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The influence of a phase-modulated control field on the phenomenon of electromagnetically induced trans-
parency �EIT� is investigated theoretically. We show that the phase modulation changes the dispersive prop-
erties of the medium considerably since it results in temporal oscillations of the transparency window in
frequency space. This is in marked contrast to the standard EIT setup, where the transparency window is fixed
and determined by the two-photon resonance condition. In particular, we find that the phase modulation
enables the propagation of probe pulses with disjoint frequency spectra at different times and allows the
shifting of the central frequency of a probe pulse almost without distortion of its shape. We employ the
time-dependent susceptibility of the medium to explain and analyze our results and demonstrate that this
concept yields qualitative as well as quantitative agreement with the numerical integration of Maxwell-Bloch
equations. Our theoretical model can be applied to other media with time-dependent susceptibilities.
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I. INTRODUCTION

One of the most intriguing phenomenon in atom-light in-
teractions is represented by electromagnetically induced
transparency �EIT�. Since the prediction �1� and first obser-
vation �2� of this effect, EIT triggered various exciting de-
velopments that are relevant, e.g., for the fields of nonlinear
optics and quantum information theory �3–5�. Prominent ex-
amples are given by the slowing and stopping of light �6–8�
as well as the coherent storage and retrieval of light �9–13�.
Furthermore, it has been shown that EIT can be employed to
generate giant optical nonlinearities �14–18� that enable
light-light interactions.

The generic EIT scheme �4� consists of a gas comprised
of three-level atoms in � configuration that are driven by a
strong control field and a weak probe field on separate tran-
sitions. If the frequencies of the probe and control fields are
in two-photon resonance, the atoms are driven into a so-
called dark state that is decoupled from the light fields. This
mechanism creates a transparency window in the absorption
spectrum of the probe field, and the steep normal dispersion
at the center of the dip in the absorption spectrum results in
small group velocities for probe pulses.

Slow light in a generic EIT medium is constrained by
several conditions. First of all, the lossless propagation of a
probe pulse without distortion of its shape requires that its
Fourier components are well contained within the transpar-
ency window �19�. Note that the position of the transparency
window in frequency space is fixed for a given setup and
determined by the two-photon resonance condition. Further-
more, extremely slow group velocities that result in long-
time delays are particularly relevant for applications but can
only be achieved for narrow-band probe pulses.

In order to overcome some of these limitations, modifica-
tions of the usual EIT setup have been suggested. For ex-

ample, two different schemes discuss the possibility to
achieve slow light for broadband pulses �20–23�. The first
approach �20,22� is based on a spatial separation of the Fou-
rier components of the broadband pulse and a subsequent
delay of the individual components by appropriately tuned
EIT systems. A proof-of-principle experiment in room-
temperature solids was reported in �21�. In the second ap-
proach �23�, transparency for a broadband pulse with large
time delay is achieved by matched pairs of probe and control
field Fourier components that individually obey the two-
photon resonance condition.

In this paper, we modify the generic EIT setup by the
application of a phase-modulated control field and demon-
strate that this alteration allows the relaxation of the two-
photon resonance condition considerably. More specifically,
it is found that the phase modulation gives rise to periodic
changes in the position of the transparency window in fre-
quency space. This enables the propagation of probe pulses
with disjoint frequency spectra at different times. Further-
more, our scheme can be employed to shift the central fre-
quency of a probe pulse without significant distortion of its
shape. It follows that our findings extend and enhance the
potential of EIT media for the purpose of signal processing.
For the explanation of our results, we put forward the con-
cept of time-dependent susceptibilities that also applies to
other systems.

The organization of the paper is as follows. In Sec. II, we
introduce the coupled set of Maxwell-Bloch equations gov-
erning the dynamics of the optical fields and the atomic de-
grees of freedom. In Sec. III, we present the results of nu-
merical integrations of Maxwell-Bloch equations for
different incoming probe fields. A theoretical model for the
system under consideration is established in Sec. IV. In par-
ticular, the linear response of the medium to the probe field is
studied in terms of a time-dependent susceptibility in Sec.
IV A. We then employ this concept to explain the essential
features of the numerical results, see Sec. IV B. The influ-
ence of the phase modulation on the probe field in frequency
space is analyzed in Sec. IV C. Here we also recover the
numerical results for the propagation of the probe field
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within the framework of the linear theory. Finally, a sum-
mary and discussion of our results is presented in Sec. V.

