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This paper presents a unified theory for the Nth-order �N�1� coherence of thermal light. We wish to show
that the Nth-order coherence or correlation of thermal light is the result of N-photon interference, which
involves the superposition of N-photon probability amplitudes, corresponding to different yet indistinguishable
ways of triggering a N-photon joint detection event. The near-field third-order spatial coherence of thermal
light is calculated and its use suggested for verifying the N-photon interference theory.
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I. INTRODUCTION

The discovery and study of light interference played an
important role in the history of physical science. It was the
observations of the interference phenomenon that provided a
solid foundation for the establishment and development of
the classical wave theory of light. The quantum theory of
light was introduced in the beginning of 1900s �1�, and ini-
tiated the revolutionary quantum view of the physical world.
Almost immediately, the wave-particle and/or particle-wave
nature of photons moved into the classical wave theory of
interferometry. The historical “which-path” or “both-path”
debate between Einstein and Bohr about the path of a photon
when passing though an interferometer revealed these con-
cerns �2�. Perhaps Dirac was the first physicist who formu-
lated the viewpoint of quantum mechanics on interference,
summarized in his vivid statement: “�A� photon … only in-
terferes with itself. Interference between two different pho-
tons never occurs” �3�.

The quantum theory of the second- and higher-order co-
herence of light was introduced in 1963 by Glauber �4�, en-
lightened by the discovery of Hanbury Brown and Twiss
�HBT� of 1956 �5�. The nontrivial second-order temporal and
spatial correlations of thermal light observed in a HBT inter-
ferometer created quite a surprise and led to a debate about
the classical or quantum nature of the phenomena �6�. Al-
though the HBT experiment initiated a number of key con-
cepts of modern quantum optics and prepared an experimen-
tal background for the quantum-mechanical photodetection
theory, the HBT phenomenon itself was finally interpreted as
the statistical correlation of intensity fluctuations and consid-
ered as a classical effect. It was believed that the nontrivial
HBT correlation is caused by the locally measured intensity
fluctuations of the radiation: when the detection of the two
photodetectors measures the same mode within the coher-
ence time of the radiation, the photodetectors experience
identical intensity fluctuations; therefore, the statistical cor-
relation of the intensity fluctuation achieves its maximum
value, which is twice greater than the value when the two
photon detection events are triggered by different modes or
at a temporal separation greater than the coherence time �7�.

Fifty years after the discovery of HBT, in 2006, Scarcelli et
al. created another surprise by a set of near-field lensless
ghost imaging experiments with chaotic thermal light �8�.
The ghost imaging experiments showed that nontrivial cor-
relation of thermal light is observable in an experiment in
which the two photodetectors have much greater chances to
be triggered by different modes than an identical mode at any
position of the photodetectors. Following the historical clas-
sical interpretation of HBT, there is no chance to observe any
nontrivial correlation under the experimental conditions of
near-field lensless ghost imaging. What is the cause of the
thermal light ghost imaging? We may have to reexamine the
standard classical interpretation of HBT, and ask a question:
“Can two-photon correlation of chaotic light be considered
as a correlation of intensity fluctuations?” �8,9�. Or, to bring
back the question we have been facing for half a century
since HBT: Is the Nth-order �N�2� coherence observed in
joint detection of distant photodetectors a classical statistical
correlation of locally measured intensity fluctuations or a
quantum nonlocal multiphoton interference phenomenon?

Although questions regarding the quantum or classical na-
ture behind the second-order coherence or correlation of
thermal light still exist �8–14�, the Nth-order coherence or
correlation has shown attractive properties in practical appli-
cations. Multiphoton imaging with thermal light is one of
these exciting areas. As for the entangled multiphoton states
�15,16�, the surprising nonlocal behavior and promising en-
hancement of spatial resolution in multiphoton imaging are
both practically useful. Referring to the Nth-order coherence
or correlation, the main attention has been focused on
second-order coherence or correlation �8,10–13�, with a few
recent discussions about third-order spatial correlation
�17,18� and multiphoton interference �19� in the far field.
Here, in addition to the earlier work, we will discuss the
third-order coherence of thermal light in the near field. Based
on the detailed discussions of the first-, second-, and third-
order coherence, we will generalize our discussions to any
Nth-order �N�1� coherence of thermal light in both the far
field and the near field, thus presenting a unified theory of
coherence for thermal light.

This paper is organized as follows. We will first introduce
the concepts of quantum and classical Nth-order coherence
or correlation in Sec. II. In Sec. III, we will apply the
Glauber photon detection theory to calculate the nontrivial*ljb@mail.nankai.edu.cn
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Nth-order coherence and explore the nonlocal N-photon in-
terference nature of the phenomenon. In Sec. IV, we continue
to analyze the nonlocal interference nature of the Nth-order
coherence of thermal light from a different approach. In this
approach, we will show that, although the radiation fields are
treated classically, the nonlocal superposition of the multiple
fields is consistent with that of the quantum N-photon inter-
ference. Further discussions on the physics behind the
Nth-order coherence of thermal light are then given in Sec.
V. Before drawing the conclusion, in Sec. VI, we suggest an
experiment for measuring the spatial third-order coherence
function of thermal light in the near field to verify the
N-photon interference theory. Section VII summaries the
conclusions.

II. QUANTUM AND CLASSICAL THEORIES OF
NTH-ORDER COHERENCE OR CORRELATION

In the quantum theory of light, the first-order coherence
function G�1��r , t� measures the probability of observing a
photon detection event at space-time point �r , t� �4�,

G�1��r,t� = tr��̂E�−��r,t�E�+��r,t��

= �
j

Pj�� j�E�−��r,t�E�+��r,t��� j�

	 �
j

PjGj
�1��r,t� , �1�

where

�̂ = �
j

Pj�� j��� j� �2�

is the density operator that characterizes the state of the
quantized electromagnetic field, and Gj

�1��r , t� is the probabil-
ity for the jth photon to trigger that event, or the probability
of observing that event when the photon is in the state �� j�, at
�r , t�. The field is treated as in a mixed state. Pj is the prob-
ability of the system to be in the state �� j�. E�−��r , t� and
E�+��r , t� are the negative and positive field operators at
space-time coordinate �r , t�, respectively. Regarding the con-
cept of the photon, we may consider either �I� a photon in the
mixed state of Eq. �2�, or �II� an ensemble of distinguishable
photons in the mixed state of Eq. �2�. In definition I,
Gj

�1��r , t� is the probability of observing that photon at �r , t�
when it is in the state �� j�, and Pj is the probability for that
photon to be in the state �� j�. In definition II, �� j� is treated as
the state of the jth photon. Gj

�1��r , t� is interpreted as the
probability of observing the jth photon at �r , t�, and Pj the
probability for the jth photon to contribute to the photon
detection event. In both cases, the counting rate of a photon
counting detector or the photocurrent of an analog photode-
tector at space-time coordinate �r , t� is proportional to
G�1��r , t�. �In the following, we will use definition II.�

In Eq. �1�, the first-order coherence function G�1��r , t� is
the sum of Gj

�1��r , t�, which measures the probability of the
jth photon to be detected at �r , t�. If there exist two or more
alternative ways for the jth photon to produce a photon de-
tection event at �r , t�, Gj

�1��r , t� will be nontrivial and deter-

mined by the constructive-destructive superposition of these
single-photon probability amplitudes,

Gj
�1��r,t� = 
�

k

Ak
�1��r,t�
2

, �3�

where k=1,2 , . . . ,M, and M is the total number of different
ways for a photon to trigger a photon detection event. For
instance, in Young’s double-pinhole interferometer �Fig. 1�
provides two alternative ways for a photon to trigger a pho-
ton detection event at �r , t�. The superposition between these
two amplitudes, �A1

�1�+A2
�1��2, determines the probability of

observing a photon detection event at space-time coordinate
�r , t�. At certain space-time points, the two amplitudes inter-
fere constructively �destructively� and achieve a maximum
�minimum� probability. At other space-time points, the inter-
ference contributes other values between the maximum and
the minimum. The superposition of the two single-photon
amplitudes thus yields a nontrivial probability distribution
function of �r , t�, namely, an interference pattern. Every pho-
ton produces its own interference pattern, and the final ob-
served interference is the sum of all these individual sub-
interference patterns.

