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Antiphase dynamics in a multimode semiconductor laser with optical injection
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A detailed experimental study of antiphase dynamics in a two-mode semiconductor laser with optical
injection is presented. The device is a specially designed Fabry-Pérot laser that supports two primary modes
with a terahertz frequency spacing. Injection in one of the primary modes of the device leads to a rich variety
of single and two-mode dynamical scenarios, which are reproduced with remarkable accuracy by a four-
dimensional rate equation model. Numerical bifurcation analysis reveals the importance of torus bifurcations in
mediating transitions to antiphase dynamics and of saddle node of limit-cycle bifurcations in switching of the

dynamics between single- and two-mode regimes.
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I. INTRODUCTION

The semiconductor laser with optical injection is a con-
ceptually simple system that nevertheless has complex non-
linear dynamical properties. Phenomena of interest that have
been observed experimentally include subharmonic reso-
nance [ 1], period-doubling route to chaos [2,3], and bistabil-
ity of wave mixing and injection locked states [4,5]. Use of
numerical continuation tools has enabled diverse dynamical
states of the single-mode edge-emitting system with optical
injection to be linked together in a consistent way [6]. More
recently, a global picture of the complex dynamics of polar-
ization modes in vertical cavity surface emitting lasers (VC-
SELs) with orthogonal optical injection has also begun to
emerge [7].

For both fundamental and applied reasons, interest in
multimode dynamics of semiconductor lasers has increased.
This follows from their increased dynamical complexity, as
well as possible applications in optical signal processing
[8,9]. Multiple oscillating modes allow for antiphase behav-
ior, where mutual coupling of individual modal degrees of
freedom leads to anticorrelated intensity dynamics [10-14].

Recently, we have developed a specially engineered two-
mode diode laser with a large (terahertz) primary mode spac-
ing [15]. The device can be biased such that it oscillates on
two modes simultaneously with the same average power
level. Unlike the case of polarization modes in VCSELs, the
mode spacing is in the highly nondegenerate regime, allow-
ing us to develop studies of the multimode nonlinear dynam-
ics in the minimal possible two-mode system. These studies
provide a means to test models of the multimode diode laser
and to reveal new bifurcation structure that occurs beyond
the single-mode approximation [16].

A number of approaches have been developed to model-
ing the multimode dynamics of edge-emitting semiconductor
lasers. Partial differential equations will generally reproduce
experimental results, but such an approach suffers from com-
putational difficulty and the reduced level of physical insight
provided [17,18]. Rate equation approaches have proven
very successful in the case of modeling the dynamical re-
sponse of single-mode semiconductor lasers. In the case of
multimode dynamics, however, a number of different models

1050-2947/2009/79(2)/023834(7)

023834-1

PACS number(s): 42.55.Px, 42.65.Sf, 05.45.—a

have been developed that differ in how the dynamics of the
carrier density are described [14,19-21].

Here we provide an experimental and theoretical study of
antiphase dynamics when one of the two primary modes of
the device is optically injected. Among the rich variety of
multimode dynamical phenomena we have found limit cycle,
quasiperiodic and chaotic antiphase dynamics, as well as re-
gions where the optical power is largely switched to the un-
injected mode. As we will show, all of these dynamics, as
well as the familiar injection locking on a single mode, can
be found by performing a sweep over a large detuning range
of the injected field for a certain fixed injected field intensity.
As the central theme of this study, we provide a detailed
description of regions of quasiperiodic antiphase dynamics
using spectrally resolved power spectral measurements and
intensity time traces. We then demonstrate that a four-
dimensional rate equation model reproduces the overall ex-
perimental picture very well. In particular, we show how
regions of quasiperiodic antiphase dynamics that we have
observed experimentally are reproduced in numerical simu-
lations and that new bifurcation structure, which is particular
to the two-mode system considered, governs the appearance
of these dynamics.

This paper is organized as follows. In Sec. II, we describe
our device and experimental setup and we provide optical
and power spectral data that illustrate the variety of dynami-
cal scenarios that can be observed as a function of frequency
detuning at a fixed injected field strength. We also provide
intensity time traces and power spectral data characterizing
two regions of quasiperiodic antiphase dynamics. In Sec. III,
we introduce our model equations that describe the two-
mode injected system, showing how the overall experimental
picture as well as specific examples of antiphase dynamics is
qualitatively reproduced. Finally, in Sec. IV, we describe the
bifurcation structure that leads to the antiphase dynamics ob-
served.