II. MAXWELL-BLOCH EQUATIONS

The physical system under consideration is an isotropic
homogeneous atomic gas driven by two laser fields that
propagate in z direction, see Fig. 1�a�. The probe field Ep is
defined by

Ep�z,t� = Ep
�+��z,t� + c.c., �1a�

Ep
�+��z,t� = epEp�z,t�e−i�p�t−z/c�, �1b�

and its positive frequency part Ep
�+� is characterized by the

unit polarization vector ep, central frequency �p, and enve-
lope function Ep. The second field is the control field Ec with
unit polarization vector ec, central frequency �c, and enve-
lope function Ec,

Ec�z,t� = Ec
�+��z,t� + c.c., �2a�

Ec
�+��z,t� = ecEc�z,t�e−i�c�t−z/c�. �2b�

In the region to the left of the gas cell �z�0�, we suppose
that the control field is a continuous wave whose phase is
modulated with respect to time. The envelope function Ec at
the boundary z=0 can thus be written as

Ec�z = 0,t� = E0e−i��t�, �3�

where ��t� is a real-valued function of time and E0 is a time-
independent constant. In particular, we consider the case
where the phase varies sinusoidally with modulation index
M and frequency �,

��t� = M sin��t� . �4�

It follows that the Fourier series of the periodic exponential
in Eq. �3� can be written as

e−i��t� = �
n=−�

�

ein�tJn�− M� , �5�

where Jn are Bessel functions. The phase modulation accord-
ing to Eqs. �3� and �4� thus corresponds to a polychromatic

control field where the weight of the frequency component
n� is determined by Jn�−M�. However, we emphasize that
the phase modulation leads to a very special polychromatic
field since its intensity is constant in time. This is in contrast
to the intensity of an arbitrary polychromatic field that oscil-
lates with the beat note of the involved frequencies, in gen-
eral.

The level scheme of each atom is a three-level system in
� configuration, see Fig. 1�b�. We assume that the polariza-
tion vectors of the two laser fields are chosen such that the
probe field Ep interacts with the atomic transition �1�↔ �3�
and the control field Ec couples to the �2�↔ �3� transition. In
electric-dipole and rotating-wave approximation, the Hamil-
tonian of the system is

H = − ��31�1��1� − ��32�2��2�

− ��3��1�d31 · Ep
�+� + �3��2�d32 · Ec

�+� + H.c.� , �6�

where �3i denotes the resonance frequency on the transition

�3�↔ �i� and d3i= �3�d̂�i� is the matrix element of the electric

dipole moment operator d̂. We describe the time evolution of
the atomic system by a master equation for the reduced den-
sity operator R,

�tR = −
i

�
�H,R� + L	R . �7�

The last term in Eq. �7� describes spontaneous emission and
is determined by

L	R = − �
i=1

2
	i

2
�Si

+Si
−R + RSi

+Si
− − 2Si

−RSi
+� , �8�

where the atomic transition operators are defined as

Si
+ = �3��1�, Si

− = �Si
+�†. �9�

While the ground states �1� and �2� are assumed to be
�meta�stable, the decay rate of the excited state �3� on the
transition �3�→ �i� is given by 	i�i� 	1,2
�.

For the formulation of the coupled Maxwell-Bloch equa-
tions, it is advantageous to transform Eq. �7� into a rotating
frame defined by

W = exp�− i��p�1��1� + �c�2��2���t − z/c�� . �10�

It follows that the transformed density operator �=WRW†

obeys the master equation,

�t� = −
i

�
�H�,�� + L	� , �11�

and the transformed Hamiltonian H� is

H� = �
p�1��1� + �
c�2��2� − ��g�3��1� + G�3��2� + H.c.� .

�12�

In this equation, 
p is the detuning of the probe field with the
�1�↔ �3� transition and 
c represents the detuning of the con-
trol field with the �2�↔ �3� transition,
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FIG. 1. �Color online� �a� Schematic setup of the system of
interest. The atomic gas extends from z=0 to z=L and is driven by
two classical laser fields Ec and Ep. �b� The atomic gas is comprised
of three-level atoms in � configuration with excited state �3� and
ground states �1� and �2�. The phase-modulated control field Ec

couples to the transition �3�↔ �2�, and the probe field Ep interacts
with the �3�→ �1� transition. The spontaneous emission rate on the
�3�→ �i� transition is 	i �i� 	1,2
�.
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p = �p − �31, 
c = �c − �32. �13�

The parameters g and G in the second line of Eq. �12� denote
the Rabi frequencies of the probe and control fields, respec-
tively,

g =
d31 · ep

�
Ep, G =

d32 · ec

�
Ec. �14�

Since G and g depend on position and time via the envelope
functions Ep and Ec, the density operator � in the rotating
frame is a slowly varying function of z and t.