In the Maxwell electromagnetic wave theory of light,
however, the first-order interference is the result of superpo-
sition of electromagnetic fields at space-time point �r , t�. In
the above Young’s double-pinhole experiment, the observed
interference is the result of the superposition at �r , t� between
the field E1 that passes pinhole 1 and the field E2 that passes
pinhole 2, where the intensity I�r , t�= �E1+E2�2 is measured
by a point photodetector or monitored by an optical instru-
ment such as the human eye. At certain space-time points, E1
and E2 interfere constructively �destructively� and achieve a
maximum �minimum� intensity. At other space-time points,
the interference yields different intensities between the maxi-
mum and the minimum. The intensity distribution of light in
space-time is therefore a nontrivial function of �r , t�, which
is usually recognized as the interference pattern.

Although both quantum and classical theories view the
first-order coherence or correlation as interference, the quan-
tum mechanism is quite different from the classical one. As
stated by Dirac, quantum theory considers interference a
single-photon behavior. The superposed quantum amplitudes
belong to a photon. Interference between different photons
never occurs, no matter whether in weak light conditions at
the single-photon level or in bright light conditions above the
classical limit. The classical superposition of fields may in-
volve a large number of photons. For example, in the

S

P 1

P 2

D

X

(r,t)

FIG. 1. Young’s double-pinhole interferometer. S stands for the
light source; P1 and P2 are two pinholes. �r , t� is the space-time
point of the single-photon detection event. X is the plane in which
the point detector D can scan.
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Young’s double-pinhole interferometer, it is reasonable to
imagine that half of a large number of photons pass pinhole
1 and another half pass pinhole 2. It is quite possible that the
classical superposition of �E1+E2�2 means an interference be-
tween these two different groups of photons. Unfortunately,
it seems impossible to distinguish the quantum picture from
the classical one in first-order coherence or correlation mea-
surements. There seems no conclusion, especially in bright
light conditions, whether the interference is the result of a
photon interfering with itself or one group of photons inter-
fering with another group of photons.

Interestingly and perhaps surprisingly, the difference be-
tween quantum and classical mechanisms becomes distin-
guishable in second- and higher-order coherence or correla-
tion measurements. The second-order coherence function
G�2��r1 , t1 ;r2 , t2� measures the probability of observing two
photon detection events jointly at space-time points �r1 , t1�
and �r2 , t2�,

G�2��r1,t1;r2,t2�

= tr��̂E�−��r1,t1�E�−��r2,t2�E�+��r2,t2�E�+��r1,t1��

= �
j

Pj�� j�E�−��r1,t1�E�−��r2,t2�E�+��r2,t2�E�+��� j�

	 �
j

PjGj
�2��r1,t1;r2,t2� , �4�

where �r1 , t1� and �r2 , t2� are the space-time coordinates of
the two photon detection events associated with photodetec-
tors D1 and D2, respectively. Again, the density operator �̂
characterizes the state of the quantized field, which is treated
as mixed state. �� j� is the state of the jth jointly measured
pair of photons, which may be an entangled state, a product
state, or any other type of state. In the chaotic thermal state,
the jointly measured pair of photons are completely indepen-
dent; there is no correlation built into the state. It is only by
chance that the two photon detection events occur within a
certain time window and this is counted as a “coincidence”
or a “joint detection” event. Gj

�2��r1 , t1 ;r2 , t2� is interpreted as
the probability of observing the jth jointly measured pair of
independent photons at �r1 , t1� and �r2 , t2�, and Pj the prob-
ability for the jth pair to contribute to the joint photon de-
tection event. If there exists more than one alternative way
for the measured jth pair to trigger a joint detection event at
�r1 , t1� and �r2 , t2�, the superposition of these two-photon
amplitudes determines the probability to have the jth joint
detection event at �r1 , t1� and �r2 , t2�. Gj

�2��r1 , t1 ;r2 , t2� in Eq.
�4� is a result of two-photon interference �8,20�,

Gj
�2��r1,t1;r2,t2� = 
�

k

Ajk
�2��r1,t1;r2,t2�
2

. �5�

For example, the second-order coherence of thermal light
observed in the HBT interferometer is calculated from �see
Fig. 2�

G�2��r1,t1;r2,t2� = �
j

�Aj1
�2� + Aj2

�2��2

= �
j

��Aj1
�2��2 + �Aj2

�2��2 + �Aj1
�2��*Aj2

�2�

+ Aj1
�2��Aj2

�2��*� , �6�

where Aj1
�2� and Aj2

�2� are the superposed two-photon ampli-
tudes representing two alternative ways for the jth jointly
measured pair of independent photons to produce a joint de-
tection event at space-time points �r1 , t1� and �r2 , t2�, respec-
tively. It is clearly shown in Eq. �6� that the nontrivial cor-
relation function G�2��r1 , t1 ;r2 , t2�, i.e., the well-known 50%
contrast HBT correlation �21� involves a large number of
individual subinterference patterns, where each pattern is
produced by a pair of measured independent photons. The
two-photon interference occurs within a measured photon
pair. Analogous to Dirac’s statement about single-photon in-
terference, we can have a similar statement for two-photon
interference: “A photon pair only interferences with itself.
Interference between two different photon pairs never oc-
curs.” In certain experimental situations, the two-photon in-
terference occurs at two distant space-time coordinates
through the measurement of two photodetectors with two
photon detection events at �r1 , t1� and �r2 , t2�, which can be
arranged experimentally to be spacelike separated events.
Following Einstein, Podolsky, Rosen �EPR�, and Bell
�22,23�, we name it nonlocal two-photon interference.

In the classical theory of light, the second-order correla-
tion of thermal light is considered as the statistical correla-
tion of the two locally measured intensities I�r1 , t1� and
I�r2 , t2�, precisely the correlation of the intensity fluctuations
�I�r1 , t1� and �I�r2 , t2�,

�I
�2��r1,t1;r2,t2� 	 �I1I2� = ��Ī1 + �I1��Ī2 + �I2��

= Ī1Ī2 + ��I1�I2� , �7�

where the ensemble average is based on the statistics of the
locally measured intensities I�r1 , t1� and I�r2 , t2�. Obviously,
the nontrivial contribution comes from the second term of
Eq. �7�, ��I1�I2�. �I

�2��r1 , t1 ;r2 , t2� will be a trivial constant

Ī1Ī2 when the intensity fluctuations are negligible with

S

D1

X1

CC

X2

D2

BS

FIG. 2. Schematic of the historical Hanbury Brown and Twiss
interferometer which was designed for measuring the angular size
of distant stars. S is a far-field thermal source. BS is a 1:1 beam
splitter. Xj is the plane in which the point detector Dj can scan �j
=1,2�. CC stands for the two-photon coincidence counting system
�for photon counting detectors� or twofold linear multiplier �for
analog photocurrent detectors�.
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�I1 / I1�0 and �I2 / I2�0. In classical theory, strictly imple-
menting the locality rules, I�r1 , t1� and �I�r1 , t1� must be
determined by the local field E�r1 , t1� only; I�r2 , t2� and
�I�r2 , t2� must be determined by the local field E�r2 , t2� only.
Classical theory does not allow any nonlocal effect �in EPR-
Bell terms�, including nonlocal interference.

Traditionally, the statistical correlation of intensity fluc-
tuations is also considered as the statistical correlation of
photon number fluctuations. In a HBT interferometer, which
is schematically illustrated in Fig. 2, one group of a large

number of photons with N1= N̄1+�N1, fluctuating from time
to time, produce photocurrent i1�t� of D1; another group of

photons with N2= N̄2+�N2, also fluctuating from time to
time, produce photocurrent i2�t� of D2. The mean numbers of

photons, N̄1 and N̄2, respectively, correspond to the mean

intensities of Ī1 and Ī2. The photon number fluctuations �N1
and �N2, respectively, correspond to the intensity fluctua-
tions �I1 and �I2. Despite the use of the language of quan-
tum mechanics, in classical theory, the nontrivial HBT cor-
relation is determined by the statistical behavior of two
groups of large numbers of photons, independently. The clas-
sical mechanism of photon number fluctuation correlation, or
the intensity fluctuation correlation, representing the statisti-
cal behavior of two groups of a large number of photons, is
thus fundamentally different from the two-photon interfer-
ence picture of the quantum theory, which is based on the
quantum-mechanical superposition of two-photon ampli-
tudes within a pair of jointly measured photons. Further-
more, the difference between these two different interpreta-
tions is experimentally testable in some conditions, such as
when the fluctuations are negligible compared to the mean
values. Based on the concept of statistical correlation be-
tween locally measured intensity fluctuations, or photon
number fluctuations, the second-order correlation function
will be a trivial constant in the experimental conditions in

which �Ij / Ī j �0 or �Nj / N̄j �0, j=1,2. Under the same ex-
perimental conditions, however, the quantum theory of two-
photon interference will still predict a nontrivial second-
order coherence function. A detailed calculation and
discussion can be found in Sec. IV.