II. EXPERIMENT

For the primary mode spacing of four fundamental Fabry-
Pérot (FP) modes (480 GHz), we observe simultaneous las-
ing of the two primary modes. We adjust the device current
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FIG. 1. (Color online) Optical spectra of the two-color device as
the frequency detuning Aw is varied at a fixed injection. Left: un-
injected mode v;. Right: injected mode ;.

in order that the time-averaged optical power in each primary
mode of the free-running laser is equal. Details of the design
and free-running lasing characteristics of the device we con-
sider can be found in Ref [15].

For our experiment, we use the two-color laser in a
master-slave configuration, where the master laser is a tun-
able laser with <100 kHz linewidth. Choosing a fixed in-
jected power level, we vary the detuning, Aw, of the injected
field from the long-wavelength mode of the device, v,. The
optical spectra of the two primary modes are shown as a
function of the frequency detuning of the injected signal in
Fig. 1 for a detuning range of -9 GHz<Aw< 14 GHz. De-
spite the fact that we vary only the frequency detuning, Fig.
1 indicates that we are dealing with a rich dynamical sce-
nario; regions of multiwavelength dynamics are interspersed
with regions of single or nearly single-mode dynamics,
where the optical power can be concentrated in either of the
primary modes. In Secs. III and IV we will show that a
minimal extension of the single-mode rate equation model
by a single dynamical variable is sufficient to account for the
presence of the uninjected mode and reproduces the experi-
mental data with remarkable accuracy.

For this injected power level the power spectral density of
the total intensity is plotted in Fig. 2. By considering the
spectrum of the total intensity we naturally exclude the an-
tiphase frequency components that are present in each region
of two-mode dynamics. From Figs. 1 and 2, the regions of
stable and unstable injection locking where the uninjected
mode is off can be identified near zero detuning. In the in-
jection locking region, a sharp single peak at the frequency
of the injected field is present in the optical spectrum at long
wavelength. In the region of unstable locking, which extends
from approximately zero detuning to —2.5 GHz, a single fre-
quency that is associated with undamped relaxation oscilla-
tions is visible in Fig. 2. This frequency is almost constant at
c. 5.5 GHz, which we identify as the relaxation oscillation
frequency of the device.

At large positive frequency detuning of 14 GHz, we find a
broad region of nearly single-mode dynamics, where the op-
tical power is concentrated in the injected mode. In this re-
gion the injected field and two weaker symmetrically placed
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FIG. 2. (Color online) Power spectral density of the total inten-
sity as a function of frequency detuning. The injected power level is
the same as in Fig. 1

components can be clearly resolved in the optical spectrum
at long wavelength. Examining Fig. 2, we find that in the
corresponding region only the detuning frequency is present.
This is then a region of wave mixing or beating between the
injected field and the long-wavelength primary mode.

As the detuning is decreased, a period-doubling bifurca-
tion occurs and we enter a region where a new frequency
equal to one half of the detuning frequency is present in Fig.
2. As indicated in Fig. 1, within this broad region we find
region (i) of two-mode dynamics, where the optical spectra
of both modes are considerably broadened. A representative
set of power spectral densities and time traces of the total
intensity and the individual modal intensities in region (i) is
shown in Fig. 3. In this figure the detuning is 10 GHz. As
expected the power spectrum of the total intensity shown in
Fig. 3(b) comprises two broadened peaks which include dis-
tinctive shoulders.

In the power spectra of the intensities of the individual
modes shown in Figs. 3(d) and 3(f) we can see a strong
antiphase frequency component with a distinct peak at c. 400
MHz. We see also that the features associated with the injec-
tion frequency and its subharmonic in each of these figures
are broadened further because of the formation of satellites
due to mixing with the low-frequency antiphase component.
Note also that the detuning of the injected signal is the domi-
nant frequency in the dynamics of the injected mode [Fig.
3(f)] but the subharmonic near the relaxation oscillation fre-
quency dominates in the dynamics of the uninjected mode
[Fig. 3(d)].