The propagation of the probe and control fields inside the
medium is governed by Maxwell’s equations that yield a
wave equation for the total electric field E=Ec+Ep,

� 1

c2�t
2 − 
�E = −

1

c2�0
�t

2P . �15�

The source term on the right-hand side of Eq. �15� comprises
the macroscopic polarization P induced by the control and
probe fields. For a dilute gas, atom-atom interactions can be
neglected such that P can be expressed in terms of the single-
atom polarization,

P = N�d13R31 + d23R32 + c.c.� . �16�

In this equation, N is the mean atomic density of the me-
dium. Note that coherences R31 and R32 in Eq. �16� are re-
lated to the coherences of the density operator � in the ro-
tating frame by

R31 = �31e
−i�p�t−z/c�, R32 = �32e

−i�c�t−z/c�. �17�

In the slowly varying envelope approximation �24� and with
Eqs. �1�, �2�, and �14�, the wave Eq. �15� can be cast into the
form

��z +
1

c
�t�g = i��31, �18a�

��z +
1

c
�t�G = i��32, �18b�

where the coupling constant � is given by

� = 	
3N
2

8�
, �19�

and 
 is the mean wavelength of the atomic transitions
�3�↔ �i��i� 	1,2
�. Equation �17� relates the Rabi frequen-
cies g and G of the probe and control fields to the coherences
�31 and �32 of the density operator in the rotating frame. On
the other hand, Eq. �11� governs the time evolution of the
density operator � in dependence on g and G. The set of Eqs.
�11� and �18� represent a system of coupled partial differen-
tial equations and have to be solved consistently for given
initial and boundary conditions that we specify in Sec. III.
Since analytical solutions to the Maxwell-Bloch equations
are only known under special conditions �25–27�, we pursue
a numerical approach.

III. NUMERICAL RESULTS

In this section, numerical solutions to the Maxwell-Bloch
equations derived in Sec. II are presented. We begin with a
specification of the initial and boundary conditions for the
functions �, g, and G. The initial state of the atomic system
for z� �0,L� is given by

��z,t = 0� = �1��1� . �20�

Note that this state can be prepared if the atoms are pumped
by the control field alone. The initial conditions for the Rabi
frequencies of the probe and control fields are

g�z,t = 0� = 0, G�z,t = 0� = G0, �21�

where z� �0,L� and the parameter G0 is a constant. If the
boundary condition Eq. �3� for the phase-modulated control
field at z=0 is rewritten in terms of the Rabi frequency G, we
obtain �28�

G�z = 0,t� = G0 exp�− i��t�� , �22�

where ��t� is defined in Eq. �4�. In the first step, we consider
the case of a continuous probe field that is switched on
slowly at t=0,

g�z = 0,t� = g0
1 −
1

1 + �t	�4/2� , �23�

and g0 is a constant parameter. It follows that at z=0, g is
exactly equal to zero at t=0 and increases smoothly until the
maximal value of g0 is reached for t�5 /	.

In the following, we suppose that the atomic decay rates
	1 and 	2 are equal and set as 	1=	2=	. Furthermore, we
exchange the variables t and z in Eqs. �11� and �18� with the
dimensionless variables,

� = t	, � = z�/	 = z
3N
2

8�
. �24�

It follows that the atomic density N of the medium enters
Eq. �18� via the parameter

C = c�/	2 =
3N
2c

8�	
, �25�

which represents the vacuum speed of light in scaled position
and time variables. For all numerical integrations, we set C
=70�103, which corresponds approximately to the values

=800 nm, 	=107 s−1, and N=3�1016 m−3. We empha-
size that the solution to Eqs. �11� and �18� is extremely in-
sensitive with respect to the numerical value of C, provided
that realistic cell lengths of a few centimeter are considered.

The numerical integration of Eqs. �11� and �18� is com-
putationally demanding, in particular, because of the phase
modulation of the control field. Therefore, we employ two
different numerical methods to ensure the reliability of our
results.

The first method is based on MATHEMATICA and the im-
plicit differential-algebraic solver �IDA� method option for
NDSolve. With this choice, the system of partial differential
equations is integrated via the method of lines, and the time
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integration is accomplished with an implicit differential-
algebraic solver.

The second method consists of the standard approach �13�
where the transformation to the comoving frame �= t−z /c
reduces Eq. �18� to a differential equation with respect to the
spacial variable z alone. This equation together with Eq. �11�
allows then to propagate the field variables g and G along the
z direction.