The Nth-order coherence G�N��r1 , t1 ; . . . ;rN , tN� �N�2�
measures the probability of observing N jointly measured
photon detection events at space-time points �r1 , t1� , . . ., and
�rN , tN�,

G�N��r1,t1; . . . ;rN,tN�

= tr��̂E�−��r1,t1� ¯ E�−��rN,tN�E�+��rN,tN� ¯ E�+��r1,t1�

	 �
j

PjGj
�N��r1,t1; . . . ;rN,tN� , �8�

where Gj
�N��r1 , t1 ; . . . ;rN , tN� is the contribution from the jth

group of jointly measured photons. If there exists more than
one alternative way to trigger a joint detection event at
�r1 , t1� , . . ., and �rN , tN�, the superposition of these N-photon
amplitudes determines the probability to have the jth joint
detection event at �r1 , t1� , . . ., and �rN , tN�.
Gj

�N��r1 , t1 ; . . . ;rN , tN� in Eq. �8� can be written as a superpo-

sition of these N-photon amplitudes Ak
�N��r1 , t1 ; . . . ;rN , tN�,

where k=1, . . . ,M and M is the total number of alternative
ways for the jth group of photons to trigger the joint detec-
tion event at �r1 , t1� , . . ., and �rN , tN�,

Gj
�N��r1,t1; . . . ;rN,tN� = 
�

k

Ak
�N��r1,t1; . . . ;rN,tN�
2

. �9�

The coincidence counting rate of the N-point photon count-
ing detectors, or the output current of an N-fold linear mul-
tiplier which responds linearly to the product of the output
currents of N-point photodetectors located at r1 , . . . ,rN,
respectively, is proportional to G�N��r1 , t1 ; . . . ;rN , tN�,
which sums all the individual contributions of
Gj

�N��r1 , t1 ; . . . ;rN , tN�.
In the classical theory, the Nth-order intensity correlation

function �I
�N��r1 , t1 ; . . . ;rN , tN� measures the correlation of N

locally measured intensities at space-time points �r1 , t1� , . . .,
�rN , tN�, respectively,

�I
�N��r1,t1; . . . ;rN,tN� 	 �I�r1,t1� ¯ I�rN,tN�� . �10�

Again, �¯� denotes an ensemble average based on the sta-
tistics of the intensities I�r1 , t1� , . . . , I�rN , tN�, which are mea-
sured by photodetectors D1 , . . . ,DN at space-time coordi-
nates �r1 , t1� , . . . , �rN , tN�, locally, independently, and
respectively.

III. THE NTH-ORDER COHERENCE FUNCTION:
N-PHOTON INTERFERENCE?

In the last section, we have given the definitions of
Nth-order coherence or correlation based on quantum theory
and classical theory. In this section and the next section, we
will use these two different definitions to calculate the
Nth-order coherence or correlation of thermal light.

In this section, we start from the definition of the
Nth-order coherence function G�N��r1 , t1 ; . . . ;rN , tN� based on
Glauber’s photodetection theory �4� which is given in Eq.
�8�. Calculating the Nth-order coherence function of thermal
light, we model the light source as a large collection of two-
level atomic transitions which spontaneously emit radiation
independently and randomly �1�. A detailed analysis can be
found in Appendix A. The density matrix of thermal light
can be formally written as �20,24,25�

�̂ = �
�n

P��n���n���n� , �11�

where

��n� = �n�k1���n�k2�� ¯ �n�kN��

is the multimode Fock state with occupation number n�k j�
for the jth mode, which may take any value from 0 to infin-
ity. k j is the wave vector of the jth mode �j=1,2 , . . . ,N�.
P��n� is the probability to find the thermal field at the state
��n� with a special set of occupation number combination.
The sum includes all the possible combinations or possible
states of ��n�.

In the following discussions, we replace k j with the trans-
verse wave vector �� j and frequency � j to specify the jth
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mode, which is helpful to simplify the discussions associated
with the nontrivial transverse correlation of thermal light that
will be given later as an example. For the same purpose, we
write the field operator at the coordinate of the jth photode-
tector in the following form �25�:

E�+���� j,zj,tj� =� d� d�� e−i�tjgj��� ,�,�� j,zj�a��� ,�� , �12�

where �� j and zj are the transverse �two-dimensional �2D�
vector� and longitudinal coordinates of the jth point photo-
detector, respectively. a��� ,�� is the annihilation operator for
mode ��� ,��. gj��� ,� ,�� j ,zj� is the Green’s function, which
propagates the field of mode ��� ,�� from the source to the jth
detector. For free propagation �25–27�,

g��� j,zj;�� ,�� =
− i�

2�c

ei��/c�z1

z1
� d��s���z1

c
,�� j − ��s�

	a���s�ei
���s�e−i�� ·��s, �13�

where ���z1 /c ,�� j −��s�=ei��/2cz1���� j − ��s�
2

is a Gaussian func-
tion. a���s� and 
���s� are the amplitude and the phase for the
mode �� . ��s is the two-dimensional vector on the transverse
plane s, as shown in Fig. 12. z1 is the distance between the
plane s and j. The single-detector counting rate or the output

photocurrent of the jth photodetector is proportional to
G�1��r j , tj�,

G�1���� j,zj,tj� = tr��̂E�−���� j,zj,tj�E�+���� j,zj,tj��

= �
�n

P��n���n�E�−���� j,zj,tj�E�+���� j,zj,tj���n�

= const, �14�

where we have assumed a large-sized bright thermal source.
Although the counting rate or the photocurrent of all single
detectors is constant in space-time in this condition, quantum
theory does not prevent a nontrivial Nth-order coherence
function G�N��r1 , t1 ; . . . ;rN , tN� �N�2� of thermal radiation.
In the following we calculate the second-, third-, and
Nth-order coherence functions of thermal light. We will at-
tempt a calculation based on a modified HBT interferometer,
which is the same as shown in Fig. 2, except the distant star
is replaced with a large-sized Fresnel near-field chaotic ther-
mal source that is described previously. The joint detection
counting rate of D1 and D2 or the output current of the
standard HBT linear multiplier is proportional to
G�2��r1 , t1 ;r2 , t2�. For simplicity, we only consider the spatial
correlation by taking ��const, where the temporal correla-
tion always achieves its maximum. The second-order coher-
ence function in this simplified situation is

G�2��r1,t1;r2,t2� = �
�n

P��n� � d��d������d���g*���1,z1;�� �g*���2,z2;����g���2,z2;����

	 g���1,z1;��������� − ��������� − ���� + ���� − ��������� − �����

= �
. . .,n��� ��1,. . .,n������1,. . .

n��� �n�����P��n� � d��d���
 1
�2

�g���1,z1;�� �g���2,z2;���� + g���1,z1;����g���2,z2;�� ��
2

,

�15�

where g���1 ,z1 ;�� �g���2 ,z2 ;���� is the probability amplitude that a photon in mode �� goes to detector 1 and a photon in mode ���
goes to detector 2, and g���1 ,z1 ;����g���2 ,z2 ;�� � is the probability amplitude that a photon in mode ��� goes to detector 1 and a
photon in mode �� goes to detector 2. The second-order coherence is the result of a superposition between these two probability
amplitudes of different ways to trigger a two-photon joint detection event at space-time points �r1 , t1� and �r2 , t2�, respectively.
As stated before, the final observed G�2��r1 , t1 ;r2 , t2� is the sum of all individual subinterference patterns, each of which is
produced by a measured pair of independent photons.

Substituting Eq. �13� into Eq. �15� and assuming a constant a���s� and z1=z2=d, the normalized second-order coherence
function is �detailed calculations can be found in Appendix B�

g�2����1;��2� = 1 + somb2�R

d

�

c
���1 − ��2�� � 1 + ����1 − ��2� , �16�

where the � function is an approximation by assuming a large enough thermal source of angular size ���R /d and high
enough frequency �, such as a visible light source. We thus obtained a point-to-point correlation on two transverse planes. The
contrast of the correlation function is 2:1 as shown in Eq. �16� �5�.

