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The dressed states that are linear combinations of two bare levels of an atom �e.g., an alkali-metal atom� can
be realized by a strong-coupling laser beam. As the dressed states have mixed parities, both electric- and
magnetic-dipole-allowed transitions can occur between the dressed states and a third level with a definite �pure�
parity. It is shown that such dressed-state mixed-parity transitions in an atomic vapor �the concept also applies
in the solid state� can give rise to a negative refractive index. The produced negative refractive index is
isotropic with atomic-scale microscopic structure units, and the negative real part can emerge in the optical
frequency band. Also examined is the case of a fully quantized probe photonic field which interrogates the
bottom dressed state and the third-level state. Similarities between the semiclassical approach for the weaker
probe field and its fully quantum mechanical second-quantization treatment are discussed in regard to the
off-diagonal density matrix element for the reduced 2�2 manifold, and its implications for the refractive
index.
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I. INTRODUCTION

Over the last decade, a new type of artificial metamaterial,
whose electric permittivity and magnetic permeability are
simultaneously negative in certain frequency bands, has cap-
tured extensive attention from many researchers in various
fields �e.g., see �1–4��. It can be readily verified that a me-
dium will have a negative refractive index if its permittivity
and permeability are simultaneously negative. These
metamaterials, which are now known as left-handed media,
exhibit a number of interesting electromagnetic and optical
effects, including the reversals of both Doppler shift and
Cherenkov radiation �1�, anomalous refraction �1�, amplifi-
cation of evanescent waves �3� �and hence subwavelength
focusing �3,5��, a negative Goos-Hänchen shift �6�, a re-
versed circular Bragg phenomenon �7�, photon helicity inver-
sion �8�, some unusual photon tunneling effects �9�, reversed
H field circulation patterns and inverted E field lines in
propagating structures �10�, and switched field intensity lo-
cations in anisotropic transmission structures �11�. Recently,
simultaneous negative permittivity and permeability have
been achieved experimentally in microwave frequency re-
gions with a composite stucture formed by an array of long
metallic wires and an array of split ring resonators �2,12–15�.
Although Veselago’s original paper �1� and most of the re-
cent theoretical work investigated isotropic left-handed me-
dia �13�, yet, up to now, the left-handed media that have been
designed and fabricated successfully for experiments are ac-
tually anisotropic in nature, and at present it may be some-
what difficult to prepare an isotropic left-handed medium
�16–18�. Obviously, the impact would be enormous if an
isotropic and homogeneous material of negative refractive
index �with microscopic structure units at the atomic scale
level� could be realized in optical frequency domains by us-
ing a quantum optical approach. Here, we suggest a scheme
to realize a negative refractive index in an atomic vapor �the

concept should also be applicable to solid state media� where
the left-handed vapor produced is isotropic.

Within the last few years, there have been a number of
techniques to realize negative refraction, including artificial
composite metamaterials �2,12,13�, photonic crystal struc-
tures �19–21�, chiral or chiral mixture materials �22–25�, and
transmission line simulation �26�, for example. All these
techniques were proposed within the framework of classical
electromagnetic theory. However, the atomic vapor medium
with negative indices presented here is based on a quantum
optical mechanism. In our method, the dressed-state mixed-
parity transitions that can give rise to both electric and mag-
netic responses are utilized to realize left-handedness of a
probe light. In the schematic diagram depicted in Fig. 1, the
electric-dipole-allowed transition �a�-�b� is driven by a
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FIG. 1. �Color online� Three-level energy band diagram for the
dressed-state mixed-parity transition system. The electric-dipole-
allowed transition �a�-�b� is driven by a strong-coupling laser beam,
and two dressed states ��� and ��� will result from linear combi-
nations of the two bare-state levels �a� and �b�. The energy level pair
�g�-�−� is coupled to the probe electric and magnetic fields. Both
electric- and magnetic-dipole-allowed transitions between the
ground level �g� and the mixed-parity dressed level ��� emerge, if
the probe light excites the �g�-�−� transition.
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strong-coupling laser beam, and this leads to two orthogonal
dressed states ��� and ���, which are linear combinations of
the two bare levels �a� and �b�. As the lower dressed state ���
possesses a mixed parity, both electric- and magnetic-dipole-
allowed transitions between �g� and ��� will emerge, if the
pair �g�− �−� is coupled to the electric and magnetic fields of
a probe beam.

