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Materials that exhibit loss or gain have a complex-valued refractive index n. Nevertheless, when considering
the propagation of optical pulses, using a complex n is generally inconvenient—hence the standard choice of
real-valued refractive index, i.e., ns=Re��n2�. However, an analysis of pulse propagation based on the second-
order wave equation shows that use of ns results in a wave vector different to that actually exhibited by the
propagating pulse. In contrast, an alternative definition nc=�Re�n2�, always correctly provides the wave vector
of the pulse. Although for small loss the difference between the two is negligible, in other cases it is significant;
it follows that phase and group velocities are also altered. This result has implications for the description of
pulse propagation in near resonant situations, such as those typical of metamaterials with negative �or other-
wise exotic� refractive indices.
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I. INTRODUCTION

Recent work in metamaterials and negative refractive in-
dex media1 �1–8� has focused attention on propagation in
media with exotic values of permittivity � and permeability
�, as well as those with significant loss or gain, where � and
� are complex valued. These material properties �i.e., � and
�� impact directly on the refractive index, and hence on the
wave vector � and phase and group velocities �9,10�.

When considering analytical solutions of the wave equa-
tion, it is often convenient to allow the propagation wave
vector � and refractive index n to be complex valued, based
on the definition n2=c2��, so that �= ��2n2 /c2�1/2. However,
although this leads to many useful results, the approach also
has some serious drawbacks. For example, the sign of the
imaginary part of �, which determines whether the wave
experiences gain or loss, needs to be specified according to
the chosen direction of propagation. Worse, in the envelope
and carrier description of pulse propagation, which is com-
mon in nonlinear optics �e.g., see �11��, the presence of a
complex wave vector in the carrier function is very inconve-
nient, since it requires the nonlinear coefficients to be ad-
justed to compensate for the distance propagated. In addi-
tion, determining other parameters such as the group velocity
under these circumstances is also a nontrivial task �see, e.g.,
�12��. For these and other reasons, it is often preferable to
define a real-valued wave vector k and to treat the imaginary
component separately.

The standard approach is to simply define k as the real
part of �, i.e., k= �� /c�Re��n2�=�ns /c. However, an alter-
native definition based on k2= �� /c�2 Re�n2�=�2nc

2 /c2 has
been used with advantage in studies of causality-based con-
straints for negative refraction �13,14�, although neither pa-
per remarked on the nonstandard definition. In that context,
this alternative definition is required because it keeps the real
and imaginary parts of n2 separate, and so ensures the
Kramers-Kronig relations �15� continue to hold, linking the

two parts and enforcing causality. In contrast, the standard
complex n is not required to be causal, although it is so in the
case of passive �lossy� media �see, e.g., �16,17��.

In the present paper, the two definitions will be compared
using the predictions of the second-order wave equation as
the benchmark. It is shown that for field propagation in me-
dia with loss �“passive”� or gain �“active”�, where the use of
a complex wave vector is particularly problematic, the alter-
native definition has the clear advantage that it exactly
matches the spatial oscillations of the field. In contrast, the
standard definition gives an imperfect match, and the de-
scription only recovers the true propagation due to the pres-
ence �and inconvenience� of additional correction terms.
Note that the alternative definition �for nc� is not in any sense
equivalent to one based on an effective refractive index, such
as might occur in �e.g.� waveguides: it is an alternative
choice of definition for the bulk refractive index.

Because I focus on the propagation of waves, in Sec. II, I
present a short description of the second-order wave equa-
tion. Then, in Sec. III, I give some definitions required for
the handling of both the standard case �Sec. IV� and the new
alternative definition �Sec. V�. After the discussion of the
similarities and difference between the definitions in Sec. VI,
I end by presenting my conclusions in Sec. VII.

II. SECOND-ORDER WAVE EQUATION

The second-order wave equation is commonly used in op-
tics �at least as a starting point� in descriptions of propaga-

tion and results from the substitution of the ��H� Maxwell’s

equation into the ��E� one in the source-free case �see, e.g.,
�11��. In homogeneous media, with �2=�x

2+�y
2+�z

2 and
�a�� /�a, the frequency space wave equation is

�2E� + �2E� = 0. �1�

Here �2=���2 is the square of a complex propagation
wave vector since both � and � can be complex. We can
relate it to a complex refractive index squared quantity with

*dr.paul.kinsler@physics.org
1Also commonly called negative phase velocity �NPV� media.
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�2 = n2�2

c2 . �2�

When considering the propagation of fields, it is convenient
to split �2 up into two parts �e.g., its real and imaginary
parts�. Here I write �2=k2+ ı�2 so that Eq. �1� becomes

�2E� + k2E� + ı�2E� = 0. �3�

When solving this wave equation, we will usually want the
first two terms to give plane-wave solutions, with the rest
component containing loss and nonlinearity.2 This is an im-
portant step, since although we might solve linear problems
using a complex valued n, realistic situations are not so eas-
ily handled.