We have confirmed that the low antiphase frequency is an
independent frequency component that is not a linear com-
bination of the other frequencies present. The low frequency
is clearly visible as an envelope modulation of the intensity
in the time traces of the individual modes shown in Figs. 3(c)
and 3(e). These antiphase time traces have a distinctive saw-
tooth structure that results from the growing or decaying
oscillations that form each pulse. They are remarkably simi-
lar to the so-called regular pulse packages that can be ob-
served in semiconductor lasers with optical feedback in the
short external cavity regime [22]. However, in the case of
optical injection, the fast time scale is determined by the
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FIG. 3. Experimentally measured antiphase dynamics, region
(i). The frequency detuning is 10 GHz and the injected power level
is the same as in Fig. 1. Left panels: Intensity time traces. Right
panels: Power spectral densities. [(a) and (b)] total intensity. [(c)
and (d)] uninjected mode. [(e) and (f)] injected mode.

relaxation oscillation and its harmonics, rather than the ex-
ternal cavity frequency.

As the detuning is decreased further a reverse period dou-
bling occurs and a simple single-mode wave-mixing region
is found. Adjacent to this region, we next find a second broad
region of two-mode dynamics, which has a lower boundary
at zero detuning. For reasons that will become clear, we sub-
divide this region into two, and label the subregions as re-
gions (ii) and (iii). Broadly speaking, region (ii) is found
once the detuning is less than the relaxation oscillation fre-
quency. Note that across the boundary between the single-
mode wave-mixing region and region (ii), the power spec-
trum of the total intensity briefly becomes strongly
broadened. Then, as the detuning is decreased further, the
dynamics become simpler with the relaxation oscillation fre-
quency, and its harmonics, largely determining the dynamics
of the total intensity.

A representative set of power spectral densities and time
traces in region (ii) from inside this boundary is shown in
Fig. 4. The dynamics of the total intensity is now largely
determined by the relaxation oscillation and its harmonic al-
though weak and broadened satellite features are also visible
[cf. Fig. 4(b)].

From Figs. 4(d) and 4(f), we see that the dynamics of the
individual modes are determined by a series of frequencies.
In particular, there is a strong low-frequency component
present in the individual dynamics of both modes that is
almost completely in antiphase. As was the case in region (i),
this low-frequency component is responsible for the appear-
ance of a cascade of frequencies that are centered at the
relaxation oscillation peak and its harmonic.

As the detuning is decreased further, the frequency differ-
ence between the relaxation oscillation and the detuning ap-
proaches half of the relaxation oscillation frequency. In this
region a weak period-two region of the total intensity is
found. For detunings less than approximately one half the
relaxation oscillation frequency we find coupled chaotic dy-
namics that are characterized by broad-band spectra.

For negative detunings, the single-mode locking region is
found, which extends to a detuning of approximately
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FIG. 4. Experimentally measured antiphase dynamics, region
(ii). The frequency detuning is 4 GHz and the injected power level
is the same as in Fig. 1. Left panels: Intensity time traces. Right
panels: Power spectral densities. [(a) and (b)] total intensity. [(c)
and (d)] uninjected mode. [(e) and (f)] injected mode.

—5 GHz. At the boundary of the stable locking region, inside
of which there is no structure in the power spectrum, we find
region (iv), where the spectrum is again strongly broadened.
Decreasing the detuning further, the spectrum is almost
structureless. Here, a weak feature at the detuning frequency
can be seen. This corresponds to the transfer of the optical
power to the uninjected mode.

III. MODELING OF THE DEVICE RESPONSE

We have adapted the well-known model of a single-mode
laser [ 1,19] with optical injection to account for the presence
of a second lasing mode. The system of equations in normal-
ized units may be written as follows [16]:

E;=i(1+ia)g,2n+1)-1]E,, (1)
E={3(1+ia)g,2n+ 1) - 1]-iAw}E, + K,  (2)

% 3)

Ti=P-n-(1+2n)>, g, |E.

where the nonlinear modal gain is
-1
en=e(1+ €2 BulES) " )

Here E, and E, are the normalized complex electric field
amplitudes of the modes and n is the normalized excess car-
rier density. The bifurcation parameters are the normalized
injected field strength K and the angular frequency detuning
Aw. Further parameters are the phase-amplitude coupling «,
the product of the carrier lifetime and the cavity decay rate 7,
the normalized pump current P, and the linear modal gain
gﬁfl)). In our numerical simulation we used the values a=2.6,

T7'=0.00125, P=0.5, (twice threshold), and g'”=1. Then
the Llue of the relaxation oscillation frequency is wgqo
=V2P/T~5.5 GHz, in agreement with experiment. The
cross and self-saturation are determined by €8,,, and we use

023834-3



OSBORNE et al.

detuning (GHz)

|
o

10 15

5
frequency (GHz)

FIG. 5. (Color online) Power spectral density of the total field
intensity |E;|*+|E,|* obtained from numerical integration of Egs.
(1)=(3) as a function of the detuning. The injected field strength is
K=0.008.

the values €=0.01, B1,=/,;=2/3, and B;;=,,=1, which is
consistent with the stability of the two-mode solution in the
free-running laser.

