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Compression of an intensive light pulse in photonic-band-gap structures
with a dense resonant medium
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Intensive light pulse interaction with a dense resonant medium is considered. The possibilities of optical
switching and pulse compression at realistic parameters of the medium are analyzed. Pulse-shape transforma-
tion in different photonic-band-gap structures containing a dense resonant medium is studied. In particular, the
effect of dispersion compensation due to nonlinear interaction with a medium is reported. The possibility of
pulse control with another pulse is considered in the schemes of copropagating and counterpropagating pulses.
It is shown that a photonic crystal makes controlling more effective, at least in the case of copropagating

pulses.
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I. INTRODUCTION

The model of resonant two-level medium is studied ac-
tively for many decades (see, for example, [1,2]). This inter-
est is caused, in many respects, by the possibility of ul-
trashort pulses generation which can be used in different
fundamental and practical applications. The concept of the
so-called dense resonant media implies the necessity of tak-
ing into account the interaction of an atom with local field
produced by all other particles of the system. In other words,
one has to consider near dipole-dipole (NDD) interactions
which are characterized by the quantity

2
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where u is the transition dipole moment, C is the volume
density of two-level atoms, y,=1/T), is the rate of transverse
relaxation, and # is the Planck constant. Nonlinear effects
connected with NDD interactions become noticeable when
the medium is dense enough. One of them, the effect of
intrinsic optical bistability (IOB), was studied in detail [3-6].
It was shown that IOB occurs when b is greater than 4 (in the
case of thin films [7]) or even less (if we consider propaga-
tion effects in extended medium [8]). This phenomenon takes
place in the steady state, while in the pulse regime one can
observe optical switching [9,10] and soliton formation
[11,12]. In the present paper we also consider intensive light
pulses so that change in the population difference (or inver-
sion) cannot be neglected. To study pulse propagation, the
numerical solution of the Maxwell wave equation was imple-
mented. This allows us to automatically take into consider-
ation the processes of dispersion and diffraction which are
usually ignored in the analytical approaches.

The main attention in this research is devoted to discus-
sion of the properties of a combination of a one-dimensional
photonic crystal and a dense resonant medium under pulse
operation. The stationary bistable response of such a system
was analyzed previously [8]. It turned out that one can
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change and control such characteristics of bistability as hys-
teresis loop width and switching intensity by using photonic
crystal. In the present paper pulse form transformation in
such nonlinear photonic-band-gap (PBG) structures is stud-
ied in comparison with the behavior in the linear case. In
particular, possibilities to compensate dispersion spreading in
such a system and control pulse properties by using another
pulse are expected to be found.

The paper is divided into several sections. In Sec. II the
main expressions for description of the system considered
are given, just as brief characterization of the numerical ap-
proach used. This methodology is then applied to obtain the
results of the other sections. Section III is devoted to optical
switching and pulse-shape change (compression and split-
ting) under propagation in a finite layer of a dense resonant
medium. In particular, the role of near dipole-dipole interac-
tions is estimated. Section IV contains the calculation results
for a single pulse in a nonlinear photonic crystal, such as
possibility of dispersive spreading compensation. Finally, in
Sec. V two schemes of controlling pulse intensity with an-
other pulse are considered. Photonic crystal is studied as an
element which makes this process more effective, at least in
the scheme of copropagating pulses.

I1. BASIC EQUATIONS AND NUMERICAL APPROACH

Let us consider radiation propagation in a dense resonant
medium in the z direction. Light interaction with resonant
medium with taking into account nonlinear contribution due
to near dipole-dipole interactions is described by the modi-
fied Maxwell-Bloch system as follows [13,14]:

dP i Amp?
Ny iP(Aw+ il
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N) - 7P, (2)

dN

= = ﬁ(EP PE)— y,(N-1), (3)

P31 FepS 4mipy

N

(4)

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.79.023828

DENIS V. NOVITSKY

where N is the population difference, P is the microscopic
(atomic) polarization, Aw is the detuning of the field fre-
quency  from atomic resonance, y;=1/T; is the rate of
longitudinal relaxation, and c is the light speed in vacuum.
Macroscopic electric field % is expressed via its amplitude E
as S =F exp[—i(wt—kz)]; similarly for macroscopic nonlin-
ear polarization we have P,=uCP exp[—i(wit—kz)]. Here
k=w/c is the wave number and &, is the background dielec-
tric permittivity, assumed to be linear and dispersionless.