The first two terms in Eq. �3�, taken in isolation, have
plane-wave solutions if k is real valued; I call this the “un-
derlying propagation.” The third term in Eq. �3� is the “re-
sidual” component, which controls the discrepancy between
the true propagation and the underlying propagation. Al-
though in the case of small loss or gain the residual compo-
nent will be only a weak perturbation, the theory presented
here is valid for any strength.

As an aside, if we specialize to the case of fields propa-
gating along the z direction, using the carrier and envelope
models of pulse propagation �11,19–22�, we would write
E�z , t�=A�z , t�exp�ı��t−kz��+c.c. to accommodate the rap-
idly oscillating behavior of the carrier frequency: this carrier
represents the underlying propagation for a specific fre-
quency. This then leaves only the �usually� slowly varying
envelope A�z , t�, which would be affected only by the re-
sidual component.

Returning to the wave equation of Eq. �3� and taking
propagation along the z axis, we can now factorize it using
the Green’s functions �19,21,23� to give two first-order equa-
tions that are coupled only by the residual component. At the
same time we can split the field into forward �E+� and back-
ward �E−� parts �i.e., set E=E++E−�, to give a pair of
coupled, counterpropagating, first-order differential equa-
tions. These are

�zE� = � ıkE� �
�2

2k
�E+ + E−� . �4�

Here the underlying propagation is, as desired, plane-wave-
like, since the first right-hand side �RHS� term just adds an
ıkz behavior onto the frequency dependent ı�t. The propaga-
tion is then modified by the second RHS term, i.e., the
�2-dependent residual component. A feature of this approach
is that we see that any contribution �whether linear or not�
that is included in the residual component will couple the
forward and backward fields together �see �19,21� for more
discussion�. Since such terms are scaled by k in Eq. �4�, they
change �but in a simple way� under my alternative form for
the refractive index.

Here I consider only the one-dimensional linear case,
where �2 is independent of the field. This covers the cases of

both loss and/or gain �i.e., in passive and/or active media�;
however for simplicity I will often only refer to loss; never-
theless the case of gain is always allowed for �since gain can
be seen as “negative loss”�.

If we take the propagation to be of the form
E+=E0 exp�ı��t−k�z��, with E−=0, then Eq. �4� gives us

− ık� = − ık +
�2

2k
, �5�

so that �2	0 corresponds to loss for a forward propagating
wave. Further, if we consider instead the oppositely propa-
gating wave, Eq. �4� automatically ensures the necessary
change in sign to ensure a loss stays loss, and a gain stays a
gain. In contrast, when using a complex-valued n, care must
be taken to ensure the correct sign �see e.g., �24��.

III. DEFINITIONS

We have that �2 and n2 are �in general� complex valued,
and � and c are strictly real valued. Thus when choosing the
propagation wave vector we need to decide what to do about
the imaginary parts. Our choice then affects the performance,
utility, and convenience of the refractive index, phase veloc-
ity, and group velocity.

I now define some useful intermediate quantities to ex-
press the refractive index conveniently; I introduce n0

2= �n2�
and the angle 
=Arg�n2� so that

n2 = n0
2eı
, �6�

n = n0eı
/2. �7�

Whether or not specific values of 
 correspond to a negative
refractive index or negative phase velocity can be determined
from the criteria for � and � given in �25�.3 I also define a
reference wave vector kn such that

kn
2 =

�2

c2 n0
2. �8�

The standard form for a real-valued refractive index is

ns = Re���n2�� = n0 cos



2
. �9�

I have already noted that many treatments leave n as a
complex-valued quantity, leading to a complex wave vector
k, and that while useful in many circumstances, in the con-
text of pulse propagation it brings some significant disadvan-
tages.

An alternative definition for the refractive index is

nc = �Re�n2� = n0
�cos 
 , �10�

where nc
2 satisfies the Kramers-Kronig relations �15� in part-

nership with the imaginary part Im�n2�; this definition has
already been used in the literature �e.g., see the recent
�13,14��.

2We can even incorporate diffraction in the rest by including the
transverse parts of �2; see �18�.

3Note that the 
 used here corresponds to 
+ in the summary in
�26�.
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IV. STANDARD FORM

The standard form for the wave vector based on the stan-
dard form of refractive index �see Eq. �9��,

ks
2 =

�2

c2 �Re��n2��2 = kn
2 cos2


2
, �11�

ks = kn cos



2
. �12�

Thus ks is always real valued and can be negative in some
circumstances. The phase velocity is then the usual
vp=c /ns, and the �inverse� group velocity simply vg

−1= dk
d� .