The third-order spatial coherence function can be measured by a similar experimental setup as the modified HBT interfer-
ometer except that three photodetectors are used for three-photon joint detection. The two-photon joint detection circuit will be
replaced by a three-photon coincidence counter or three-fold current correlator �see Fig. 3�. Again, we assume constant � to
simplify the discussion. The third-order coherence function is
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G�3��r1,t1;r2,t2;r3,t3� = �
. . .,n��� ��1,. . .,n������1,. . .,n������1,. . .

n��� �n�����n�����

	 P„. . . ,n��� �, . . . ,n�����, . . . ,n�����, . . . …� d�� � d���� d���

	 
 1
�6

�g1��� �g2�����g3����� + g1��� �g2�����g3����� + g1�����g2��� �g3����� + g1�����g2�����g3��� �

+ g1�����g2��� �g3����� + g1�����g2�����g3��� ��
2

, �17�

where gj��� � is shorthand for g��� j ,zj ,�� �. g1��� �g2�����g3����� is the probability amplitude that a photon in mode �� goes to
detector 1, a photon in mode ��� goes to detector 2, and a photon in mode ��� goes to detector 3. Other terms in Eq. �17�
represent different ways to trigger a three-photon joint detection event. From Eq. �17�, we see that the third-order coherence
is also the result of a large number of three-photon interferences. Each interference pattern is produced by a superposition of
a set three-photon amplitudes corresponding to different yet indistinguishable ways for a measured group of three independent
photons to trigger a three-photon joint detection event. The final observed G�3��r1 , t1 ;r2 , t2 ;r3 , t3� is the sum of all individual
subinterference patterns of every jointly measured group of three photons. The contrast of the third-order coherence function
of thermal light is 6:1, a detailed calculation for G�3��r1 , t1 ;r2 , t2 ;r3 , t3� can be found in Sec. VI.

The above calculations can be easily extended to the Nth-order �N�2� coherence function, which is measurable in the
experimental setup of Fig. 4,

G�N��r1,t1; . . . ;rN,tN� = �
. . .,n��� ��1,. . .,n������1,. . .

n��� � ¯ n����¯��P„. . . ,n��� �, . . . ,n����¯��, . . . …

	� d�� ¯� d���¯�
 1
�N!

� �
�� ,. . .,���¯�

N!

g1��� � ¯ gN����¯���
2

, �18�

where the last ���¯� represents the Nth mode; ��� ,. . .,���¯�
N! is the

sum of all the probability amplitudes of different yet indis-
tinguishable ways to trigger a N-photon joint detection event,
which has N! terms. The method to write all the possible
probability amplitudes is to keep the order of the detectors
the same, i.e., keep all the numbers 1 ,2 , . . . ,N in the same
order, and change the modes of these photons, i.e., �� ,
��� , . . . ,���¯�. Based on Eq. �18�, the Nth-order coherence is
the result of N-photon interference. The final observed
G�N��r1 , t1 ; . . . ;rN , tN��N�2� is the sum of all the subinter-
ference patterns produced by every measured group of N
photons. By analogy to the second- and third-order coher-
ence, we can easily find that the contrast of the Nth-order
coherence function of thermal light is N! :1.

IV. THE NTH-ORDER CORRELATION FUNCTION:
STATISTICAL CORRELATION OF INTENSITY

FLUCTUATIONS?

In this section we attempt a different approach to calculate
the Nth-order coherence function of bright thermal light in
the classical limit. We will do the following.

�I� Calculate the intensity of thermal light locally mea-
sured by the jth point photodetector at an arbitrary space-
time coordinate �r j , tj�,

S

CC

BS

D3

D1

D2

FIG. 3. Experimental setup to measure the third-order spatial
coherence function. S is the source. BS is a beam splitter that will
split the light into three equal-energy parts. D1, D2, and D3 are three
different detectors. CC. is a three-photon coincidence count system
�for a photon counting detector� or threefold current multiplier �for
a photocurrent detector�.

S D1

CC

BS

D2

DN

FIG. 4. Experimental setup to measure the Nth-order coherence
function. S is the source. BS is a beam splitter which will split the
light into N equal-energy parts. D1, D2 , . . . ,DN are N different de-
tectors. CC. is an N-photon coincidence count system �for a photon
counting detector� or N-fold current correlator �for a analog photo-
current detector�.
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I�r j,tj� 	 E*�r j,tj�E�r j,tj� ,

and calculate the Nth-order intensity correlation based on the
statistics of the N locally measured intensities, respectively at
space-time coordinates �r1 , t1� , . . . , �rN , tN�,

�I
�N��r1,t1; . . . ;rN,tN� 	 �I�r1,t1� ¯ I�rN,tN�� . �19�

Here, the ensemble average �¯� means that we take into
account all possible realizations of the locally measured in-
tensities.

�II� Compare the result in I with the 2Nth-order correla-
tion of the fields,

�E
�N��r1,t1; . . . ;rN,tN�

	 �E*�r1,t1�E�r1,t1� ¯ E*�rN,tN�E�rN,tN�� , �20�

where E�r j , tj� and E*�r j , tj� are the electric field and its con-
jugate at space-time coordinate �r j , tj� �j=1, . . . ,N� �28�. Un-
like in Eq. �19�, here, �¯� means that we take into account
all possible realizations of the fields, rather than the statisti-
cal ensemble average of the locally measured individual in-
tensities. In this calculation the field will be treated classi-
cally without quantization, but the classical locality
restriction will be released, i.e., allowing the interference be-
tween E�r1 , t1� and E�r2 , t2� through the measurement of two
distant photodetectors D1 and D2 at �r1 , t1� and �r2 , t2�.

We assume a thermal source which is bright enough to be
considered classical. In this limit, we model the thermal
source with a large number of randomly distributed and ran-
domly radiating independent point “subsources,” such as tril-
lions of independent atomic transitions randomly distributed
in space and in time, all contribute to the instantaneous in-
tensity �29�. Each point subsource contributes to the mea-
surement an independent spherical wave as a subfield of
complex amplitude Ej =aje

i
j, where aj is the real and posi-
tive amplitude of the jth subfield and 
 j is a random phase
associated with the jth subfield. Basically, we have the fol-
lowing pictures for the source: �I� a large number of inde-
pendent point subsources distributed randomly in space
�counted spatially�; �II� each point source contains a large
number of independently and randomly radiating atoms
�counted temporally�; �III� a large number of subsources,
counted either spatially or temporally, may contribute to each
of the independent radiation modes ��� ,�� at each of the
individual point photodetectors �counted by mode�. The in-
stantaneous intensity at space-time �r j , tj�, measured by the
jth idealized point photodetector Dj �j=1, . . . ,N�, is calcu-
lated as

I�r j,tj� = E*�r j,tj�E�r j,tj�

= �
l

E
l
*�r j,tj��

m

Em�r j,tj�

= �
l=m

E
l
*�r j,tj�El�r j,tj� + �

l�m

E
l
*�r j,tj�Em�r j,tj� ,

�21�

where the subfields are identified by the indices l and m
originated from the l and m sub-sources. In Eq. �21� we
divided the sum into two groups. The first group represents

the sum of the subintensities, where the lth subintensity
originates from the lth subsource. The second group adds the
“cross” terms corresponding to different subsources. When
we take into account all possible realizations of the fields, it
is easy to find that only the first group, in which the field and
its conjugate come from the same subsource, survives. The
second group in Eq. �21� vanishes if 
l−
m takes all possible
values. We may rewrite Eq. �21� into the form of

I�r j,tj� = �I�r,t�� + �I�r,t� ,

where

�I�r,t�� 	 ��
l

E
l
*�r j,tj��

m

Em�r j,tj�� = �
l

E
l
*�r j,tj�El�r j,tj� .

�22�

The instantaneous intensity I�r , t� has two contributions:
�I�r , t��, which is defined as the expectation value of the
intensity, and �I�r , t�, which is defined as the intensity fluc-
tuations. In the classical limit, for thermal light, a large num-
ber of independent and randomly radiating subsources con-
tribute to the instantaneous intensity I�r j , tj�. This large
number of independent randomly distributed subfields may
take all possible realizations of their complex amplitudes in
the superposition. In this case, and only in this case, the
instantaneous intensity takes its expectation value

I�r j,tj� � �
l

E
l
*�r j,tj�El�r j,tj� = �I�r j,tj�� .