The system of Egs. (2)—(4) can be represented in the di-
mensionless form by introducing new arguments 7=t and
E=kz,

dP
= =iQN+iP(5+ eN) - 3P, (5)
dr

dN

d—=2i(Q*P—P*Q)— N(N-1), (6)
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where Q=(u/fhw)E is the dimensionless amplitude of elec-
tric field (normalized Rabi frequency); d=Aw/w is the nor-
malized frequency detuning; e=4wu*C/3hw=%,b is the
NDD interaction constant which provides extra nonlinearity
in Eq. (5); ¥=v/ 0, j=1,2.

Numerical solving of the system of Egs. (5)—(7) is per-
formed using the finite-difference time-domain (FDTD)
method. The explicit scheme to solve Eq. (7) on the compu-
tational mesh ([A7,jA¢) is given by

O =[-a Q7 + 5,0, + 5,0+ fQ; - Rl/ay,  (8)
where

ay=g[(1+iA7), ay=¢,(1-iA7),

Ar\2 AT\2
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where g; is the value of dielectric permittivity e, at
&=jA¢ In Eq. (8) R stands for the finite-difference repre-
sentation of the right-hand member of Eq. (7) which de-
scribes nonlinear properties of the medium. For the case of

the dense resonant medium it is
R=3€e P (1-iA7) + P! (1+iA7) - P2+ A7)].

Polarization in the mesh points is obtained from Egs. (5)
and (6). To solve them the well-known midpoint trapezoidal
method is used. To set the boundary conditions we apply the
TF/SF approach, when the full calculation region is divided
into two subregions containing total (TF) and scattered (SF)
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FIG. 1. (Color online) Population difference on the entrance of
the layer of the dense resonant medium after pulse passage versus
its amplitude ) at different values of NDD interaction constant.
Layer thickness L=A\.

fields, respectively, and the so-called absorbing boundary
conditions according to the perfectly matched layer (PML)
method. This approach helps us to avoid nonphysical reflec-
tions of the scattered field back into the calculation region
[15]. The calculation scheme considered is similar to that of
Ref. [14] where it was used to analyze validity of the qua-
siadiabatic approximation for consideration of ultrashort
light pulses propagation in a dense resonant medium.

III. COHERENT PULSE INTERACTION
WITH A DENSE RESONANT MEDIUM

As it is known, the cases of coherent and incoherent in-
teractions are distinguished by the comparison of the pulse
duration #, with the characteristic relaxation times of the me-
dia T and T,; moreover, as a rule, 7, >T,. Here we consider
the coherent case when 7, <7, <T. In this section the values
of parameters are assumed to be as follows: light wavelength
A=0.5 wm, tp:30 fs, T;=1000 ps, T,=100 ps, 6=0, and,
if not stated another, ,,=1. The pulse on the entrance of the
medium has Gaussian shape E=E, exp(—t*/ 2t[2,). Obviously,
in time intervals comparable with the pulse duration (of the
order of 0.1 ps) the processes of incoherent relaxation can be
neglected. Under these conditions the system consisting of
two-level atoms can demonstrate optical switching from the
ground state to the excited one for the time of the order of
the pulse duration [9]. However, as the authors of Ref. [10]
note, taking into account for the propagation effects (hence,
self-phase modulation as well) not only changes the charac-
teristics of switching but also makes it difficult to qualita-
tively predict them without execution of rigorous numerical
simulations in every particular case.

The calculation results in Fig. 1 show that, at small values
of the NDD interaction constant b, the dependence of popu-
lation difference on the pulse amplitude has periodic form.
When the parameter of extra nonlinearity b is increased, this
strictly periodic situation is disturbed, inversion maximum
being shifted toward greater amplitudes and even being re-
duced, requiring more accurate adjustment of pulse intensity.
In addition, there is similar dependence on the layer thick-
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FIG. 2. (Color online) Calculation results for pulse propagation
through the layer of the dense resonant medium. The amplitude of
pulse is Qy=1.5AQ. The thickness of the layer L=\; NDD inter-
action parameter b=2000.

ness: strictly periodic behavior of population difference oc-
curs only at small (as compared with wavelength) medium
thickness.

