limited to the phenomena which do not have a
model in terms of statistical distributions of random classical
electromagnetic fields.

To illustrate this, let us use the example in Refs. [1,2] and
embed it into quantum optics of a single mode field. This can
easily be done, e.g., by assuming that the sole two eigen-
states of the operator A are |0> and |1>, i.e., the vacuum state
and the one-photon state. Thus the eigenstates of the operator
B are some linear combinations of the two. So is the pure
state |¢)=0.391]|0)+0.920|1), which gives the optimal real-
ization of the criterion: (B?)>(A?) despite A=B=0.

A direct comparison with classical theory can be made if
one uses the P representation. It is based on the overcom-
plete continuous basis of coherent states, denoted here as |a>.
In this formalism a general density operator reads

o= f P(a)]a)alda, )

with d>a=d(Re a)d(Im ). The operators are determined by
their diagonal matrix elements, e.g., <a|A|a>, which are usu-
ally denoted as Ay(a,a”). The averages are given by
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TrAp= J Ag(a, a)P(a)|a)ald®a. (4)

That is the operators are represented by functions, and there-
fore the picture apparently looks classical. However, non-
classical phenomena occur when P(a) are not non-negative
or are more singular than a delta function. It is well known
that superpositions of two Fock states are highly singular,
thus suitably selected observables must reveal the impossi-
bility of treating relation (4) as a model employing probabi-
listic distribution of classical amplitudes and a functional
representation of the observables.

Thus the criterion in [1,2] belongs to the same class of
nonclassical effects as antibunching or 100% interferometric
contrast of products of intensity fluctuations observed by
multiple detectors, etc. More general claims based on the
criterion are unfounded.

These remarks on the example of Alicki and Van Ryn
[1,2] given above were tailored such that the best features of
the criterion were stressed. However, one can also present a
“complementary” discussion of the specific example given in
[1,2]. Tt will be shown that the example has not only a clas-
sical model but even a classical realization. Let us take a
balanced Mach-Zehnder interferometer. It is well known that
such a device is capable of performing any unitary (2)
transformation on a photonic qubit (with the two distinguish-
able states of being in the upper beam and in the lower
beam). But it also well known that there is no distinction
between second-order interference (in terms of fields) in the
quantum and classical realm; see [15]. Thus if one takes as
the inputs to the two entry ports of the interferometer, 1 and
2, two classical analytic signals I(¢);=a;I(f) with amplitudes,
a;, as in |@) [and both signals following the same temporal
behavior, I(¢)], then in the output ports one receives a/ (1),
with a/=2; ,_; ,U;;a; (we skip the retardation effects). The
response of a detector is proportional to the intensity of the
field impinging on it. Thus, the probability to register a count
in output i is given by ((|a/I(1)|?)), where {{ )) denotes some
time integration over the detector’s time resolution.

Therefore one can tune the interferometer in such a way
that it unitarily transforms qubits of amplitudes (1,0) and
(0,1) into two basis states of the observable A; i.e., it per-
forms a transformation U(A);; (the other tunings will be for B
and B—A of the example). The experimentally observable
averages are given by

> N al1(0?)
=12
1)) ’

where \(X); are equal to the eigenvalues of the observables
X=A, B, or C of the example and ai’ now stands for
2, j=12U;(X)a;. Just a glance reveals that the predictions of
the quantum example and these classical models are identi-
cal. Even (A-B),, is always positive [16].

The same algebra holds for the polarization version of the
experiment, as in [6]. Nonclassicality may be shown only if
one considers that photonic nature of light may introduce
antibunching effects at the detection stations or nonclassical

(X)av = (5)

024103-3



BRIEF REPORTS

correlations between the trigger (idler) and the detectors
measuring the polarization of the signal photon (as it was
done in [6]). Thus in the experiment [6] the sole nonclassi-
cality is due to the statistical properties of the PDC process
[17] and cannot be analyzed directly using only the observ-
ables of the example in [1,2].

The presented results of this section, despite claims in
[10], are concurrent with those presented in [9,10] which
pertain to analysis of optical experiments, which involves the
field-theoretic approach. The conclusion in [10] is that in this
context “only experiments with single photons can show di-
rectly deviations from classical probabilistic model.” This
exactly why statistical properties of the PDC process were
used in the discussed experiments [6], as they allow one to
have a heralded (“event ready” [11]) single photons. Such a
state preparation gives nonclassical phenomena. It is well

PHYSICAL REVIEW A 79, 024103 (2009)

known that, e.g., very weak coherent pulses do not reveal
any nonclassicality neither in interference nor in correlations
(e.g., antibunching is impossible no matter how weak is the
pulse). As it was argued above this is the sole nonclassical
feature of the experiments, which is not reflected in the prob-
abilities required to compute the average values of the con-
sidered observables [Eq. (5)]. Note that the fact that the non-
classicality criterion is equivalent to von Neumann’s theorem
is now admitted by Alicki ([10], Sec. 3).
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