In the sections that follow, we study dressed-state mixed-
parity transitions �Sec. II with ramifications of a quantized
photonic probe beam in Sec. III�, and obtain the atomic mi-
croscopic electric and magnetic polarizabilities �Sec. IV�,
and then present an illustrative example �in Sec. VI, after
finding the negative refractive index branches in Sec. V� to
show the existence of the negative refractive index in the
vapor medium. Concluding remarks are in Sec. VII.

II. DRESSED-STATE MIXED-PARITY TRANSITIONS

Consider a three-level bare-state atomic system with two
upper levels �a� and �b� and one ground level �g� �see Fig. 1�.
We assume that the two upper bare levels have opposite par-
ity, and that the parity of the ground level is even. For ex-
ample, level �b� possesses an even parity while level �a� has
an odd parity. In general, such an atomic system can be
found in alkali-metal atoms. Note that the �a�-�b� transition
�energy separation ��ab=���a−�b�� can be driven by a
strong-coupling laser beam �radian frequency �c�. Let us first
consider the dressed states that contain the information on
the interaction between the two-level system levels ��a� , �b��
and the strong-coupling field. The undisturbed Hamiltonian
is

H0 = 	��a 0

0 ��b

 �1�

which is disturbed by H1

H1 = 	 0 − pabEc�t�

− pbaEc�t� 0

 , �2a�

Ec�t� = Ec cos��ct� . �2b�

Transformation to the interaction picture involves the unitary
matrix U0=e−iH0t/� taking the Schrödinger picture operator
OS to OI�t�=U0

†�t�OSU0�t�, and in this picture H0 is un-
changed but H1 becomes

HI1 = −
1

2
	 0 − pab�ei��ab+�c�t + ei�t�

− pba�e−i��ab+�c�t + e−i�t� 0

 .

�3�

Dropping the e�i��ab+�c� terms in the rotating wave approxi-
mation �RWA� because they are so rapidly varying, we have

HI1 = −
��R

2
	 0 ei	ei�t

e−i	e−i�t 0

 ,

�R =
�pab�Ec

�
, pab = �pab�ei	c, �4�

where �=�ab−�c is the frequency detuning of the coupling
field. This may also be written in terms of the complex Rabi
coupling frequency �Rc=�Rei	c in the compact form in the
nearly on-resonance condition ���0�,

HI1 = 	 0 V

V* 0

, V = ��Rei	/2, 	 = 	c + �2n − 1�
 .

�5�

Here the spontaneous decay effect in the bare-state system
��a� , �b�� can be neglected if the intensity of the applied cou-
pling field Ec is very strong �i.e., �V����, with � being the
spontaneous emission decay rate�.

The dressed-state system is obtained by working in the
equations of motion wave function system of equations in
the original system and then transforming to a new basis set
for the diagonalized matrix of that system,

�
S�r,t�� = Ca�t�ei��/2−�a�t�a� + Cb�t�ei�−�/2−�b�t�b� . �6�

The interaction picture wave function is then �
I�r , t��
=U0

†�t��
S�r , t��,

�
I�r,t�� = Ca�t�ei�t/2�a� + Cb�t�e−i�t/2�b� , �7�

which obeys the interaction wave equation

�

�t
�
I�t�� = −

i

�
HI1�
I�t�� . �8�

Inserting �4� for HI1 and �7� for �
I�r , t��, one finds that

d

dt
	Ca�t�

Cb�t� 
 =
i

�
	 ��/2 − ��Rc/2

− ��
Rc
* /2 − ��/2 
	Ca�t�

Cb�t� 
 �9�

for the equation of motion �EoM� of the wave function co-
efficients, after having used a judicious choice of time varia-
tion in �6� with an explicit half-detuning period. From �5� we
realize that this EoM may be recast as

d

dt
	Ca�t�

Cb�t� 
 =
i

�
Hequ

EoM	Ca�t�
Cb�t� 
, Hequ

EoM = 	��/2 V

V* − ��/2

 ,

�10�

where Hequ
EoM is the equivalent Hamiltonian for the equation of

motion.
The equivalent Hamiltonian, the EoM matrix, is diagonal-

ized by using a unitary matrix Ud, forming HDequ
EoM

=Ud
−1Hequ

EoMUd, where Ud is found as the columns made up of
the system eigenvectors of Hequ

EoM �27�,

Ud = 	��+

�+

��−

�−


 = 	� cos �

e−i	 sin �

� − sin �

e−i	 cos �




�11�

with the dressed wave function coefficients being expressible
as
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	C+�t�
C−�t� 
 = U	Ca�t�

Cb�t� 
, U = Ud
−1 = Ud

†, �12�

which can be restated as �28,29�

� + � = cos ��a� + ei	 sin ��b� ,

�− � = − sin ��a� + ei	 cos ��b� , �13�

where

cos � =
1
�2�1 −

1

�1 + 4
��Rc�2

�2 �
1/2

,

sin � =
1
�2�1 +

1

�1 + 4
��Rc�2

�2 �
1/2

. �14�

Choice of signs for both radicals is based upon agreement
with the solution for the 	=0 case available in �30� and for
the 2� cosinusoidal expressions. The derivation of �14� and
the 	=0 case are provided in Appendices A and B.