We find that both numerical methods yield the same re-
sults that are presented in Fig. 2. The dashed line shows the
expected EIT phenomenon in the absence of phase modula-
tion. Note that the small oscillations around t	=15 are due to
nonadiabatic processes in the turn-on phase that have been
studied in �29,30�. The solid curve corresponds to the phase-
modulated control field. A comparison of the two curves
clearly demonstrates that the phase modulation changes the
optical properties for the probe field dramatically. In the
presence of phase modulation, the probe field is not transmit-
ted continuously, but periodically at equidistant points in
time, separated by 
T�31.4	−1. In addition, the maximal
intensity at z=L is larger than the intensity of the probe field
at z=0. Note that the minimal intensity of the probe field is
not equal to zero, and this offset persists even if the cell
length L is increased.

Next we consider the propagation of a Gaussian probe
pulse, which gives rise to the following boundary conditions
at z=L �31�,

g�z = 0,t� = g0 exp�− �t − t0�2/�2�p
2�� . �26�

In addition, we assume that the central frequency �p is de-
tuned from the two-photon resonance with the control field.
The results of the numerical integration are shown in Fig. 3,
and demonstrate that the pulse is absorbed without frequency

modulation of the control field �Fig. 3�a�� as expected. On
the contrary, Fig. 3�b� shows that the probe pulse is transmit-
ted through the medium almost without losses if the phase
modulation is switched on. Note that this result depends on
the time t0 at which the probe pulse maximum reaches the
boundary z=0. We find that the medium becomes transparent
for the probe pulse for t0=20�	−1 and also at integer mul-
tiples of t0. At different times, the medium is opaque and the
probe pulse is absorbed. A discussion of the numerical re-
sults based on a theoretical model is provided in Sec. IV.

IV. THEORETICAL ANALYSIS

The aim of this section is to provide a theoretical expla-
nation for the numerical results presented in Sec. III. To this
end, we assume that the control field is much larger than the
probe field intensity and present a model that is linear in the
probe field Rabi frequency g.

A. Linear theory

The starting point of our calculation is the master equa-
tion �11� with the Hamiltonian in Eq. �12�. In Sec. II, the
phase modulation of the control field was taken into account
via the boundary condition at z=0, see Eq. �3�. Here we
neglect the reaction of the medium on the control field, such
that the phase-modulated control field Rabi frequency can be
written as �32�

G�z,t� = G0e−i��t�. �27�

This simplification allows us to replace the Hamiltonian H�
in Eq. �12� by
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tγ

|g/g0|2

FIG. 2. �Color online� The relative probe field intensity �g /g0�2
at the boundary z=L for the slowly turned-on probe field in Eq.
�23�. We set L=150	 /� which corresponds to a cell length of L
�6.5 cm for an atomic density N=3�1016 m−3 and a mean tran-
sition wavelength 
=800 nm. The dashed line demonstrates the
EIT phenomenon for the probe field if the phase modulation of the
control field is switched off, i.e., M =0 and �=0 in Eq. �4�. The
phase modulation of the control field changes the transmitted probe
field intensity considerably, as can be seen from the solid line that
corresponds to M =16 rad and �=0.1	. The remaining parameters
for both curves are G0=�15	, g0=�0.1	, and 
p=
c=0.
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FIG. 3. �Color online� The relative probe field intensity �g /g0�2
as a function of position and time for the Gaussian probe pulse in
Eq. �26� with t0=20�	−1 and �p=6	−1. The detuning of the probe
pulse and the control field is given by 
p=1.6	 and 
c=0, respec-
tively, and the maximal Rabi frequencies are G0=�15	 and g0

=�0.1	. �a� Since the two-photon resonance condition is not ful-
filled, the probe pulse is absorbed in the case of no phase modula-
tion. �b� For the phase modulation parameters M =16 rad and �
=0.1	, the probe pulse is transmitted almost without losses.
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H� = �
p�1��1� + �
c�2��2� − ��g�3��1� + G0e−i��t��3��2�

+ H.c.� . �28�

The generic way to solve the master equation with this
Hamiltonian is to decompose the time-dependent phase fac-
tor exp�−i��t�� via Eq. �5� into its frequency components and
to perform a Floquet decomposition �33� of the density op-
erator �. On the contrary, here we pursue a different ap-
proach that allows us to determine the solution of the master
equation in leading order in the small parameter g /G0 di-
rectly. Note that this is only possible since the intensity of the
control field is time independent, see Sec. II. In order to
facilitate the calculation and the physical interpretation of the
result, we introduce the unitary transformation,

U = exp�− i��t��2��2�� . �29�

The master equation �11� for the transformed density opera-
tor �=U�U† then reads as

�t� = −
i

�
�H0�t� + Hp,�� + L	� , �30�

where Hp describes the interaction of the probe field with the
�3�↔ �1� transition,

Hp = − �g�3��1� + H.c.. �31�

The Hamiltonian H0�t� is given by

H0�t� = ��
p�1��1� + �c�t��2��2� − �G0�3��2� + H.c.�� ,

�32�

and the time-dependent function �c�t� is

�c�t� = 
c + �t��t� = 
c + M� cos��t� . �33�

Note that it is the temporal derivative of the phase modula-
tion function � that enters Eq. �33�. Since frequency is the
temporal derivative of the total phase, the phase modulation
according to Eqs. �3� and �4� appears as a modulation of the
control field frequency �c with amplitude M� in the rotating
frame defined by Eq. �29�. It follows that �c�t� is the time-
dependent detuning of the control field with the �3�↔ �2�
transition.