The difficulties of optical switching, noted in Ref. [10],
are connected with the features considered above, as they
have analyzed the case of large values of NDD interaction
constant. In our designation it corresponds to the values of b
of the order of hundreds and thousands. It seems not to be
realistic: usually » does not exceed several units. For ex-
ample, for gaseous media with typical parameters
w?=10"% erg cm?, y,=10° s7!, and C=10* sm™ [5,16]
one obtains b=4. In the case of excitonic media possessing
substantially greater dipole moment (u’=107%¢ erg cm?,
¥,=10"" 57! and C=10'"" sm™ [12]) we have only
b=0.4. The dramatic increase in the parameter of NDD in-
teraction is unlikely to expect. In the present paper we keep
to this restriction so the periodic behavior corresponding to
small values of b will be always valid.

This implies that the effect of NDD interaction on pulse
propagation in a dense resonant medium is not significant at
realistic parameters. To directly ascertain this conclusion,
one should compare the results of the calculations when the
term including parameter b is present or absent in Eq. (2) or
(5). Tt turned out that the results remain the same in both
cases. It seems to be obvious if we recall that the parameter
b amounts to several units (at best, b=10). This corresponds
to the utterly small value of e~ 1X 10™*—1 X 10~ in normal-
ized Eq. (5). Only when the NDD interaction constant takes
on sufficiently large values, the contribution of this term be-
comes essential (Fig. 2). Thus, while in stationary regime
NDD interaction plays vital role in such nonlinear phenom-
ena as intrinsic optical bistability [8], for coherent pulse
propagation this influence seems to be negligible, at least for
realistic values of parameters.

Since the influence of NDD interactions is negligible, one
can estimate the period AQ; of the dependence shown in
Fig. 1 by using the commonly known concept of pulse area

[2],
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FIG. 3. (Color online) Temporal behavior of population
difference on the entrance of the layer of the dense resonant
medium at the amplitude of the pulse: (a) Qy=nAQ; and (b)
Qg=(n-1/2)AQy. Parameter b=1.

ﬁzzgf Edr. (9)
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The period AQ; corresponds to the pulse which returns at-
oms after excitation exactly into the ground state. The area of
such a pulse should be equal to 2. Thus, for Gaussian pulse
we obtain

N
AQT = — . (10)
2\"2’7761‘,,

For the case considered (Fig. 1) it is approximately
AQ;=0.011. If the amplitude of the incident pulse amounts
to an integer number of these periods, i.e., Qy=nAQ,
n=1,2,3,..., then in temporal behavior of population differ-
ence [Fig. 3(a)] one can observe n minima and n— 1 maxima
before it achieves a stationary level, in this instance corre-
sponding to the ground state of the system (N=1). In turn, at
Qy=(n—-1/2)AQ; n—1 maxima and minima occur [Fig.
3(b)] before the medium becomes inverted (N=-1). How-
ever, this final value of population difference after pulse pas-
sage is not stable, as far as relaxation to the ground state
becomes apparent at longer time intervals. It proceeds the
faster, the greater constant b (Fig. 4). Obviously, incoherent
relaxation does not have enough time to appear. Therefore
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FIG. 4. (Color online) Temporal behavior of population differ-
ence on the entrance of the layer of the dense resonant medium at
different values of the parameter b. The amplitude of the pulse is
Qp=1.5A07.

one can attribute this effect to nonlinear interaction of radia-
tion with the resonant medium. Moreover, this relaxation
process should be apparent in spatial scale, giving rise to
nonuniform distribution of population difference along the
layer thickness (Fig. 5). The similar behavior also takes place
at smaller values of b, but significantly larger thicknesses of
the layer.