Mid-energy between states �a� and �b� is ��̄, where �̄
= ��a+�b� /2, and because �a,b= �̄��ab /2, one can write
�a= �̄+ ��c+�� /2 and �a= �̄− ��c+�� /2, utilizing the detun-
ing �. Adding the Hamiltonian parts HI0 and HI1 from �1�
and �5� yields the total interaction Hamiltonian,

HI1 = 	��a V

V* ��b

 , �15�

whose eigenvalues are the new energies of the highly driven
two-level system ��a� , �b��,

�� = �̄ �
1

2
��ab

2 + ��Rc�2 �16�

with a separation change from �ab to �+−=��ab
2+ ��Rc�2.

Bare states have pure parities, whereas the dressed states
have mixed parities. Thus, both the electric and magnetic
fields of a weak probe field �with mode frequency �p; the
Rabi frequency of the probe field �p, discussed below, sat-
isfies �p� ��− ,�g� can drive a transition between a third
state, referred to as the ground state �g�, and either of the
bare states �a� and �b�, which under intense coupling field
light can be viewed as a dressed-state pair ����, ����. Be-
cause under many conditions, certainly under quasiequilib-
rium conditions where a Boltzmann distribution of state oc-
cupation may apply, or even under driven conditions when
the energy level separation decreases the occupation number
of a removed upper level, we will assume our probe field
causes transitions between the ground state and lower
dressed state ���, and we will ignore in modeling the upper
dressed state ���. The interaction Hamiltonian of the
��−� , �g�� pair is

H1 = 	− p−−Ep�t� − p−gEp�t�

− pg−Ep�t� − pggEp�t� 

+ 	− m−−Bp�t� − m−gBp�t�

− mg−Bp�t� − mggBp�t� 
, Bp�t� = Bp cos��pt� ,

�17�

where the various matrix off-diagonal elements of the
����,���� fully dressed and hybrid ��−� , �g�� systems are

p+− = �+ �De�− �

= �cos ��a� + e−i	 sin ��b��De�− sin ��a� + ei	 cos ��b��

= pabei	 cos2 � − pbae−i	 sin2 � ,

m+− = �+ �Dm�− �

= �cos ��a� + e−i	 sin ��b��Dm�− sin ��a� + ei	 cos ��b��

= �mbb − maa�cos � sin � , �18�

p−g = �− �De�g�

= �− sin ��a� + e−i	 cos ��b��De�g�

= − pag sin � ,

m−g = �− �Dm�g�

= �− sin ��a� + e−i	 cos ��b��Dm�g�

= mbge−i	 cos � . �19�

Evolution of the states can be conveniently described by a
density matrix � formulation employing the phenomenologi-
cal Liouville equation. The equation of motion is

��

�t
= −

i

�
�H, �� −

1

2
��, �� , �20�

and following �31� for a diagonal � operator, namely,
�n���m�=�n�nm, we obtain

� = 	�− 0

0 �g

 . �21�

Diagonal and off-diagonal equations of motion for � are

��−−

�t
=

i

�
� p−gE�t� + m−gB�t���g− + c.c. − �−�−−,

��gg

�t
=

i

�
� pg−E�t� + mg−B�t���−g + c.c. − �g�gg,

��−g

�t
= �i�−g +

i

�
� pgg − p−−�E�t� +

i

�
�mgg − m−−�B�t�
�−g

−
i

�
� p−gE�t� + m−gB�t����−− − �gg� −

1

2
��− + �g��−g.