In a real measurement, especially in weak light conditions,
the superposition may not take all possible realizations of the
fields and thus results in an incomplete destructive interfer-
ence. The measured value of I�r j , tj� will be slightly different
from its expectation value, causing random fluctuations in
the neighborhood of the expectation value from time to time.
In the classical limit, however, a large enough number of
randomly radiating subsources contribute to the measure-
ment of instantaneous intensity I�r j , tj�, negligible random
fluctuations are expected with �I / I�0. This result is consis-
tent with quantum theory. The thermal state is treated as a
mixed state in quantum theory. The Glauber theory of photon
detection predicts a constant G�1��r j , tj�, and consequently a
constant counting rate of the jth photon counting detector as
given in Eq. �14�. The constant counting rate corresponds to
constant intensity I�r j , tj� measured by the jth photodetector
in the classical limit.

Now we calculate �I
�2��r1 , t1 ;r2 , t2� classically with the

help of Eq. �7�,

�I
�2��r1,t1;r2,t2� 	 �I�r1,t1�I�r2,t2�� = �I1��I2� + ��I1�I2� ,

in which the ensemble average is based on the statistics of
each locally measured intensity. In the classical limit, with
negligible intensity fluctuations, obviously we obtain

�I
�2��r1,t1;r2,t2� � Ī1Ī2 � const.

The classical theory of statistical correlation based on the
locally measured random intensity fluctuations does not pre-
dict observable nontrivial correlation.
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However, the calculation of the fourth-order correlation of
the field, following Eq. �20� by taking N=2 gives a different
result:

�E
�2��r1,t1;r2,t2�

= � �
j,k,l,m

E
j
*�r1,t1�Ek�r1,t1�E

l
*�r2,t2�Em�r2,t2��

= ��
j

E
j
*�r1,t1�Ej�r1,t1��

l

E
l
*�r2,t2�El�r2,t2�

+ �
j

E
j
*�r1,t1�Ej�r2,t2��

l

E
l
*�r2,t2�El�r1,t1��

=��
j

�
l

 1

�2
�Ej�r1,t1�El�r2,t2�

+ El�r1,t1�Ej�r2,t2��
2� , �23�

where based on the chaotic nature of the independent sub-
sources, after taking into account all possible realizations of
the phases associated with the subfields, the only surviving
terms in the summation are those with �1� j=k, l=m, �2� j
=m, k= l. Notice, when claiming the surviving terms j=m,
k= l, we have assumed that the optical radiation fields of
E�r1 , t1� and E�r2 , t2� can interfere with each other through
the measurement of two distant independent photodetectors
D1 and D2. This postulate is beyond the classical measure-
ment theory of light. Classical theory does not allow any
nonlocal effect �in EPR-Bell terms�, including nonlocal in-
terference.

It is not difficult to see the nonlocal nature of the super-
position shown in Eq. �23�. In Eq. �23�, G�2��r1 , t1 ;r2 , t2� is
written as a superposition between the product of subfields
Ej�r1 , t1�El�r2 , t2� and El�r1 , t1�Ej�r2 , t2�. The first term in the
superposition corresponds to the situation in which the field
at D1 was generated by the jth subsource, and the field at D2
was generated by the lth subsource. The second term in the
superposition corresponds to a different yet indistinguishable
situation in which the field at D1 was generated by the lth
subsource, and the field at D2 was generated by the jth sub-
source. Therefore, an interference of �Ej1El2+El1Ej2�2 is con-
cealed in the joint measurement of D1 and D2, which physi-
cally occurs at two space-time points �r1 , t1� and �r2 , t2�. It is
easy to see from Fig. 5 the amplitude pairs j1	 l2 with l1

	 j2, j�1	 l�2 with l�1	 j�2, j1	 l�2 with l�1	 j2, and
j�1	 l2 with l1	 j�2, etc., pair by pair, will experience equal
total optical path propagation, which involves two arms of
D1 and D2, and thus superpose constructively when D1 and
D2 are placed in the neighborhood of ��1=��2, z1=z2, where ��1
�z1� and ��2 �z2� are the transverse �longitudinal� coordinates
of D1 and D2. Consequently, the summation of these indi-
vidual constructive interference terms will yield a maximum
value. When ��1���2, z1=z2, however, each pair of the ampli-
tudes may achieve different relative phase and contribute a
different value to the summation, resulting in an averaged
constant value.

It does not seem to make sense to claim an interference
between ��Ej goes to D1�	 �El goes to D2�� and ��El goes to
D1�	 �Ej goes to D2�� in the framework of Maxwell’s elec-
tromagnetic wave theory of light. This statement is more
likely adapted from particle physics, and is more suitable
to describe the interference between quantum ampli-
tudes: ��particle j goes to D1�	 �particle l goes to D2�� and
��particle l goes to D1�	 �particle j goes to D2��, rather than
waves. Classical waves do not behave in such a way. In fact,
in this model each subsource corresponds to an independent
spontaneous atomic transition in nature, and consequently
corresponds to the creation of a photon. Therefore, the above
superposition corresponds to the superposition between two
indistinguishable two-photon amplitudes, and is thus called
two-photon interference. Although we started with a model
which is in the “classical” limit of the bright light condition,
the model of interference between subfields originating from
a large number of chaotic point subsources is consistent with
the theory of Dirac.

Similar to the quantum calculation, we attempt a near-
field calculation to derive the nontrivial correlation of
�E

�2����1 ,z1 ;��2 ,z2�. We start from Eq. �23� and concentrate on
the transverse spatial correlation by taking the frequency �
as a constant. In the near field we apply the Fresnel approxi-
mation as usual to propagate the field from each subsource to
the photodetectors. �E

�2����1 ,z1 ;��2 ,z2� can be formally written
in terms of the Green’s function,

�E
�2����1,z1;��2,z2� =�� d��d���
 1

�2
�g���1,z1,�� �g���2,z2,����

+ g���2,z2,�� �g���1,z1,�����
2�
= �� d�� �g���1,z1,�� ��2� d�� �g���2,z2,�����2

+ 
� d��g*���1,z1,�� �g���2,z2,�� �
2�
	 �E

�1����1,z1;��1,z1��E
�1����2,z2;��2,z2�

+ ��E
�1����1,z1;��2,z2��2. �24�

In Eq. �24� we have formally written �E
�2� in terms of the

first-order �second-order in field� correlation functions �E
�1�,

but keep in mind that the first-order correlation function
�E

�1� and the second-order �fourth-order in field� correlation
function �E

�2� represent different physics based on different

2D 1D

j'

j

l

l'

FIG. 5. �Color online� Schematic illustration of � j,l�Ej1El2

+El1Ej2�2. It is clear that the amplitude pairs j1	 l2 with l1	 j2,
where j and l represent all point subsources, pair by pair, will ex-
perience equal optical path propagation and superpose construc-
tively when D1 and D2 are located at ��1���2, z1�z2, where ��1 �z1�
and ��2 �z2� are the transverse �longitudinal� coordinates of D1 and
D2.
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measurements. Substituting the Green’s function of Eq. �13�
for free propagation into Eq. �24�, we obtain
�E

�1����1 ,z1��E
�1����2 ,z2��const and

��E
�1����1,z1;��2,z2��2

 
� d��0a2���0�e−i��/2cd����1 − ��0�2ei��/2cd����2 − ��0�2
2

 
e−i��/2cd�����1�2−���2�2� � d��0a2���0�ei��/cd����1−��2�·��0
2

 somb2�R

d

�

c
���1 − ��2�� , �25�

where we have assumed a2���0��const, and z1=z2=d. The
transverse spatial correlation function �E

�2����1 ;��2� is thus

�E
�2�����1 − ��2�� = I0

2�1 + somb2�R

d

�

c
���1 − ��2��� . �26�

Consequently, the degree of the second-order spatial coher-
ence is

g�2�����1 − ��2�� = 1 + somb2�R

d

�

c
���1 − ��2�� � 1 + ����1 − ��2� ,

�27�

for a large value of 2R /d���, where �� is the angular size
of the radiation source viewed at the photodetectors. We ef-
fectively have a “point-to-point” correlation between the
Fresnel near-field transverse planes of z1=d and z2=d.

We have thus derived the same second-order coherence or
correlation function as that of the quantum theory. There is
no surprise in having such a result. Although the fields are
not quantized, this model has implied the same two-photon
interference �nonlocal� mechanism as that of the quantum
theory. We may name this model “semiclassical.” Unlike the
phenomenological theory of intensity fluctuations, this semi-
classical model explores the physical cause of the phenom-
enon �30�.