Since the influence of NDD interactions is negligible, the
formation of stationary pulses (solitons) of hyperbolic secant
(sech) shape can be expected. At the same time energy con-
servation, area change, and shape transformation (from
Gaussian to hyperbolic secant) may cause the pulse to be-
come shorter and more intensive. However, this process is
limited by diffraction and dispersion of light: the pulse be-
gins to spread as it propagates in the medium. This fact is the
reason of occurrence of the length of optimal pulse compres-
sion. In Fig. 6 it amounts to about 120\. Note that, after
reaching this first maximum, several others are observed: at
L=450\ [Fig. 6(b)], L=700\, and L= 900\ [Fig. 6(c)]. Fi-
nally, at certain (sufficiently large) distance the pulse exhibits
ultimate attenuation and decay [Fig. 6(d)].
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d/L

FIG. 5. (Color online) Distribution of population difference
along the thickness L=\ of the layer of the dense resonant medium
at different values of the NDD interaction parameter. The amplitude
of the pulse is Qy=1.5A0.
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FIG. 6. Pulse form transformation after propagation through the
layer of the dense resonant medium of different thicknesses. The
amplitude of pulse is Qy=1.5A0;. NDD interaction parameter
b=10.
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Another important effect that can be observed in this sys-
tem is the pulse splitting into several components. The num-
ber of components depends on the area of initial pulse. For
example, if the amplitude of the pulse is Q,=2AQ, (area
equals 417), it undergoes splitting into two ones (Fig. 7) cor-
responding to two 27 pulses. The second (low-intensive)
pulse retards more and more from the first one as they propa-
gate in the medium. Simultaneously both these pulses lose
energy with distance due to diffraction and dispersion.

IV. SINGLE PULSE IN PHOTONIC CRYSTAL
WITH A DENSE RESONANT MEDIUM

As it was already stated, the changes in laser-pulse char-
acteristics under propagation in nonlinear PBG structures are
of special interest in the present paper. The one-dimensional
photonic crystal to be considered here is a sequence of two
alternating layers with different thicknesses and background
refractive indices (furthermore, they are assumed to equal
ny=1 and n,=3.5). The thickness of the first layer is
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FIG. 7. Pulse form transformation after propagation through the
layer of the dense resonant medium of different thicknesses. The
amplitude of pulse is Qq=2AQ; NDD interaction parameter
b=10.

dy=0.4 um, while the second one, d,, is treated as a variable
parameter which allows to change spectral characteristics of
the periodic structure. The reflection spectra for different val-
ues of d, are shown in Fig. 8(a). They are plotted in the
vicinity of the main wavelength A=0.5 um. The pulse am-
plitude in this section is considered to be equal to
QO= 1 SAQT

Light pulse propagation in photonic crystals, possessing
strong dispersion due to periodic variation in optical proper-
ties, results in their spreading on large distances. As it is
known [17,18], for materials with sufficiently strong nonlin-
earity, the competition between dispersion and nonlinear in-
teraction leads to effective compression of pulses. These re-
sults regard media with Kerr-type nonlinearities. Here we
consider some properties of the systems combining PBG
structure with the dense resonant medium (the value of the
NDD interaction constant is b=10).
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FIG. 8. (Color online) Reflection spectra of photonic crystal
(number of periods 8) for different values of the thickness d,: (a)
without a defect, (b) with a defect of L=20\ and n3=1.
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FIG. 9. (Color online) The forms of transmitted [(a), (c), (e)]
and reflected [(b), (d), ()] pulses after interaction with the photonic
crystal (number of periods 8) with a defect layer of thickness
L=20\, n3=1, b=10. The thickness d, is variable: [(a), (b)]
d,=0.125, [(c), (d)] d,=0.127, [(e), ()] d,=0.13 wm.

The first such system is a structure containing a defect
layer in the middle of a sequence of alternating layers. The
reflection spectrum of a such system with the linear defect
(the refractive index nj is unity) is shown in Fig. 8(b). The
well-known feature of the photonic crystals with defects is
seen: appearance of the defect modes, i.e., narrow spectral
peaks in the band gap. Figure 9 demonstrates the computa-
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FIG. 10. (Color online) The forms of transmitted pulses after
interaction with the photonic crystal with linear and nonlinear lay-
ers d; (n;=1, b=10). The number of periods is (a) 100, [(b), (c),
(d)] 250. The thickness d, is variable: [(a), (b)] d,=0.13, (c)
d,=0.127, (d) d,=0.1285 um.

tion results of pulse transmission and reflection for linear and
nonlinear defect layers. As transmission of the PBG structure
increases (as d, changes), the effect of nonlinear interaction
on the pulse shape becomes stronger, leading to more effec-
tive compression [Fig. 9(e)]. As to reflected radiation, there
are several pulses—the first one being reflected directly from
the photonic crystal layers. The others were reflected after
interaction with the dense resonant medium.