�22�

where c.c. is the complex conjugate.
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On a microscopic level, a probe field traveling through the
medium has

Ep�t� = Epx�t� = Ep cos��pt� ,

Bp�t� = Bpy�t� = Bp cos��pt�, Bp/Ep = k/�p, �23�

which, when inserted into the density matrix equations of
motion �22�, enlisting

�−g�t� = �̃−g�t�e−i�pt, �24�

yields in the rotating wave approximation

��−−

�t
=

i

2
��p�̃g− − �p

*�̃−g� − �−�−−,

��gg

�t
=

i

2
��p

*�̃−g − �p�̃g−� − �g�gg,

��̃−g

�t
=

i

2
�p��gg − �−−� − ��− + �g

2
+ i�
�̃−g, �25�

where the probe electric, magnetic, and total Rabi frequen-
cies are defined as

�p
E =

p−gEp

�
, �p

B =
m−gBp

�
, �p = �p

E + �p
B. �26�

Frequency detuning of the weak probe light is defined as �
=�−g−�p �with �−g being the frequency separation of the �
−�-�g� transition�. In the steady state the off-diagonal element
of the density matrix obeys

��̃−g

�t
= 0, �27�

and applying this for �25� gives

�̃−g =
�p

2
� � + i��− + �g�/2

�2 + ���− + �g�/2�2
��gg − �−−� , �28�

which, in the limit of no decay from the ground level ��g
=0� and assuming we started out with the population of
states in �g� nearly full, and the thermal excitation to level
��� negligible, we set �gg�1 and �−−�0, reducing �28� to

�̃−g =
�p

2
� � + i�−/2

�2 + ��−/2�2
 . �29�

In the next section, we give expressions for the atomic
�electric� polarizability and �magnetic� magnetizability of the
transition excited by the weak probe field. The electric per-
mittivity and the magnetic permeability as well as the refrac-
tive index of the atomic vapor can then be derived.

III. EFFECT OF QUANTIZING THE PROBE BEAM

The most general total Hamiltonian expression H, using a
Jaynes-Cumming approach, in the Schrödinger picture for
the system with quantized photon field is

H = H0L + H1
em + Hph, �30�

with

H0L = ���− − �g��z/2,

H1
em = 	− p−−Ep

Q�t� − p−gEp
Q�t�

− pg−Ep
Q�t� − pggEp

Q�t� 

+ 	− m−−Bp

Q�t� − m−gBp
Q�t�

− mg−Bp
Q�t� − mggBp

Q�t� 

Hph = ��a†a + 1/2��p, �31�

where the H0L form is for symmetrization about H0L=0 using
the Pauli operator. Form �1� works just as well. Equation
�31� for H1

em using the quantized electric Ep
Q�t� and magnetic

Bp
Q�t� fields is identical in form to �17�, with the traveling

wave nature of the photons in �23� �subtract kz from �pt to
see the explicit wave propagation in the +z direction; the
earlier field was examined at z=0� represented by the
second-quantization operators a=a�t� and a†=a†�t�. Thus
Ep

Q�t�=E�p
�a+a†� /�2 and Bp

Q�t�=B�p
�a+a†� /�2 with

E�p
=���p /�0V and B�p

=���p�0 /V, where V is a character-
istic interaction volume. For a standing wave pattern in a
cavity, V is the cavity volume, and Ep

Q�t� and Bp
Q�t� change to

Ep
Q�t�=E�p

�a+a†�sin kz and Bp
Q�t�=−iB�p

�a−a†�cos kz.
The equations of motion in �25� become in the manifold

of the �−n�-�g�n+1�� states

��−n;−n

�t
=

i

2
��p

Q�̃g�n+1�;−n − �p
Q*�̃−ng�n+1�� − �−n�−n;−n,

��g�n+1�;g�n+1�

�t
=

i

2
��p

Q*�̃−g − �p
Q�̃g�n+1�;−n�

− �g�n+1��g�n+1�;g�n+1�,

��̃−n;g�n+1�

�t
=

i

2
�p

Q��g�n+1�;g�n+1� − �−n;−n�

− ��−n + �g�n+1�

2
+ i�n
�̃−n;g�n+1�, �32�

where the probe electric, magnetic, and total Rabi frequen-
cies are now defined as

�p
QE =

p−gE�p
�2�n + 1�

�
, �p

QB =
m−gB�p

�2�n + 1�

��2
,

�p
Q = �p

QE + �p
QB, �33�

and the frequency detuning of the weak probe light is defined
as �n=�−n;g�n+1�−�p �with �−n;g�n+1� being the frequency
separation of the �−n�-�g�n+1�� transition�. �Note that the
decay constants and bare-state level separation were up-
graded to appear consistent with the manifold notation—
strictly speaking all of this could be done in the dressed-state
space of the �−n�-�g�n+1�� manifold—see Appendix C.� Use
of a cavity model for the photonic field will alter �p

Q to
become �p

Q=�p
QE− i�p

QB. In the steady state the off-diagonal
element of the density matrix obeys
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��̃−n;g�n+1�

�t
= 0, �34�

and applying this to �32� gives

�̃−n;g�n+1� =
�p

Q

2 � �n + i��−n + �g�n+1��/2

�n
2 + ���−n + �g�n+1��/2�2


���g�n+1�;g�n+1� − �−n;−n� . �35�

In the limit of no decay from the ground level of the atomic-
photonic state ��g�n+1�=0�, assuming we started out with the
population of states in �g�n+1�� nearly full and the thermal
excitation to level �−n� negligible, setting �g�n+1�;g�n+1��1
and �−n;−n�0, �35� is reduced to

�̃−g =
�p

Q

2
� �n + i�−/2

�n
2 + ��−/2�2
 . �36�

Association of a photon number n with a classical inten-
sity of our probe beam can be accomplished by equating the
Rabi frequencies for the semiclassical approach found in �26�
and for the fully quantum mechanical approach found in
�33�. That is, setting

�p
QE = �p

E, �p
QB = �p

B �37�

yields

n + 1 =
�0V

2��p
Ep

2, �38�

which in the case of large photon numbers, probably the case
except in all but a few photon events, transforms into

n =
�0V

2��p
Ep

2. �38��

The energy eigenvalues, expressed in radian frequencies,
may be compactly written as

�−n,g�n+1� = �n + 1��p � ���n/2�2 + �p
Q2

/4, �39�

as discussed in Appendix C.

IV. ATOMIC POLARIZABITY AND MAGNETIZABILITY
AND DETERMINATION OF THE PERMITTIVITY

AND PERMEABILITY

The atomic electric polarizability �e due to the �−�-�g�
transition can be found by obtaining the quantum mechanical
PQM and electromagnetic PEM polarizations, equating them,
and extracting out the electric polarizability. Following a
similar argument found in a two-species two-level system
�32�, PEM is given by

PQM = �
�De�
� = Tr�� p� = �
p

�
q

�pq pqp, De = er ,

�40�

where the electron charge has a minus sign in it. Electromag-
netic representation PEM is given by

PEM = P�t�e−i�t + c.c. �41�

Equating the two representations for the simple model we are
treating here with single field components, we obtain

PQM = PEM, �42�

or

�−− p−− + �̃−ge−i�t p−g + �̃g−ei�t pg− + �gg pgg = P�t�e−i�t

+ P*�t�ei�t �43�

using �24�. Recognizing that �43� contains two copies of the
same fundamental equation, after employing the RWA, we
obtain

P�t� = �̃−g pg−, �44�

which, when the slowing varying density matrix off-diagonal
element given in �28� is inserted, results in

P�t� =
1

2
�p−g pg−

�
Ep +

m−g pg−

�
Bp
� � + i��− + �g�/2

�2 + ���− + �g�/2�2

���gg − �−−� . �45�

Applying the approximations we used before to obtain �29�
reduces �45� to

P =
1

2
�p−g pg−

�
Ep +

m−g pg−

�
Bp
� � + i�−/2

�2 + ��−/2�2
 , �46�

where we have dropped the explicit time dependence since it
falls out. The atomic electric polarizability �e can now be
found, noting that in the frequency domain P��� is related to
the local electric microscopic field Ep by

P��� = �0�eEp. �47�

Using Bp /Ep=k /�p from �23�, or

Bp/Ep = ��0�0 �48�

where �48� has an implicit assumption about the local fields
around the atom versus the externally applied probe field, we
obtain

�e =
1

2

� + i�−/2
���2 + ��−/2�2�

�p−g pg−

�0
+��0

�0
m−g pg−
 .

�49�

The atomic magnetizability �m due to the �−�-�g� transi-
tion can be found by obtaining the quantum mechanical
MQM and electromagnetic MEM magnetizations, equating
them, and extracting out the magnetizability. MEM is given
by �32�

MQM = �
�Dm�
� = Tr��m� = �
p

�
q

�pqmqp,

Dm = �e/2m��L + 2S� . �50�

Electromagnetic representation MEM is given by

DRESSED-STATE MIXED-PARITY TRANSITIONS FOR… PHYSICAL REVIEW A 79, 023818 �2009�

023818-5



MEM = M�t�e−i�t + c.c. �51�

Equating the two representations for the simple model we are
treating here with single field components, we obtain

MQM = MEM �52�

or

�−−m−− + �̃−ge−i�tm−g + �̃g−ei�tmg− + �ggmgg

= M�t�e−i�t + M*�t�ei�t �53�

using �24�. Recognizing that �53� contains two copies of the
same fundamental equation, after employing the RWA, we
obtain

M�t� = �̃−gmg−, �54�

which, when the slowing varying density matrix off-diagonal
element given in �28� is inserted, results in