Situations are similar when we consider the third-order
coherence or correlation of thermal light. The third-order in-
tensity correlation function is calculated by taking N=3 in
Eq. �19�,

�I
�3��r1,t1;r2,t2;r3,t3� = �I�r1,t1�I�r2,t2�I�r3,t3��

= ��Ī1 + �I1��Ī2 + �I2��Ī3 + �I3��

= Ī1Ī2Ī3 + Ī1��I2�I3� + Ī2��I3�I1�

+ Ī3��I1�I2� + ��I1�I2�I3� . �28�

If the intensity fluctuations is negligible comparing with the
mean value of the intensity, then

�I
�3��r1,t1;r2,t2;r3,t3� � Ī1Ī2Ī3 � const.

Thus the intensity fluctuation theory predicts a constant for
the third-order coherence function of thermal light in this
condition.

The calculation of the sixth-order field correlation
�E

�3��r1 , t1 ;r2 , t2 ;r3 , t3�, which is based on the statistics of
fields gives a different result,

�E
�3��r1,t1;r2,t2;r3,t3�

= �E�r1,t1�E*�r1,t1�E�r2,t2�E*�r2,t2�E�r3,t3�E*�r3,t3��

= � �
j,k,l,m,n,p

Ej1E
k1
* El2E

m2
* En3E

p3
* �

=��
j,k,l

 1

�6
�Ej1Ek2El3 + Ej1Ek3El2 + Ej2Ek1El3

+ Ej2Ek3El1 + Ej3Ek1El2 + Ej3Ek2El1�
2� , �29�

where E�� is short for E��r� , t��, meaning the field at space-
time point �r� , t�� emitted by the �th subsource. As shown in
Sec. VI, �E

�3��r1 , t1 ;r2 , t2 ;r3 , t3� is not a trivial constant even
when the intensity fluctuation is negligible, which contra-
dicts the prediction of Eq. �28�. The interference of the prod-
ucts of three electrical fields in Eq. �29�, similar to that of the
product of two electrical fields in Eq. �23�, can be best inter-
preted by the quantum �particle� concepts, not the fields. De-
tail discussions about this kind of interference, i.e., three-
photon interference, can be found in Sec. V.

We can easily extend our calculations and discussions to
any Nth-order �N�2� coherence of thermal light based on
the second- and third-order cases. In summary, the statistical
theory of locally measured intensity fluctuations gives a
trivial constant Nth-order intensity correlation in the case
when the intensity fluctuations are negligible,

�I
�N��r1,t1; . . . ;rN,tN� = Ī1Ī2 ¯ ĪN � const.

While based on the superposition of the fields, the nontrivial
2Nth-order field correlation function is calculated to be

�E
�N��r1,t1; . . . ;rN,tN�

= �
j,k,l. . .

�
 1
�N!��N!

Ej1Ek2El3 ¯ �
2� , �30�

where �N!Ej1Ek2El3¯ means that we take all possible ways
to write the products of N different electrical fields, which
has N! terms. The way to write all the N! terms is to keep the
order of subsources j ,k , l. . . the same, and change the order
of the detectors, i.e., 1, 2, 3,… as in Eq. �18� of the quantum
calculation part. It is easy to see that each term in the sum
corresponding to a quantum-mechanical amplitude in which
the j ,k , l , . . . subfields are measured by the photodetectors 1,
2, 3,…. It is interesting to see a nontrivial 2Nth-order field
correlation function �E

�N��r1 , t1 ; . . . ;rN , tN� when the intensity
fluctuations are negligible, in which condition the Nth-order
intensity correlation function �I

�N��r1 , t1 ; . . . ;rN , tN� is a
trivial constant.

V. DISCUSSION

Based on the calculation in Secs. III and IV from both the
quantum and classical points of view, we conclude that the
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Nth-order �N�2� coherence or correlation of thermal light is
an interference phenomenon. Now we are facing a question:
Is the nontrivial correlation the result of quantum or classical
interference? For instance, in Eq. �24�, the second-order co-
herence function �E

�2��r1 , t1 ;r2 , t2� is written in terms of the
first-order coherence functions �E

�1��r1 , t1 ;r1 , t1�,
�E

�1��r2 , t2 ;r2 , t2�, and �E
�1��r1 , t1 ;r2 , t2�

�E
�2��r1,t1;r2,t2� = �E

�1��r1,t1;r1,t1��E
�1��r2,t2;r2,t2�

+ ��E
�1��r1,t1;r2,t2��2.

The first-order interference is usually considered as classical
interference. The first-order coherence function
�E

�1��r1 , t1 ;r2 , t2� is a quantitative measure of the first-order
interference between fields E�r1 , t1� and E�r2 , t2�. Does it
mean that the nontrivial �E

�2��r1 , t1 ;r2 , t2� is a classical super-
position of E�r , t�=E�r1 , t1�+E�r2 , t2�? The answer is nega-
tive. In the following we will clarify the different physics
behind this ��E

�1��r1 , t1 ;r2 , t2��2 and the standard first-order
coherence function �E

�1��r1 , t1 ;r2 , t2� by analyzing the
Young’s double-pinhole interferometer and the historical
HBT experiment. Figure 6 schematically illustrates a
Young’s double-pinhole interferometer that measures the
first-order spatial coherence of the radiation. Assuming a
large-sized transverse bright chaotic thermal source consist-
ing of a large number of independent and randomly radiating
point subsources, the fields E�r1 , t1� at pinhole P1 and
E�r2 , t2� at pinhole P2 are treated as the superposition of a
large number of independent subfields associated with each
subsource. The expectation value of the intensity I�r , t� on
the observation plane � is

�I�r,t�� = ��E�r,t��2�

= ��
j

�Ej�r1,t1� + Ej�r2,t2��2�
= �E

�1��r1,t1;r1,t1� + �E
�1��r2,t2;r2,t2�

+ �E
�1��r1,t1;r2,t2� + �E

�1��r2,t2;r1,t1� , �31�

with

�E
�1��rl,tl;rm,tm� 	 ��

j

E
j
*�rl,tl�Ej�rm,tm�� ,

where the index j labels the point subsources, and the indices
l and m �l ,m=1,2� label the pinhole P1 at r1 and the pinhole

P2 at r2, and t1 and t2 are the early times when the measured
radiation passes P1 and P2 at t1= t−s1 /c and t2= t−s2 /c. In
Eq. �31�, an ensemble average has been partially completed
by taking into account all possible phases of the subfields. In
this experiment, �E

�1��r1 , t1 ;r1 , t1� measures the interference
between “earlier” fields E�r1 , t1� and E�r2 , t2� at a local
space-time point �r , t� by means of �E�r , t��2= �E�r1 , t1�
+E�r2 , t2��2, which is defined as classical interference.

Figure 7 illustrates the historical HBT experiment, which
measures the second-order coherence of thermal radiation by
two photodetectors at P1�r1 , t1� and P2�r2 , t2�. The joint mea-
surement of D1 and D2 measures a different interference,

�E
�2��r1,t1;r2,t2� =��

j
�

k

 1

�2
�Ej�r1,t1�Ek�r2,t2�

+ Ek�r1,t1�Ej�r2,t2��
2�
= �E

�1��r1,t1;r1,t1��E
�1��r2,t2;r2,t2�

+ ��E
�1��r1,t1;r2,t2��2,

where the indices j and k label the jth and kth point sub-
sources. Unlike the first-order correlation function
�E

�1��r1 , t1 ;r2 , t2�, here, ��E
�1��r1 , t1 ;r2 , t2��2 measures the inter-

ference between the two-photon amplitudes. The two-photon
amplitudes correspond to a two-photon joint detection event,
which are detected by two different detectors at two different
space-time coordinates. The two fields E�r1 , t1� and E�r2 , t2�
in the second-order measurement are not superposed at one
space-time point.

Unlike the classical first-order interference, the second-
order interference cannot be interpreted as classical interfer-
ence. It is a result of quantum two-photon interference. This
conclusion can be easily extended to the Nth-order �N�2�
interference: the Nth-order interference is a result of quan-
tum N-photon interference. In the following, we will summa-
rize the quantum interference nature behind the first-,
second- and third-order coherence based on the calculations
and discussions before, then we will generalize our discus-
sion and conclusions to any Nth-order coherence of thermal
light.