Since we are interested in the linear response of the atoms
to the probe field, we expand the density operator as �=�0
+�p, where �p is linear in the probe field. If only terms up to
first order with respect to g are retained in Eq. �11�, we
obtain the two coupled equations,

�t�0 = L0�0, �34a�

�t�p = L0�p −
i

�
�Hp,�0� , �34b�

and the superoperator L0 is defined as

L0�·� = −
i

�
�H0�t�, ·� + L	�·� . �35�

Here the centered dot denotes the position of the argument of
L0. The zeroth order Eq. �34a� describes the interaction of
the atom with the control field to all orders, and Eq. �34b�

determines the influence of the probe field to first order in g.
The initial condition in Eq. �20� is at the same time the
steady-state solution �0= �1��1� of Eq. �34a�, and thus it re-
mains to solve Eq. �34b�. To this end, we decompose the
probe field into its frequency components,

g�z,t� = �
−�

�

g̃�z,��e−i�td� . �36�

If �̃p�t ,�� denotes the solution of Eq. �34b� for a single
Fourier component �,

�t�̃p = L0�̃p − ig̃e−i�t�3��1� + ig̃�ei�t�1��3� , �37�

the linearity of Eq. �37� with respect to g̃ implies that

�p�z,t� = �
−�

�

�̃p��,t�d� �38�

is a solution of Eq. �34b�. The propagation Eq. �18a� for the
probe field involves the coherence �31. Since the unitary
transformation U in Eq. �29� does not act on the �1�↔ �3�
transition, we have �31= ��p�31 and thus

�31�z,t� = �
−�

�

f��,t�g̃�z,��e−i�td� , �39�

where f�� , t�= ��̃p�� , t��31e
i�t / g̃�z ,��.

The following explanation of the system behavior as well
as quantitative calculations in this section are based on
f�� , t�. This function is periodic in time with period 2� /�
when the system has reached a quasisteady state such that the
solution of Eq. �37� does not depend on the initial conditions.
For all numerical calculations in Sec. IV C, we determine
f�� , t� by a numerical integration of Eq. �37�.

An approximate solution of f can be found if the time
dependence of L0 in Eq. �37� is ignored. In this case, we find

f��,t� � −
��p��� − �c�t��

��p��� − �c�t���i	 + �p���� − �G0�2
, �40�

and �p���= ��p+��−�31 is the detuning of the probe field
frequency component ��p+�� with the �1�↔ �3� transition.
This approximation describes all essential features of the
function f if the modulation frequency � is sufficiently
small, and this is the case for the parameters we chose.

An interpretation of the function f can be found if the
polarization induced on the �3�↔ �1� transition is considered.
According to Eqs. �16� and �39�, we have

P3↔1 = �0
d13

�d13�
�

−�

�

���,t�Ẽp�z,��e−i�td�e−i�p�t−z/c� + c.c.,

�41�

where Ẽp�z ,�� is the Fourier transform of Ep�z , t� �see Eq.
�1b��, and the function

���,t� =
2�

kp
f��,t� �42�

can be regarded as the time-dependent susceptibility of the
medium. Figures 4�b�–4�d� show the real and imaginary
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parts of ��� , t� at different times. It follows that the trans-
parency window oscillates in frequency space with period
2� /�. This behavior is due to the phase modulation of the
control field that causes the time-dependent detuning �c�t�. In
Sec. IV B, we will discuss the physical meaning of this time-
dependent susceptibility and demonstrate that it allows us to
understand the essential features of the system. If the modu-
lation frequency approaches zero, i.e., �→0, � is time inde-
pendent and Eq. �42� reduces to the standard result for the
susceptibility in an EIT medium �24�.