M�t� =
1

2
�p−gmg−

�
Ep +

m−gmg−

�
Bp
� � + i��− + �g�/2

�2 + ���− + �g�/2�2

���gg − �−−� . �55�

Application of the approximations we used before to obtain
�29� reduces �55� to

M =
1

2
�p−gmg−

�
Ep +

m−gmg−

�
Bp
� � + i�−/2

�2 + ��−/2�2
 , �56�

where we have dropped the explicit time dependence since it
falls out. Here the atomic magnetizability �m can now be
found, noting that in the frequency domain M��� is related
to the local electric microscopic field Bp by

M��� = �mBp/�0. �57�

Using �46�, we obtain

�m =
1

2

� + i�−/2
���2 + ��−/2�2�

���0

�0
p−gmg− + �0m−gmg−
 .

�58�

Macroscopic electric and magnetic susceptibilities, and
consequently the permittivity and permeability of the vapor
medium, may be found from the atom polarizability and
magnetizability. Electric susceptability is found by employ-
ing �47�, using the Clausius-Mossotti relation, which takes
account of the local field effect due to the electric dipole-
dipole interaction between neighboring atoms:

�e =
N�e

1 − N�e/3
, �59�

making the relative permittivity

�r = �br + �e = 1 + �e = 1 +
N�e

1 − N�e/3
, �60�

where the second equality holds in a low-density gas, but not
for a solid medium. Magnetic susceptability is found by em-
ploying �58�, again using a Clausius-Mossotti relation, which
takes account of the local field effect due to the magnetic

dipole-dipole interaction between neighboring atoms

�m =
N�m

1 − N�m/3
, �61�

making the permeability

�r =
�br

1 − �m
=

1

1 − �m
, �62�

where the last equality holds in a low-density gas, but not for
a solid medium. Inserting �61� into �62� yields

�r = 1 +
N�m

1 − 4N�m/3
, �63�

which is similar in form to the last expression in �60� for the
permittivity.

It is readily seen, invoking the field equivalency to the
photon count n using �37�, that in the manifold of the
�−n�-�g�n+1�� states, �e and �m are in identical forms to �49�
and �58�. That is,

�e =
1

2

�n + i�−n/2
���n

2 + ��−n/2�2�
�p−g pg−

�0
+��0

�0
m−g pg−
 ,

�64�

�m =
1

2

�n + i�−n/2
���n

2 + ��−n/2�2�
���0

�0
p−gmg− + �0m−gmg−
 .

�65�

V. NEGATIVE REFRACTIVE INDEX

Before converting the permittivity and permeability into
refractive index n, one must address the issue of taking the
appropriate branch. These formulas will be obtained, and
then utilized to look at a typical example numerically to
show that such a scheme can exhibit a negative refractive
index. The formula adopted is

nr = ��r
��r �66�

rather than nr=��r�r, and we have verified that �66� is valid
for either left- or right-handed media in which Re��r��0
and Re��r��0 or Re��r��0 and Re��r��0 for passive lossy
cases �Im��r��0 and Im��r��0�. Writing

�r = − A + Bi, ur = − C + Di , �67�

where our passive left-handed medium has A�0, B�0 and
C�0, D�0, the square roots can be then expressed as

��r = i�a + bi�, �ur = i�c + di� . �68�

Parameters a, b, c, and d can be solved from quadratic equa-
tions as

a = ����A2 + B2 + A

2
, b = ����A2 + B2 − A

2
,

�69�
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c = ����C2 + D2 + C

2
, d = ����C2 + D2 − C

2
.

�70�

Only the plus sign under the inner radical must be used to
assure that the parameters a, b, c, and d are real. Next, the
outer radical signs must be selected as either �, � for a and
c or �, � to assure that for a poynting vector propagating,
say, in the +z direction, the field variation
exp�i�� Re�nr�z /c−�t�� exp�−� Im�nr�z /c� has the proper
backward or forward phase propagation behavior and decay
for a passive medium. With these thoughts in mind, the pa-
rameters may be set down as

a =��A2 + B2 + A

2
, b = −��A2 + B2 − A

2
, �71�

c =��C2 + D2 + C

2
, d = −��C2 + D2 − C

2
. �72�

The refractive index of the atomic vapor due to the mixed-
parity transitions in the hybrid system is given by

nr = − ��ac − bd� + �ad + bc�i� . �73�

It then follows for a left-handed medium that ac−bd�0 and
ad+bc�0, and nr has a negative real part and a positive
imaginary part. On the other hand, if the medium is right
handed with �r and �r having positive real parts, i.e., A�0,
C�0, then ac−bd�0 and ad+bc�0, and both the real and
imaginary parts of nr are positive.