Let us now consider how this standard form of ks
2 looks

when substituted into the second-order wave equation. To do
this let us express �2 in terms of ks

2 and kn
2,

�2 = ks
2 + ıkn

2�s
2, �13�

with the residual behavior described by

ı�s
2 = ı�sin 
 + ı sin2


2
	 . �14�

This standard choice of k�ks leads to a second-order
wave equation of the form

�z
2E� + ks

2E� + ıkn
2�s

2E� = 0. �15�

When factorized, as briefly described in Sec. II, we get a pair
of coupled, counterpropagating, first-order equations. These
are

�zE� = � ıksE� �
kn

2

2ks
�s

2�E+ + E−� . �16�

Since the residual component ı�s
2 on the RHS of Eq. �16�

contains a real part as well as an imaginary part, it is not pure
loss. The real part will impose oscillations on the field as it
propagates, thus altering the wave vector away from the as-
sumed value ks. However, the real part is quadratic in 
,
being �sin2 


2 , so for small losses the correction to the under-
lying propagation will be small. If we rewrite Eq. �16� to
incorporate the correction into the leading term, we get

�zE� = � ıks�1 −
kn

2

2ks
2sin2


2
	E�

� ı
kn

2

2ks
sin2


2
E− �

1

2

kn
2

2ks
�sin 
��E+ + E−� . �17�

As before, the first term on the RHS gives plane-wave-like
propagation, but now with a wave vector that differs from ks.

I will now express the effective propagation wave vector
in terms of kn and 
. To simplify the description, I apply the
usually excellent �27� approximation that the effect of E− on
the propagation can be ignored �i.e., set E−=0�. Hence,

�zE+ = + ıks�E+ −
1

2

kn
2

2ks
sin 
 E+, �18�

with

ks� = kn cos



2
�1 −

1

2
tan2


2
	 . �19�

For 
�1, we then find that

ks�
2 
 kn

2 cos 
 . �20�

Thus although I began with the standard definition, which
assumes that the �forwardlike� field will propagate with a
wave vector k�ks, we see instead that it propagates with a
wave vector k
kn

�cos 
. As we will see, this approxima-
tion to the effective propagation wave vector is usually close
to that of the alternative form discussed below; the difference
�for small loss� is of order 
4.

The standard phase velocity vp is

vp
2 =

�2

ks
2 =

c2

n0
2 cos2 


2

. �21�

However, if we were to use the effective propagation
wave vector ks� we would get a different answer; in the case
of the approximate form of Eq. �20�, it turns out the same as
the alternate form given in Sec. V.

The standard group velocity vg can be derived using

2ks��ks = ks
2� 2

n0
���n0� − ���
�tan




2
+

2

�
	 . �22�

Hence,

vg
−1 = ��ks =

ks

�
�1 +

�

n0
���n0� −

�

2
���
�tan




2
	 . �23�

Just as for phase velocity, if we were to use the effective
propagation wave vector ks�, we would get a different answer;
in the case of the approximate form of Eq. �20�, it turns out
the same as the alternate form given in Sec. V.

V. ALTERNATIVE FORM

The alternative form for the wave vector, based on the
product �� �i.e., the square of the refractive index, see Eq.
�10��, is

kc
2 =

�2

c2 Re�n2� = kn
2 cos 
 , �24�

kc = kn
�cos 
 . �25�

Thus kc is either real valued or is pure imaginary. Real values
of kc correspond to a regime of propagating waves, imagi-
nary values to that of evanescent waves. The phase velocity
is then up=c /nc, and the �inverse� group velocity simply
ug

−1=
dkc

d� ; both will differ from the standard vp and vg and are
given below. Note that kc

2 is related to ks
2 by

kc
2

ks
2 =

kn
2 cos 


kn
2 cos2 


2

= 1 − tan2


2
. �26�

With this alternative choice, it is simple to express �2 in
terms of our wave vector kc

2,
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�2 = kc
2 + kn

2�c
2, �27�

with the residual behavior described by

ı�c
2 = ı sin 
 = ı�s

2 + sin2


2
. �28�

For small 
�1, �s and �c differ only by terms of order 
2.
Note that the losslike part of the residual component �i.e., of
Im��s

2� or Im��c
2�� is the same for either form; but that only

this alternative form of k �i.e., kc� ensures that the residual
component is purely lossy, and will not change the spatial
oscillations of the field away from those of the propagation
wave vector. However, the alternative form of k leads to the
underlying propagation becoming evanescent if Re�n2�	0.