We aim at a solution of the propagation Eq. �18a� by
Fourier transform with respect to time. However, we stress
that f in Eq. �40� depends explicitly on time, and thus the
integral in Eq. �39� cannot be interpreted as the Fourier de-
composition of the coherence �31�z , t�. However, the re-
quired Fourier representation is readily obtained if the peri-
odic function f is expanded in a Fourier series,

f��,t� = �
n=−�

�

fn���ein�t, �43�

where the coefficients fn are determined by

fn��� =
�

2�
�

0

2�/�

f��,t�e−in�tdt . �44�

It follows that the Fourier transform of Eq. �39� with respect
to time is

1

2�
�

−�

�

�31�z,t�ei�tdt = �
n=−�

�

fn�� + n��g̃�z,� + n�� .

�45�

In frequency space, Eq. �18b� can thus be written as

�− i�/c + �z�g̃�z,�� = i� �
n=−�

�

fn�� + n��g̃�z,� + n�� .

�46�

Before we continue with the solution of the propagation
equation, we establish a simple physical picture that allows
us to understand the essential features of the numerical re-
sults presented in Sec. III.

B. Physical explanation

The aim of this section is to illustrate the physical mean-
ing of the time-dependent susceptibility �. In the first step,
we analyze the situation where the phase modulation of the
control field is switched off, which implies that the suscep-
tibility is time independent, ��� , t���0���. In this case, the
propagation Eq. �46� reduces to

�− i�/c + �z�g̃�z,�� = i
kp

2
�0���g̃�z,�� . �47�

This equation can be immediately solved and yields the well-
known solution �24� of the pulse propagation problem in a
medium with a linear susceptibility,

g�z,t� = �
−�

�

exp	i��/c + �0���kp/2�z − i�t
g̃�0,��d� .

�48�

The action of the medium on the probe field is thus deter-
mined by the susceptibility �0 or equivalently the refractive
index n=1+�0��� /2. Our analysis below Eq. �40� demon-
strates that such a simple solution of the pulse propagation
problem is not possible if f and hence � is time dependent.

However, it follows from Eqs. �18a� and �39� that a rela-
tion similar to Eq. �48� holds even for a time-dependent sus-
ceptibility if an infinitesimal increment �z is considered,

g�z + �z,t� � g�z,t� + �zg�z,t��z

� �
−�

�

exp	i��/c + ���,t�kp/2��z

− i�t
g̃�z,��d� . �49�

Note that in the second line we assumed that the inequality
��� /c+��� , t�kp /2��z��1 holds, which is always the case
for sufficiently small �z. Equation �49� means that ��� , t�
can be employed to propagate the probe field amplitude from
z to z+�z for an infinitesimal increment �z. It is reasonable
to expect that this result also allows us to estimate the probe
field for small but not infinitesimal increments �z. Since the
Fourier components of the probe field at the boundary z=0
are known, Eq. �49� enables us to estimate the influence of
the first section of the medium on the probe field via the
susceptibility ��� , t�. Since the phase modulation gives rise
to a time-dependent control field detuning �c�t�, the probe
field frequency that fulfills the two-photon resonance condi-
tion also depends on time. Therefore, the transparency win-
dow oscillates in time, see Fig. 4. In the following, we show
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FIG. 4. �Color online� Level scheme with the detuning �p of the
probe field and the time-dependent detuning �c�t� of the control
field. Subfigures �b�, �c�, and �d� show the real �dotted line� and
imaginary �solid line� parts of the time-dependent susceptibility � in
Eq. �42� and correspond to time tb=0, tc=� / ��2�, and td=� /�,
respectively. Note that � is periodic with time T=2� /�.
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that this intuitive picture allows us to explain the essential
features of the numerical results in Sec. III.

First we discuss the sequence of pulses that arrive at z
=L if a continuous probe field is applied to the phase-
modulated medium, see Fig. 2. At the boundary z=0, the
Fourier spectrum g̃�z ,�� of the continuous probe field con-
sists of a single peak at �=0. Since the probe field is as-
sumed to be resonant, Eqs. �40� and �42� imply that the
imaginary part of ���=0, tn� vanishes if the time-dependent
control field detuning satisfies �c�tn�=0. This relation holds
at times tn=� / �2��+n� /�, where n�N. At these times,
Eq. �49� predicts that the probe field can enter the medium;
at other times it is absorbed. Exactly this periodic change
from transparency to opacity generates the sequence of
pulses that is observed at z=L. Since the time difference
tn+1− tn between two transparency periods is � /�, it is ex-
pected that the time separation between the pulses is given
by � /�. For the particular choice of �=0.1	 as in Fig. 2 we
obtain tn+1− tn�31.4	−1, which is in excellent agreement
with the numerical result �see Sec. III�.