VI. NUMERICAL EXAMPLE

Using the analysis of the previous sections, the dispersive
behavior of the relative permittivity �r and permeability
�r �Fig. 2� and the refractive index nr of the atomic vapor,
can be computed and plotted �Fig. 3�. Typical values
for the parameters of the atomic system are chosen to be
pag=4.00�10−29 C m, mbg=8.76�10−23 C m2 s−1, coupling
frequency detuning �=4.0�109 s−1, and Rabi coupling
frequency �R= � pab�Ec /�=5.8�107 s−1. According to
�19�, the magnitudes of p−g and m−g are, respectively,
p−g=5.80�10−31 C m and m−g=8.76�10−23 C m2 s−1. �For
simplicity, 	=0 at this stage—see �19�.� The decay rate �−
�including the effects of spontaneous emission and nonradi-
ative collisional dephasing� and atomic concentration N are,
respectively, �−=1.0�107 s−1 and N=3.0�1023 m−3. Figure
2 shows that the negative swing of Re��r� is much larger
than that of Re��r�, not an entirely surprising result, recog-
nizing the historical difficulty of obtaining negativity in the
permeability. Examination of Fig. 3 shows that the refractive
index has a negative real part Re�nr� �−1.5�Re�nr��0� in
the probe frequency detuning range �0.25�− , 3.70�−�. The
bottom 35% of the detuning range has the lowest Im�nr�
values.

We conclude that, since the electric- and magnetic-dipole
transitions of atoms can be excited by visible and infrared
light, the refractive index of an atomic medium can display
negative refractive behavior in a three-level dressed-state
mixed-parity system at optical frequency bands. Viewed
from a dressed-state perspective, some features not necessar-
ily as obvious in a more conventional treatment �see �33� on
a three-level system studying anisotropy with control and
probe beams, and references therein pertaining to multilevel
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FIG. 2. �Color online� Disper-
sion behavior of the real and
imaginary parts of the relative per-
mittivity �r and permeability �r,
versus normalized detuning fre-
quency � /�−, in the dressed-state
mixed-parity medium.
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systems� become apparent, such as the explicit display of
parity mixing.

VII. CONCLUDING REMARKS

In this paper an approach has been presented to realize a
negative refractive index employing dressed-state mixed-
parity transitions of atoms. Expressions for the permittivity
and permeability at the probe frequency have been provided,
and numerical results given which demonstrate that an opti-
cally realizable left-handed medium can be obtained in an
atomic vapor using selected parameter values. The approach
should also be applicable to solid state media. Since there is
no longer a paucity of left-handed media showing some
promise of partial functioning in optical or near-optical
bands, but still much work to be done on optimizing materi-
als manufacturing and fabrication processes to control loss or
other properties, with all of these methods employing mac-
roscopic or nanoscopic processing, the work presented here
may stimulate an interest in using atomic-scale microscopic
structure units. Investigations into such atomic-scale materi-
als may open studies of anomalous refraction and the testing
of fundamental electromagnetic properties of negative index
materials.
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APPENDIX A

Angle � present in the dressed-state expressions for ���
and ���, defined in �14�, is determined by obtaining the

eigenmatrix solution of the EoM Hamiltonian Hequ
EoM of �10�.

That is,

Hequ
EoM	�

�

 = 	��/2 V

V* − ��/2

	�

�

 = �	�

�

 . �A1�

Equation �A1� requires the determinant of this homogeneous
equation to be zero, or

det	��/2 − � V

V* − ��/2 − �

 = 0, �A2�

leading to

�� = �
�

2
��2 + 4��Rc�2. �A3�

Note that ��Rc�2=�R
2. From the first row of �A1�, the lower

� element of the eigenvector is found as

� = −
��/2 − �

V
� , �A4�

and applying normalization

���2 + ���2 = 1 �A5�

yields

���2 =
��Rc�2

��Rc�2 + ��/2 + �/��2 =
1

2�1 �
1

�1 + 4��Rc�2/�2

�A6�

with the extracted factor of 1 /2 arising from another squared
Rabi frequency magnitude stored in the squared eigenvalue.
The second eigenvector component is then
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FIG. 3. �Color online� Disper-
sion behavior of the real and
imaginary parts of the
refractive index nr, versus normal-
ized detuning frequency � /�−, in
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���2 =
1

2�1 �
1

�1 + 4��Rc�2/�2
 . �A7�

Because the magnitudes of the eigenvector components are
equal to or less than 1, assigning cosinusoids to them is
acceptable; i.e.,