It seems to be more interesting to consider a variant when
the layers of photonic crystal are nonlinear. Figure 10 gives
the simulation results when the layers d, of the PBG struc-
ture are filled with the dense resonant medium. It is seen that
use of nonlinear layers allows to effectively compensate dis-
persive spreading of pulse occurring in the case of linear
photonic crystal. Different values of the layer thickness d,
correspond to different values of reflectivity of the linear
structure for the radiation wavelength A=0.5 um (Fig. 11).
Naturally, more intensive transmitted pulse is observed for
smaller reflectivity (when d,=0.13). At the same time, posi-
tion of wavelength with respect to PBG spectrum influences
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FIG. 11. (Color online) Reflection spectra of photonic crystal
(number of periods 250) for different values of the thickness d5.

the duration of pulse transmission through the system: the
smaller reflectivity of the structure considered, the shorter
time interval required for the pulse to appear on its output.
Comparing transmission durations in Figs. 10(a)-10(c), one
can note that radiation needs only about 67¢, for
d,=0.13 um, while for d,=0.1285 um (the largest reflec-
tivity) this pulse delay is equal to 85¢,,.

Finally, we consider another system when both layers of
photonic crystal are nonlinear. On the whole, the behavior of
the system (Fig. 12) remains approximately the same as in
previous case. The maximal change occurs for the pulse at
d>=0.1285 pm: the peak intensity decreases, while the time
delay increases. Note that at d,=0.13 um the effective split-
ting of the pulse is observed. It may be connected with the
change in reflection characteristics of the nonlinear PBG
structure under consideration.

Thus, interaction of light pulse with nonlinear PBG struc-
ture leads to effective compensation of dispersive spreading.
On the other hand, the use of photonic crystals allows us to
control intensity and time retardation of transmitted pulse.
Additional possibilities to control pulse properties are con-
nected with the use of the second one.
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FIG. 12. (Color online) The forms of transmitted pulses after
interaction with the photonic crystal (number of periods 250) with
both nonlinear layers (n;=1, n,=3.5, b=10) for different thick-
nesses d,.
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FIG. 13. (Color online) [(a)—(d)] Pulse forms and [(e)—(h)] cor-
responding population difference dynamics on the entrance of the
medium. Intensity of the first pulse [(b), (f)] Q,=0.5, [(¢), (g)]
Q,=1,[(d), (h)] Q,;=1.5, while for the second one ,=1. Pictures
(a), (e) are for the case of single pulse ),=1. Other parameters:
L=100\, b=10.

V. CONTROLLING PULSE INTENSITY
BY USING ANOTHER PULSE

A. Copropagating pulses

Let us consider “one-by-one” propagation of two short
pulses and interaction between them via the dense resonant
medium. As we have seen in Sec. III, the population differ-
ence depends on the amplitude of Gaussian pulse in periodic
manner at realistic values of parameter b. In this section
amplitudes will be expressed in the units of this period AQ) ;.
Hence, the behavior of the second pulse with amplitude (),
differs according to amplitude of the first one (), and, con-
sequently, the state of the medium after it has passed. The
results of calculations are shown in Figs. 13 and 14. Obvi-
ously, if the first pulse returns the medium to the ground state
(Q,=1), it practically does not affect the second one. But if
after the passage of the first pulse the medium is excited, the
second pulse can demonstrate significant increasing [Fig.
13(b)] or decreasing [Figs. 14(b) and 14(d)] of peak inten-
sity. One can treat this effect as controlling of the second
pulse intensity by using the first pulse.

The thickness of the dense resonant medium turned out to
be an important parameter (see Fig. 15). When the distance
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FIG. 14. (Color online) [(a)—(d)] Pulse forms and [(e)—(h)] cor-
responding population difference dynamics on the entrance of the
medium. Intensity of the first pulse [(b), (f)] Q;=0.5, [(c), (2)]
Q,=1, [(d), (h)] Q,=1.5, while for the second one Q,=1.5. Pic-
tures (a), (e) are for the case of single pulse Q,=1.5. Other param-
eters: L=100\, b=10.

traveled by the pulse (2,=1.5 is L=50N or L=100\, the peak
intensity of it appears to be greater in the case of the single
pulse than in two-pulse scheme. But at L=150\ (when the
single pulse demonstrates attenuation due to diffraction and
dispersion) situation becomes reverse. In general, it seems
that the first pulse changes the distance of optimal compres-
sion of the second one.