Note that although we have provided a complex equation
for the field E;, the phase of E; is in fact decoupled, leading
to a four-dimensional system of equations where only the
intensity of the uninjected mode influences the dynamics. In
addition, the single-mode dynamics is contained within the
invariant submanifold (E;=0) in these equations. Our model
equations are therefore a minimal extension of the (three
dimensional) single-mode case and follow from the fact that
the primary mode spacing in the device considered is in the
highly nondegenerate regime.

This system only considers a single-averaged carrier den-
sity and a general cross and self saturation of the gain. More
complex models of the multiwavelength dynamics are avail-
able that are derived by considering additional Fourier com-
ponents of the carrier density. One example includes the ef-
fect of static spatial hole burning explicitly leading to a
system with two carrier density equations, one defined for
each field [21]. However, we have found that these equations
lead to some unphysical results in the injected system, such
as a stable injection locked region where the uninjected
mode is not suppressed.

Another modeling approach [14,23] includes an asymmet-
ric term that is associated with a dynamic grating formed in
the carrier density profile. This term effectively represents
the mutual injection or wave-mixing interaction of the pri-
mary modes and has been shown to play a role in the free-
running switching dynamics of Fabry-Pérot lasers [14]. This
grating is also responsible for the formation of four-wave-
mixing sidebands in the free-running two-mode laser consid-
ered here [15]. However, we have found equivalent experi-
mental results for injection at both the long- and short-
wavelength primary modes, suggesting that this grating does
not significantly affect the dynamics. We attribute this to the
very large separation of the primary modes of the device
(480 GHz), which means that the dynamic grating is weakly
developed, with large sidebands observed because of en-
hancement by the Fabry-Pérot cavity.

Using model Egs. (1)—(3), in Fig. 5 we plot the power

PHYSICAL REVIEW A 79, 023834 (2009)

(iii) i i (ii)

o

o @

intensity (arb. units)

5
frequency detuning (GHz)

FIG. 6. Local extrema of the field intensities (a) |E,|* and (b)
|E,|? obtained from numerical integration of Eqs. (1)—(3) as a func-
tion of the detuning. The injected field strength is K=0.008. Upper
panel: uninjected field. Lower panel: injected field.

spectral density of the total field intensity |E;|>+|E,|> for
fixed K and for detuning -9 GHz<Aw<14 GHz. The
value of K is 0.008 which was chosen as it provided the best
possible agreement with experiment over the whole range of
frequency detuning. When compared with the experimental
result of Fig. 2, we find that the level of qualitative agree-
ment is excellent.

To further illustrate that the individual modal dynamics
are also well reproduced, in Fig. 6 we plot the local extrema
of the numerically calculated field intensities, |E,|> and |E,|?,
over the same detuning range. If we examine the structure of
Fig. 6, we can immediately identify two regions where the
uninjected mode is off and that the position and extent of
these regions is in good qualitative agreement with the ex-
perimental results shown in Fig. 1. Thus not only do the
model equations reproduce the dynamics of the total inten-
sity, they also provide an accurate picture of the regimes of
single and multimode dynamics of the system. Note that this
agreement extends to the model reproducing the strong sup-
pression of the injected mode at large negative detunings that
is observed experimentally.

In Fig. 6, vertical arrows indicate regions (i)—(iv) of two-
mode dynamics that we have identified experimentally. For
detailed comparison with experiment, we now provide the
numerical intensity time traces and corresponding power
spectra for the two regions of antiphase dynamics labeled (i)
and (ii).

In Fig. 7, we show these data for the total intensity and for
the intensities of each of the two modes at a detuning of 10.0
GHz, which is located in region (i). What is most striking is
the reproduction of the sawtooth pulse package structure that
was seen experimentally. The envelope period of the pulse
packages is seen to be c. 300 MHz, in broad agreement with
experiment. The cascade of equally spaced frequencies that
begins at this envelope frequency is also almost completely
in antiphase. The power spectrum of the total intensity is also
seen to comprise two broad cascades formed by the envelope
frequency, one centered at the detuning frequency and an-
other at the relaxation oscillation frequency. However, the
number of these peaks is much larger than was found experi-
mentally in the case of the individual modes and, in fact, the
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FIG. 7. Numerically computed antiphase dynamics, region (i).
The frequency detuning is 10.0 GHz. The injected field strength is
K=0.008. Left panels: Intensity time traces. Right panels: Power
spectral densities. [(a) and (b)] total intensity. [(c) and (d)] unin-
jected mode. [(e) and (f)] injected mode.

cascade structure that is seen in the numerical data for the
total intensity is poorly resolved in the experiment.