Next we turn to Fig. 3, where it is shown that a detuned
probe pulse with 
p=1.6	 can propagate through the
medium virtually without losses only if the phase modulation
is turned on and if the pulse maximum arrives at certain
times at z=0. These results can be explained as follows. For
the parameters chosen in Fig. 3, the imaginary part of
���=0, tn� vanishes at times tn=n2� /�=n20�	−1 �n�N�
where the time-dependent control field detuning satisfies
�c�tn�=
p, see Eqs. �40� and �42�. Since the pulse maximum
arrives at t1=20�	−1, Eq. �49� shows that the probe pulse
can enter the medium. If the pulse maximum arrives at other
times than tn, the imaginary part of � is nonzero and the
pulse is absorbed. Note that we also considered different
values of the probe field detuning 
p and found that the
times at which the medium becomes transparent can be pre-
dicted reliably with similar arguments.

In the above discussion, we assumed that the Fourier
components of the probe field are sharply peaked around the
central frequency �p of the probe field. As we will show in
Sec. IV C, the phase modulation of the control field will
considerably broaden the frequency spectrum of the probe
pulse as it propagates through the medium. This process is
the physical reason why Eq. �49� holds only for small propa-
gation lengths �z during which the broadening of the pulse in
frequency space is negligible.

C. Probe field reconstruction

Here we demonstrate that the linear theory established in
Sec. IV A allows us to recover the numerical results obtained
in Sec. III. Maxwell’s equation �46� for the probe field in
Fourier space implies that the Fourier component g̃�z ,�� is
coupled to the components g̃�z ,�+n�� via the coefficients
fn. These coefficients correspond to the Fourier series expan-
sion of the periodic function f in Eq. �44�. Fortunately, this
series converges quite rapidly for the parameters we chose
such that only a few coefficients have to be taken into ac-
count. In addition, it is reasonable to assume that the Fourier
spectrum of the probe field has a finite width. These two

simplifying assumptions can be summarized as follows:

fn � 0, �n� � Q � N , �50a�

g̃�z,�� � 0, ��� � �max. �50b�

In order to obtain the probe field Fourier components at a
given position z, we introduce the vector y��� with the 2K
+1 components,

y j
����z� = g̃�z,� − K� + j��, j � 	0, . . . ,2K
 . �51�

The value of K should be chosen such that all nonzero com-
ponents of g̃ are included in y���. With the help of Eq. �46�,
one derives the differential equation,

�zy
��� = M���y���, �52�

where M��� is a �2K+1�� �2K+1� matrix that will not be
given here. The solution of Eq. �52� is given by y����z�
=exp�M���z�y����z=0� and can be determined numerically.
This procedure allows us to obtain the probe field Fourier
components contained in the vector y����z� from the Fourier
components at the boundary z=0.

First we assume that a continuous probe field is applied to
the medium. In this case, the probe field Fourier components
at z=0 are given by a delta function centered at �=0. We
find that the Fourier spectrum for z�0 is discrete such that
the probe field can be written as

g�z,t� = �
j=0

2K

g̃j�z�exp�− i��j − K�t� . �53�

For the evaluation of the Fourier components g̃j�z�, we chose
Q=4 and �max=30 � in Eq. �50�, and their absolute values
�g̃j�z�� are shown in Fig. 5�a�. The dots in Fig. 5�b� represent
the relative probe field intensity according to Eq. �53� for the
same parameters than in Fig. 2. It can be seen that the results
obtained from the linear theory are in very good agreement
with the numerical integration of Maxwell-Bloch equations
that yields the solid line in Fig. 5�b�. The deviations for
t	�15 are due to the fact that we did not take into account
the turn-on process of the probe field in Eq. �53�.

Next we consider the probe pulse in Eq. �26� and solve
Eq. �52� for different values of � with Q=6 and �max
=30 � �see Eq. �50��. This procedure allows us to generate
g̃�z ,�� on a dense grid of frequencies, and the absolute val-
ues �g̃�z ,��� are presented in Fig. 6�a� for several values of z.
It can be seen that the Fourier components broaden and ac-
quire a shift of their central frequency as the probe pulse
propagates through the medium. Figure 6�b� shows the rela-
tive probe field intensity for the same parameters than in Fig.
3. The dotted line is obtained by the evaluation of Eq. �36�
via a discrete Fourier transform, and the solid line corre-
sponds to the numerical integration of Maxwell-Bloch equa-
tions. As for the case of a continuous probe field, we obtain
excellent agreement between the linear theory and the nu-
merical findings.

V. DISCUSSION AND SUMMARY

In this paper, we investigated the phenomenon of electro-
magnetically induced transparency �EIT� for a weak probe
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field in the presence of a phase-modulated control field. By a
numerical integration of Maxwell-Bloch equations, we found
that the phase modulation changes the dispersive properties
of the medium considerably.