In order to make the efficiency of control higher, the PBG
structure can be used. For nonlinear layers d;, more effective
compression is obtained only when ,=0.5 [Fig. 16(a)].
However, when both layers d; and d, are nonlinear, Fig.
16(b) demonstrates increasing in peak intensities for all val-
ues of (). For example, for {};=1.5 it reaches approximately
twofold growth in comparison with the single pulse case.
The reason for this effect is that photonic crystal provides
intense energy exchange between the first and second pulses
due to reflections on the layer’s boundaries. The side effect is
the difficulty of pulse separation on the output of the system.

B. Counterpropagating pulses

Another scheme of controlling pulse intensity is con-
nected with utilizing of counterpropagating pulse. The ad-
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FIG. 15. Pulse forms at different distances in medium. Intensi-
ties of the pulses Q,=0.5, Q,=1.5. Pictures (b), (d) are for the case
of single pulse (,=1.5. Parameter b=10.

vantage of this scheme is the convenience of separation of
pulses as they propagate in opposite directions. The calcula-
tion results for the pulse (),, which is controlled with the
counterpropagating one (), are shown in Fig. 17. It is seen
that the change in the intensity of the incident pulse (), leads
to the change in the intensity of the transmitted pulse (,, in
particular, to its decreasing in comparison with single pulse
case. Since the change in the length of optimal compression
occurs in this scheme as well, one can obtain an increase in
the intensity of {),=1.5 pulse on the distance of about 200\
when Q,=1.

Figure 18 shows that the interaction between pulses in the
nonlinear photonic crystal is negligible, in contrast to the
case of copropagating pulses. It seems to be the result of
weak coupling of the pulses in such a system, as they propa-

0.4
0.3 4

0.2+

Q=05 Q=15 "
! T2 i _Q=1,Q=15
QZ=1'5 /\'.."{ / ! 2

Normalized intensity

FIG. 16. (Color online) The forms of transmitted pulses after
interaction with the photonic crystal (number of periods 250) with
(a) nonlinear layers d,, (b) both nonlinear layers. Intensity of the
second pulse is ,=1.5; ), is variable. Parameters: n,;=1,
n,=3.5, di=0.4 um, d,=0.13 um, b=10.
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FIG. 17. (Color online) The forms of transmitted pulse ), con-
trolled with a counter-propagating pulse (). Intensity of the second
pulse is [(a), (c)] Q,=1, [(b), (d)] Q,=1.5; Q, is variable. Other
parameters: L=100\, b=10.

gate almost independently. This is the great disadvantage in
the view of controlling possibilities, but it can be used for
simultaneous work with two pulses moving in opposite di-
rections.

VI. CONCLUSION

The consideration of intensive radiation interaction with
the dense resonant medium in the case of coherent pulse
regime allows us to conclude that the influence of near
dipole-dipole interactions can be neglected at realistic pa-
rameters of the medium, in contrast to stationary case. At the
same time, one can observe pulse compression (and splitting)
which has certain optimal distance due to the processes of
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0.20 1
0.15
0.10
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0.00
5

0.16 - .

—0S=15

0.12 !

Normalized intensity

0.08 4 i

FIG. 18. (Color online) The forms of transmitted pulse (), after
interaction with the photonic crystal (number of periods 250) with
(a) nonlinear layers d;, (b) both nonlinear layers. Intensity
(,=1.5; intensity of the counterpropagating pulse (), is variable.
Parameters: n;=1, n,=3.5, d;=04 um, d,=0.13 um, b=10.
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diffraction and dispersion. This property of nonlinear com-
pression can be used to compensate dispersive spreading in
photonic-band-gap structure containing the resonant medium
considered.

It turned out that dense resonant medium allows us to
control a pulse with another pulse in schemes of copropagat-
ing and counterpropagating pulses. It seems to be useful

PHYSICAL REVIEW A 79, 023828 (2009)

from the point of view of prospective techniques of optical
information storage and processing. Photonic crystal makes
the process of controlling more effective, at least in the case
of copropagating pulses. For counterpropagating ones, it ap-
pears not to be efficient; nevertheless independence of pulse
propagation in opposite directions can be used for parallel
work with two pulses.
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