In Fig. 8, we show these data for the total intensity and for
the intensities of each of the two modes at a detuning of 3.4
GHz, which is located in region (ii). We have had to choose
a slightly smaller value for the detuning frequency for this
simulation because of the discrepancy that exists between the
boundary of the central two-mode region that was found nu-
merically and in the experiment. Nevertheless, the qualitative
agreement with the experimental time traces and power spec-
tra is again very good in this region. We note in particular the
experimental intensity waveforms of the individual modes
that are peaked in the case of the uninjected mode and
rounded for the injected mode are well reproduced.

IV. BIFURCATION ANALYSIS

The bifurcations evident from Figs. 5 and 6 can be under-
stood from the global bifurcation diagram in the Aw vs K
plane as shown in Fig. 9. Let us focus on the vertical line at
injection strength K=0.008, which was used in Figs. 5 and 6
and identified to best fit the experimental data shown in Figs.
1 and 2. At large Aw=15 GHz we are in a two-mode wave-
mixing region, with the uninjected mode w; largely sup-
pressed and weakly modulated. This agrees with the experi-
mental observation of a weak but nonvanishing uninjected
mode power in the region above region (i) in Fig. 1. As we
lower the detuning frequency to Aw=12 GHz, which is
about twice the relaxation frequency wgrg, the dynamical
coupling between the uninjected mode and injected mode via
the carrier density n [Eq. (3)] becomes relevant, and gives
rise to a two-mode period-doubling bifurcation (magenta line
in Fig. 9). This bifurcation line forms the upper boundary of
the dynamical two-mode region (i), which we experimentally
identified in Figs. 1 and 2.

As we further decrease Aw, we cut through a regime
which is delineated by a torus bifurcation line (red line in
Fig. 9) at Aw= 10 GHz. We emphasize that this torus bifur-
cation is a feature of the two-mode system that is not present
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FIG. 8. Numerically computed antiphase dynamics, region (ii).
The frequency detuning is 3.4 GHz. The injected field strength is
K=0.008. Left panels: Intensity time traces. Right panels: Power
spectral densities. [(a) and (b)] total intensity. [(c) and (d)] unin-
jected mode. [(e) and (f)] injected mode.

in the single-mode case. Due to this torus bifurcation an
additional incommensurate low frequency of about 300 MHz
appears as previously identified in the discussion of the char-
acteristic sawtooth antiphase time traces of Fig. 7. Note that
outside of the boundary of the torus bifurcation, the two-
mode period-doubled limit cycle is only weakly stable and
noise will be able to excite low-frequency antiphase dynam-
ics. This explains the relatively broad region of antiphase
dynamics observed experimentally in Fig. 2. As we further
lower the detuning frequency to Aw=7 GHz, the two-mode
limit cycle exchanges stability with a single-mode limit cycle
in a transcritical bifurcation (striped blue line in Fig. 9). At
this point the uninjected mode is completely switched off
and the limit cycle in the single-mode manifold becomes
stable, forming the lower boundary of the region (i). This
scenario is in agreement with experimental data of Fig. 2,
where we observe that the spectral density evolves continu-
ously across the lower boundary of region (i).

As we decrease Aw further, the single-mode period-
doubled limit cycle undergoes an inverse period-doubling bi-
furcation (dashed magenta line in Fig. 9) and a single-period
limit cycle is generated. This is experimentally verified by
the disappearance of the frequency at Aw=4 GHz, which
happens below the lower boundary of region (i), i.e., after
we have switched to a single-mode state.