With this choice of wave vector �i.e., k�kc�, the second-
order wave equation can be written as

�z
2E� + kc

2E� + ıkn
2�c

2E� = 0. �29�

When factorized, as briefly described in Sec. II, we get

�zE� = � ıkcE� �
kn

2

2kc
�c

2�sin 
��E+ + E−� . �30�

The phase velocity up is now faster than for the standard
definition, being

up
2 =

�2

kc
2 = vp

2�1 − tan2


2
	−1

. �31�

The corresponding group velocity ug can be derived using

2kc��kc = kc
2� 2

n0
���n0� − ���
�tan 
 +

2

�
	 . �32�

Hence,

ug
−1 = ��kc =

kc

�
�1 +

�

n0
���n0� −

�

2
���
�tan 
	 . �33�

Here the comparison of ug with the standard form vg is
less simple than for phase velocities: the prefactors are dif-
ferent ��cos�
� compared to cos


2 �; also the bracketed terms
differ slightly �with tan 
 not tan


2 �. However, for 
	 /2,
�cos�
�	cos


2 , so that the group velocity ug is faster than
the standard vg.

VI. DISCUSSION

As already noted, for small losses the standard and alter-
native definitions of n �and also those of k� nearly coincide,
but they diverge as the loss increases. Indeed, for �e.g.,
strongly resonant� situations where Re�n2�	0, the underly-
ing propagation �i.e., that defined by ks or kc� can be of a
completely different character. The simplest case is the trivial
one where Im�n2�=0. Here ks

2=kc
2, and both are always posi-

tive; both �s
2 and �c

2 are zero. The descriptions are identical.
Next we add a small imaginary part to n2, with �
��1, so

that ks and kc no longer match. The losslike part of the re-
sidual component is �as always� the same in both cases, but a
standard �ks� description will be modified by an additional

oscillation, giving an effective wave vector comparable to kc.
This is perhaps the most typical regime for device operation;
being either the low loss case of normal �positive phase ve-
locity� propagation, or the low loss case of NPV propagation.

As 
 increases, the two descriptions diverge, as summa-
rized on Fig. 1. We see that the standard description
�k�ks� gives qualitatively similar behavior for all �
��;
being one of a wave vector ks with added loss and a correc-
tion to achieve the true propagation wave vector. Obviously,
the larger the 
, the larger the wave vector correction.

The alternative choice of k�kc behaves differently. When
�
�= /2, i.e., when n2=Im�n2�, the wave vector kc vanishes,
giving no underlying oscillatory evolution as the field propa-
gates. The only evolution is that given by the residual com-
ponent, i.e., the loss specified by Im�n2�. Then, as �
� in-
creases further, so that Re�n2�=Re�c2���	0, we find that kc
takes on an imaginary value: this is just the case of plas-
mons, where Re���� �−� ,0�, but Re���� �0,��. Here the
imaginary kc means that underlying propagation becomes
evanescent; and any loss then acts in addition to that.

Note that the loss in the alternative description is simply
Im�n2�—it differs from that used in the standard picture. In
particular note that this is not identical to the sum of the
permittivity-based “loss” �i.e., Im���� and the permeability-
based “loss” �i.e., Im����. Further, at least in the case of
doubly passive media �26�, Im�n2�	0 is in fact a criterion
for NPV; i.e., loss is a criterion for NPV. More general state-
ments on this relationship have been made when placing
causality based constraints on negative refractive index me-
dia using the Kramers-Kronig relations �13,14�.

Lastly, whichever choice of k or n we make, it depends
only on the sum of the complex phases of � and �. In con-
trast, the summary given by �26� shows that the NPV criteria
of �25� also depends on the difference of those phases. This
sensitivity arises because the presence of NPV depends on
the relative phases of the electric and magnetic fields; how-
ever the second-order wave equation does not distinguish
between the electric and magnetic responses, considering
only their nett effect on the selected field �here, the electric
field E�.

VII. CONCLUSION

Here I have shown that the standard definition for a real-
valued refractive index �i.e., n�ns=Re��n2�� is only an ap-

FIG. 1. Comparison of k values, as a function of 
=Arg����.
The alternative choice kc is shown using a solid line when it is real
valued, and dotted when imaginary �“ıkc”�; the standard choice �ks�
is given by the dashed line, with the approximate corrected form
�ks�� from Eq. �20� as shown by the dot-dashed line.

PAUL KINSLER PHYSICAL REVIEW A 79, 023839 �2009�

023839-4



proximation to the true real-valued refractive index seen by a
propagating optical pulse. Instead, the true propagation wave
vector is based on the alternate definition n�nc=�Re�n2�.
This conclusion was reached by examining how fields are
actually propagated by the widely used electromagnetic
second-order wave equation, in the case where loss �or gain�
is treated as a modification to an underlying propagation
based on a real-valued refractive index or wave vector. Treat-
ments of pulse propagation that use this alternative nc �and
hence kc� will not only be using wave vector that exactly
matches the propagation, but adjustments to that propagation

will involve only gain or loss. In contrast, for the standard
treatment based on ns, ks, corrections to the spatial oscillation
of the fields must be applied along with those for gain or
loss.
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