Σ

z 2

z 1

P 2

P 1

s 2

s 1

∆θj th

I(r,t)

D

FIG. 6. �Color online� Schematic of an Young’s double-pinhole
interferometer, which measures the first-order spatial coherence of
of a thermal radiation generated from a large number of random
distributed point sub-sources with an angular size of ��. The jth
photon interfer with itself.

P2

P1

∆θ

j th
D1

D
2

Amplifier

Amplifier

Linear

Multiplier Integrator

kth

FIG. 7. �Color online� Schematic of a modified Hanbury Brown
and Twiss interferometer. The interferometer is similar to the
Young’s double-pinhole interferometer, except it measures a differ-
ent interference in the join detection of two photodetecors. The
interference is between the following amplitudes: �1� jth mode to
D1 and kth mode to D2, �2� jth mode to D2 and kth mode to D1.
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A. The first-order coherence

The first-order coherence gives a quantitative evaluation
of the first-order interference that is usually produced by an
interferometer. The interferometer introduces two �or more
than two� different light paths for creating a photon detection
event at a photodetector. As pointed out in the Introduction,
although both quantum and classical theories view the first-
order coherence as an interference effect, quantum theory
treats it as a single photon’s behavior, while classical theory
treats it as the interference of classical fields, which can be
reasonably considered as the interference of two groups of
photons. In quantum theory, the final observed interference
pattern of thermal light is the sum of the subinterference
patterns produced by each single photon associated with an
atomic transition of the source; and the subinterference pat-
tern is the result of a superposition between single-photon
probability amplitudes, corresponding to different yet indis-
tinguishable ways for a photon to trigger a photon detection
event. Interference occurs if and only if more than one
single-photon amplitude is involved in the measurement of a
photodetector �31�.

B. The second-order coherence

The second-order coherence gives a quantitative evalua-
tion of the second-order interference, instead of the statistical
correlation of locally measured intensity fluctuations. As dis-
cussed before, quantum theory considers the second-order
coherence of thermal radiation as a two-photon interference
effect. It is different from the classical intensity fluctuation or
photon number fluctuation theory, where it is reasonable to
treat the second-order coherence of thermal light as a statis-
tical behavior of two groups of large numbers of photons.
The two-photon interference occurs between different two-
photon amplitudes belonging to a measured pair of indepen-
dent photons, and the finally observed nontrivial correlation
function is the sum of a large number of these subinterfer-
ence patterns.

A schematic picture of two-photon interference is illus-
trated in Fig. 8. There are two different ways for a measured
pair of independent photons to trigger a two-photon joint
detection event. For instance, the two parallel lines represent
one way that the photon emitted by the jth atom goes to
detector 1 and the photon emitted by the kth atom goes to
detector 2. The two crossed lines represent another way to

trigger a two-photon joint detection event. Two-photon inter-
ference occurs if and only if there exists more than one way
for the measured pair to trigger a joint detection event. The
final observed second-order correlation is the sum of all
these subinterference patterns, each produced by a jointly
measured pair of independent photons.

It is worth emphasizing that the two-photon interference
means the interference between two-photon probability am-
plitudes, which is not the interference between two indepen-
dent photons. The two concepts are fundamentally different.

C. The third-order coherence

The third-order coherence gives a quantitative evaluation
of the third-order interference. Quantum theory considers the
third-order coherence a three-photon interference effect,
which is the result of superposition of three photon ampli-
tudes, corresponding to different yet indistinguishable alter-
native ways of triggering a three-photon joint detection event
at space-time points �r1 , t1�, �r2 , t2�, and �r3 , t3�. It is a be-
havior of a jointly measured group of three independent pho-
tons. The final observed nontrivial third-order correlation is
the sum of these subinterference patterns; each is produced
by a jointly measured group of three independent photons.
Interference between different measured three-photon groups
never occurs.

A schematic diagram of three-photon interference is illus-
trated in Fig. 9. The six different three-photon probability
amplitudes shown in �a�, �b�, and �c� correspond to six alter-
native ways of triggering a three-photon joint detection
event. For instance, the three parallel lines in �a� represent
the probability amplitude: a photon emitted from the jth
atom goes to detector 1, a photon emitted from the kth atom
goes to detector 2, and a photon emitted from the lth atom
goes to detector 3. If these six alternatives are indistinguish-
able, three-photon interference is observable. The three-

S

D2

D1

X

j

k
CC

FIG. 8. �Color online� Two-photon interference. S is the thermal
source. j and k are the jth and kth atomic transitions, respectively.
The two parallel lines represent one way to trigger a joint detection
event, and the two crossed lines represent another way to trigger the
same joint detection event.
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FIG. 9. �Color online� Three-photon interference. S is the
source. j, k, and l are the jth, kth, and lth subsources, respectively.
There exist six different yet indistinguishable alternative ways of
triggering a three-photon joint detection event, described in �a�, �b�,
and �c�.
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photon interference is more complicated than the two-photon
interference since the use of three individual photodetectors
resulting in six three-photon amplitudes contribute to a three-
photon joint detection event. Further discussions about three-
photon interference can be found in Sec. VI.

It is also worth noting that three-photon interference does
not mean interference between three independent photons.

D. The Nth-order coherence:

The Nth-order coherence gives a quantitative evaluation
of the Nth-order interference. All basic concepts developed
in the second- and third-order coherence of thermal light can
be extended to the the general Nth-order �N�2� coherence
of thermal light. In quantum theory, the Nth-order coherence
is caused by N-photon interference. The interference is be-
tween the N-photon amplitudes within a group of jointly
measured N independent photons. The final observed non-
trivial Nth-order correlation is the sum of a large number of
these individual interference patterns; each is produced by an
individual group of jointly measured N independent photons.

In summary, we have developed a unified theory for the
Nth-order coherence of thermal light based on the concept of
N-photon interference, which is valid in both the far and near
fields for any N-fold joint measurement of photodetectors.

VI. EXPERIMENT: THIRD-ORDER SPATIAL
COHERENCE OF THERMAL LIGHT

IN THE NEAR FIELD

From the discussions above, it is possible to distinguish
quantum multiphoton interference from classical statistical
correlation of locally measured intensity fluctuations. In this
regard, we have designed an experiment which measures the
third-order transverse spatial coherence function in near-field
planes of a large-sized angular bright thermal source. In
these planes, both classical theory and quantum theory pre-
dict a constant intensity distribution with negligible intensity
fluctuations. Under this condition, classical theory, in which
locality is reinforced, gives a trivial constant third-order cor-
relation function �I

�3��r1 , t1 ;r2 , t2 ;r3 , t3�. However, the con-
stant distribution of intensities, measured by each individual
photodetector, do not prevent quantum theory predicts a non-
trivial third-order coherence function G�3��r1 , t1 ;r2 , t2 ;r3 , t3�
in the joint detection of three photodetectors.

The experimental setup of measuring the third-order co-
herence function is shown in Fig. 10. The three-photon joint
detection can be implemented at the photon counting level
by means of a threephoton coincidence counter or at higher
intensities by using a threefold correlater or rf mixer. Based
on Eq. �17� and in Fresnel near-field approximation �25–27�,
with the condition of d1=d2=d3 �di is the distance between
the source and the detector Di, i=1, 2, and 3; see Fig. 12�,
the normalized third-order coherence function measured in
1D turns out to be �detailed derivations can be found in
Appendix B�

g�3��x1,t1;x2,t2;x3,t3�

 1 + sinc2����

�
�x1 − x2��

+ sinc2����

�
�x2 − x3�� + sinc2����

�
�x3 − x1��

+ 2sinc����

�
�x1 − x2��sinc����

�
�x2 − x3��

	sinc����

�
�x3 − x1�� ,

where xj is the position of detector j �j=1, 2, and 3�. � is the
wavelength and �� is the angular size of the source with
respect to the detectors. A numerical simulation of
g�3��x1 , t1 ;x2 , t2 ;x3 , t3� is given in Fig. 11. In this simulation
we have taken �=532 nm, ��=1	10−3.