The generated single-period limit cycle, which experi-
mentally corresponds to the single-mode wave-mixing state,
remains stable until we encounter a saddle-node bifurcation
of limit cycles [orange line, saddle node of limit cycle (SNL)
in Fig. 9] at Aw=4 GHz. At this point the stable single-
mode limit cycle collides with an unstable one, and both
limit cycles disappear [25]. The dynamics are then blown out
from the single-mode manifold where the associated bursting
dynamics explains the brief broadening which is observed in
the experimental spectrum (Fig. 2) and in the numerical
spectrum (Fig. 5). Close to the bifurcation point, the remain-
der of the stable limit cycle still forms a slow region on the
single-mode manifold, and thus the period of the resulting
two-mode orbit diverges close to the bifurcation point. Away
from the region of bursting dynamics this new incommensu-
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FIG. 9. (Color) Bifurcation diagram in the Aw vs K plane of Eq.
(1)=(3) calculated using the numerical continuation tool AUTO-07P
[24]. Solid and dashed lines denote bifurcations of two-mode and
single-mode states, respectively. The different types of bifurcations
are indicated by SN (saddle node), HB (Hopf), PD (period dou-
bling), SNL (saddle node of limit cycle), and TR (torus). The
striped blue lines TC denote transcritical bifurcations between
stable single-mode and stable two-mode states. The single-mode
(stable) locking and two-mode equilibrium regions are denoted by
SL and TME, respectively. Only bifurcation lines which affect
stable states are shown.

rate frequency results in a quasiperiodic orbit on a torus (cf.
Fig. 8).

Moving away from the SNL bifurcation point to lower
Aw, the frequency originating at zero increases linearly, and
gives rise to satellite peaks around the second major fre-
quency close to the relaxation oscillation frequency. This ex-
plains the striking starlike features in the experimental (Fig.
2) and numerical (Fig. 5) spectra, which immediately follow
the brief broadening discussed in the previous paragraph.
Just below the SNL bifurcation, we are in a region with two
incommensurate frequencies, which gives rise to quasiperi-
odic evolution on a stable torus manifold. The torus trans-
forms into a limit cycle via an inverse torus bifurcation at
Aw=3 GHz (red line in Fig. 9), and in the power spectrum,
the low frequency that was introduced by the SNL bifurca-
tion disappears again.

Further lowering Aw below 3 GHz we find that the stable
two-mode limit cycle undergoes a period-doubling cascade
to chaos. In Fig. 9 we only show the first period-doubling
bifurcation (magenta line). At the transition to chaotic behav-
ior the power spectrum broadens dramatically, which marks
the transition from region (ii) to region (iii). We leave the
chaotic regime at Aw=0 in a single-mode periodic orbit,
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which undergoes inverse period-doubling bifurcations
(dashed magenta line in Fig. 9).

As in basic single-mode laser theory, this limit cycle be-
comes a single-mode equilibrium locked state (SL) via a
Hopf bifurcation (dashed green line in Fig. 9), which disap-
pears in a saddle-node bifurcation (dashed black line in Fig.
9). Then the remaining single-mode limit cycle undergoes
again a SNL bifurcation followed by a torus bifurcation, as
was discussed in the context of region (ii). This defines the
two-mode region (iv) of Fig. 1.

For even lower Aw we find a two-mode equilibrium
(TME) state, which is bounded by a Hopf bifurcation. This
region corresponds to the experimentally observed region
below region (iv) in Fig. 1, where the injected mode is
suppressed. This suppression is a precursor to the appearance
of a bistability between single-mode injection locking and
a two-mode equilibrium at larger negative detunings
(<-10 GHz) and larger values of the injected field strength.
We have recently demonstrated that this bistability can be the
basis of an all-optical memory element based on switching of
the uninjected mode [16]. Interestingly, there is also a second
two-mode equilibrium region for positive detuning and weak
injection (0<Aw<6 GHz,K<0.005) as shown in Fig. 9.
This region will be the subject of more detailed study in
future work.

V. CONCLUSIONS

We have presented an experimental and theoretical study
of antiphase dynamics in an optically injected two-mode la-
ser diode. The device was a specially engineered Fabry-Pérot
laser designed to support two primary modes with a large
(terahertz) frequency spacing. At a fixed injected field
strength, injection in one of the primary modes of the device
leads to a rich dynamical scenario where dramatic switching
between regions of two-mode and single-mode dynamics
was observed as the frequency detuning was varied. Using a
minimal extension of the single-mode rate equation model
that includes a single equation for the carrier density and a
general cross and self saturation of the gain, we reproduced
experimental results with a high degree of accuracy. In par-
ticular, we were able to describe the dynamical sequence of
the total intensity and of the individual modes. These dynam-
ics were shown to be organized by complex bifurcation
structure that results from the increased dimensionality of the
two-mode injected system.
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