If a continuous probe field is applied to the medium, we
have shown that the medium results in the generation of a
train of pulses that arrives at the output of the gas cell. The
peak intensity of the output pulses exceeds the intensity of
the input field by almost 20%, and the intensity between
successive pulse drops to 3% of the incoming field. In prac-
tice, this feature of our system could be employed to gener-
ate smooth pulses from a cw laser field. Note that a time-
dependent variation in the probe field transmission was also
achieved �34� in an EIT experiment based on an atomic
double-� system. In contrast to the present scheme, how-
ever, the transparency of the medium in �34� is determined
by the instantaneous phase difference of the involved laser
fields in a closed-loop configuration. In addition, other
mechanisms that allow us to reshape the probe pulse in an
EIT system have been studied in �35�.

A major result of this paper is that the medium supports
the propagation of probe pulses with different central

frequencies at different times. This result is in striking con-
trast to the standard EIT setup, where the medium is only
transparent for a single probe field frequency that is deter-
mined by the two-photon resonance condition. It follows that
our system enhances the potential of EIT media for the pur-
pose of signal processing since the medium acts like a fre-
quency selective switch. Subject to the central frequency of
the probe pulse and its time of arrival, the pulse is either
transmitted or absorbed.

In order to explain our results, we established a theoretical
model that is linear in the probe field Rabi frequency. We
found that the phase modulation of the control field gives
rise to a time-dependent susceptibility that allows us to un-
derstand the behavior of the medium intuitively. In essence,
the phase modulation is effectively a frequency modulation
of the control field. Therefore, the frequency component that
fulfills the two-photon resonance condition also changes with
time, and hence the transparency window changes its posi-
tion in frequency space periodically in time. This physical
picture is valid, provided that the analytical expression for
the time-dependent susceptibility in Eq. �40� is a good ap-
proximation of the corresponding numerical result. A nu-
merical analysis shows that this requires that the parameters
of the phase modulation are sufficiently small, i.e., M�
should be of the order of the decay rate 	 of the upper state
and ��	.

We also studied the influence of the phase modulation on
the probe field in the frequency domain. To this end, we
expanded the time-dependent susceptibility in a Fourier se-
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FIG. 5. �Color online� �a� Discrete probe field Fourier spectrum
at L=150	 /� if a continuous probe field is applied to the medium.
Since the Fourier spectrum at z=0 corresponds to a single delta
peak, the phase-modulated control field results in a broadening of
the probe field. �b� Relative probe field intensity at L=150	 /� for
the same parameters than in Fig. 2. The dotted line corresponds to
the result of the linear theory in Eq. �53�, and the solid line results
from a numerical integration of Maxwell-Bloch equations.
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FIG. 6. �Color online� �a� The absolute value of the �dimension-
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ries and solved the propagation equation for the probe field
in Fourier space. This procedure reveals that the phase
modulation causes a coupling between different probe-field
Fourier components. As the probe field propagates through
the medium, this coupling results in a broadening of the
pulse in the frequency domain. Moreover, we find that the
central frequency of a probe pulse experiences a shift if the
central frequencies of the probe and control fields do not
satisfy the two-photon resonance condition. For the param-
eters we chose, the detuning of the probe pulse at the en-
trance of the medium is positive and the control field is in
resonance. As the pulse propagates through the medium, the
Fourier components of the probe field experience a shift to-
ward smaller frequencies, see Fig. 6�a�. In general, this
means that the central frequency of the probe field is shifted
such that it gets into two-photon resonance with the central
frequency of the control field. Despite the broadening of the
Fourier components, the shape of the probe pulse in the time
domain remains almost unchanged. Therefore, this effect can
be employed to shift the frequency of a pulse almost without
distortion of its shape. Note that the maximal frequency shift
that the probe pulse can acquire until it is in two-photon
resonance with the central frequency of the control field is

given by M�, i.e., half the range of the control field fre-
quency variation. Due to the constraints that apply to the
parameters M and �, the frequency shift can be at most of
the order of the decay rate 	 of the excited state.

Finally, the influence of the medium on the frequency
components of the probe field demonstrates that the system
seeks to maximize transparency. This is related to the phe-
nomenon of pulse matching �36–38�, where the medium ren-
ders itself transparent by the generation of matched Fourier
components. For the system under consideration, perfect
pulse matching corresponds to a phase-modulated continu-
ous probe field. Since the medium is passive, a continuous
wave cannot be created from a pulse for energetic reasons,
and thus perfect pulse matching never occurs if a probe pulse
is applied to the medium. The situation is different in the
case of a continuous probe field, where we find that a frac-
tion of 3% of the incoming intensity is transferred into a
perfect trapping state.
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