In Fig. 11, we find that the contrast of the third-order
coherence function of thermal light is 6:1. When the three
detectors are in symmetrical positions, i.e., d1=d2=d3 and
x1=x2=x3 �1D�, the three-photon amplitudes interfere con-
structively, and the sum of all these constructive subinterfer-
ences yields a maximum value of 6 for g�3�. When none of
the detectors are in the symmetric positions, the sum of all
the subinterferences gives a minimum value of 1 for g�3�. The
final observed nontrivial third-order coherence function in
Fig. 11 is the sum of all the individual subinterference pat-

S

D1

X1

CC

X2 D3

BS 1 BS 2

D2

X3

(r2, t2)

(r1, t1)

(r3, t3)

FIG. 10. Experimental setup to measure the third-order spatial
coherence function. S is the thermal radiation source consisting of a
large number of point subsources. Xj is the transverse plane for the
point detector Dj �j=1, 2, and 3� to scan. BS1 is a 1:2 beam splitter,
BS2 is a 1:1 beam splitter so that all these three detectors have equal
probability to be triggered by a photon emitted from the source. CC
stands for a three-photon coincidence counting system �for photon
counting detectors� or a threefold linear multiplier �for analog cur-
rent detectors�.

FIG. 11. �Color online� Simulated g�3��x1 , t1 ;x2 , t2 ;x3 , t3� of
thermal light in the Fresnel near field. In this simulation we have
taken �=532 nm, ��=1	10−3.
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terns, which comes from the three-photon interference of ev-
ery jointly measured group of three independent photons.

VII. CONCLUSION

Let us summarize this paper.
�I� We have developed a unified Nth-order coherence

theory of thermal light �32� based on the quantum concept of
N-photon interference. N-photon interference is the result of
the superposition of N-photon probability amplitudes, which
correspond to different, yet indistinguishable, ways of trig-
gering an N-photon joint detection event. The jointly mea-
sured group of N photons interferes only with the group it-
self. Interference between different groups never occurs.

�II� We have shown that the classical theory of statistical
correlation of intensity fluctuations may not be valid in cer-
tain experimental conditions when dealing with Nth-order
�N�2� optical coherence of thermal light, such as in joint
measurements in the near field of a large-sized angular bright
thermal source.

�III� The Nth-order coherence measurement of thermal
light will be “robust.” The N-photon interference occurs at
the quantum level within a group of jointly measured N in-
dependent photons; the measurement will not lose coherence
or correlation under high-loss propagation, but a longer data
collection period will be required.

�IV� We have found that the contrast of the Nth-order
coherence of thermal light is N! :1, which means that the
maximum visibility of the Nth-order coherence function of
thermal light is �N!−1� / �N!+1�. The visibility will increase
as N increases, and is independent of the intensity. Thus in
either the photon counting regime or analog photocurrent
measurements, we should be able to achieve the same vis-
ibility for the Nth-order coherence of thermal light. If the
contrast of a correlation function is considered as the signal-
to-noise ratio �SNR�, a high SNR is achievable in N-fold
joint detection of thermal radiation.
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APPENDIX A: THE STATE OF THERMAL RADIATION

We assume a large-transverse-sized chaotic thermal
source consisting of a large number of independent and ran-
domly radiating point subsources. Each point subsource may
also consist of a large number of independent atoms that are
ready for two-level atomic transitions in a random manner.
Most of the time, the atoms are in their ground state. There
is, however, a small chance for each atom to be excited to a
higher energy level E2 ��E2�0� and later return back to its
ground state E1. It is reasonable to assume that each atomic
transition generates a field in the single-photon state

��� � �0� + ��
k,s

f�k,s�âk,s
† �0� , �A1�

where ����1 is the probability amplitude for the atomic tran-
sition, and f�k ,s�= ��k,s ��� is the probability amplitude for
the radiation field to be in the single-photon state of wave
number k and polarization s: ��k,s�= �1k,s�= âk,s

† �0�. For this
simplified two-level system, the density matrix that charac-
terizes the state of the radiation field excited by a large num-
ber of possible atomic transitions is thus

�̂ = �
t0j

��0� + ��
k,s

f�k,s�e−i�t0jâk,s
† �0��

	 �
t0k

��0� + �* �
k�,s�

f�k�,s��ei��t0k�0�âk�,s��
� ��0� + ���

toj

�
k,s

f�k,s�e−i�t0jâk,s
† �0�� + �2�¯��

	 ��0� + �*��
tok

�
k�,s�

f�k�,s��ei��t0k�0�âk�,s�� + �*2�¯�� ,

�A2�

where e−i�t0j is a random phase factor associated with the jth
atomic transition. Since ����1, it is a good approximation to
keep the necessary lower-order terms of � in Eq. �A2�. After
summing over t0j �t0k� by taking into account all its possible
values, we obtain

�̂ � �0��0� + ���2�
k,s

�f�k,s��2�1k,s��1k,s�

+ ���4�
k,s

�
k�,s�

�f�k,s��2�f�k�,s���2�1k,s1k�,s���1k,s1k�,s��

+ ¯ . �A3�

The generalized solution for an arbitrary quantized ther-
mal field with occupation number from nk,s=0 to nk,s�1 can
be obtained directly from Eq. �A2� by keeping all higher-
order terms. After summing over t0j and t0k the density ma-
trix can be written as

�̂ = �
�n

p�n��n���n� , �A4�

where p�n is the probability for the thermal field in the state

d j

S Dj

FIG. 12. The relative position between the source and detector j,
j=1, 2, and 3. �s and � j are the transverse vector in the source plane
and the detector j plane, respectively. dj is the distance between the
source and the detector j.
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��n� 	 �
k,s

�nk,s� = �nk,s��nk�,s�� ¯ �nk�¯�,s�¯�� .

The summation of Eq. �A4� includes all possible modes k,
polarizations s, occupation numbers nk,s for the mode �k ,s�
and all possible combinations of occupation numbers for dif-
ferent modes in a set of �n.

APPENDIX B: THE THIRD-ORDER COHERENCE
FUNCTION OF THERMAL LIGHT

Based on the definitions in Refs. �25–27�, the Green’s
function from the light source to detector j is �see Fig. 12�

gj��� � = ei��/c�dj���� ,−
c

�Pj
�ei�� ·�j

�
, �B1�

where ��� j
� ,�Pj /c�=ei��/2c�Pj�� j

� �2, Pj =1 /dj

We can extend Eq. �B1� to the experimental setup of
Fig. 3 by simply changing j to 1, 2, and 3. This corresponds
to a separate Green’s function from the source to each
of detectors 1, 2, and 3. Now Eq. �17� can be rearranged
as

G�3��r1,t1;r2,t2;r3,t3� � d�� �g1��� ��2� d����g2������2� d����g3������2 +� d�� �g1��� ��2� d���g2
*�����g3����� � d���g3

*�����g2�����

+� d����g2������2� d��g1
*��� �g3��� � � d���g3

*�����g1�����

+� d����g3������2� d��g1
*��� �g2

*��� � � d���g2
*����,��g1�����

+� d��g1
*��� �g2��� � � d���g2

*�����g3����� � d���g3
*�����g1�����

+� d��g1
*��� �g3�pa� � � d���g2

*�����g1����� � d���g3
*�����g2����� . �B2�

Substituting Eq. �B1� into �B2� and with the condition d1=d2=d3 and considering the one-dimensional case, it is easy to get
the normalized 1D third-order coherence function by first obtaining the integral of the transverse wave vectors,

g�3��x1,t1;x2,t2;x3,t3�  1 + sinc2����

�
�x1 − x2�� + sinc2����

�
�x2 − x3�� + sinc2����

�
�x3 − x1��

+ 2 sinc����

�
�x1 − x2��sinc����

�
�x2 − x3��sinc����

�
�x3 − x1�� , �B3�

where ��=2R /d is the angular size of the source with respect to the detector plane, and � is the wavelength. xj is the position
of detector j �j=1, 2, and 3�. The element �d��g

j
*��� �gk��� � �j ,k=1,2 ,3� can be calculated as follows:

� d�� g
j
*��� �gk�pa� � = � �

2�c
�2ei��/c��zj−zk�

zjzk
� d��e−i�� ·���s−��s�� � d��sa*���s�e−i
���s�

	 e−i��/2czj����s − �� j�
2� d��s�a���s��e

i
���s��ei��/2czk����s� − ��k�2, �B4�

on the condition of a large enough source,

� d��e−i�� ·���s−��s�� � ����s − ��s�� .

with substitution of this � function into Eq. �B4� and on the
condition of zj =zk=d and a���s� a constant, Eq. �B4� can be
simplified as

� d��g
j
*��� �gk�p��a� = somb�R

d

�

c
��� j − ��k�� ,

in the 1D case, this can be simplified further to

� d��g
j
*��� �gk��� � = sinc�R

d

�

c
�xj − xk�� ,
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