� = cos �ei	�, � = sin �ei	�, �A8a�

cos � =
1
�2
	1 −

1
�1 + 4��Rc�2/�2
1/2

,

sin � =
1
�2
	1 +

1
�1 + 4��Rc�2/�2
1/2

, �A8b�

which implicitly contains two solutions ��+ ,�+�, ��− ,�−�
utilized in �11�:

�+ = cos �ei	�+, �+ = sin �ei	�+, �A9a�

�− = cos �ei	�−, �− = sin �ei	�−. �A9b�

One can rewrite �A8b�, identifying ��Rc�2=�R
2=R0

2, as

cos � =
1
�2
�R − �

R
, sin � =

1
�2
�R + �

R
, R = ��2 + R0

2.

�A10�

Using �A10�, the 2� cosinusoidal results are

cos 2� = cos2 � − sin2 � = −
�

R
,

sin 2� = 2 cos � sin � =
R0

R
, �A11�

and these are the same identifications as in �30�. The assign-
ments for cos � and sin � in �A8b� according to �A7� assure
a negative sign in the former and a positive sign in the latter.

Angles of �+ and �− are determined by referring to the
solution �derived in Appendix B� when 	=0 �see �5��, which
is

��/cos � = � 1, �A12�

yielding

	��
= 2n+
,�2n− − 1�
 , �A13�

where n=n+, n− are any integers. The angles of �+ and �− are
determined by inserting �+ and �− into �A4� and retrieving V
from �5�. This generates

�� = −

��/2 �
�

2
��2 + 4��Rc�2

��Rei	/2
��, �A14�

which produces

	��
= − 	 . �A15�

It is noted that �A15� automatically satisfies the 	=0 solu-
tion,

��/sin � = 1. �A16�

APPENDIX B

The equation of motion equation in �30� �Hequ
EoM

=−�M /2� is similar to but distinct from �A1� and has the
appearance �Hequ

EoM=�M /2�

M	u

v

 = 	 � R0

R0 − �

	u

v

 = �	u

v

 . �B1�

Again, this equation’s eigenvalues are determined, by the
procedure in Appendix A, to be

� = � R . �B2�

From the second row in �B1�,

u =
� − �

R0
v . �B3�

Normalizing the eigenvector using

u2 + v2 = 1 �B4�

provides

v = �
R0

��� − ��2 + R0
2

. �B5�

Enlisting �B3�, u is found as

u = �
� − �

��� − ��2 + R0
2

. �B6�

Choosing the positive sign, the eigenvector for �2=R may be
expressed in the form

	u2

v2

 =

1

��R − ��2 + R0
2	R − �

R0

 . �B7�

From the first row in �B1�,

u =
R0

� + �
, �B8�

and again applying �B4�,

v = �
�� + ��

�R0
2 + �� + ��2

. �B9�

Choosing the positive sign, the eigenvector for �2=−R may
be expressed in the form

	u1

v1

 =

1

�R0
2 + �� − R�2	 R0

� − R

 . �B10�

The eigenvector forms in �B7� and �B10� agree with those in
�30�.

Following the procedure in �11�–�13�, with M�
=Ud

−1MUd diagonalizing M by using a unitary matrix Ud,
with Ud found as �27�
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Ud = 	�u2

v2

�u1

v1


 = 	�cos �

sin �

�− sin �

cos �


 �B11�

with the dressed 	=0 wave function coefficients being ex-
pressible as

	C+�t�
C−�t� 
 = U	Ca�t�

Cb�t� 
, U = Ud
−1 = Ud

†, �B12�

which can be restated as

� + � = cos ��a� + sin ��b� ,

�− � = − sin ��a� + cos ��b� . �B13�

APPENDIX C

Hamiltonian in �31� may be written more compactly as

H� = ��−g�z/2 + ��a†a + 1/2�

+ 	 0 − p−gEp
Q�t� − m−gBp

Q�t�

− pg−Ep
Q�t� − mg−Bp

Q�t� 0



�C1�

by eliminating the diagonal H1
em elements by symmetry. Re-

ferring to the last term in �C1� as H1�
em, it may be cast as

H1�em = ���̄p
Q�+ + �̄p

Q*�−��a + a†� , �C2�

where

�p
Q = 2�n + 1�̄p

Q,

�p
QE = 2�n + 1�̄p

QE, �p
QB = 2�n + 1�̄p

QB. �C3�

For �p
Q real, �C2� becomes

H1�em = ��̄p
Q��+ + �−��a + a†�

= ��̄p
Q��a�+ + a†�−� + �a�− + a†�+��

= ��̄p
Q��a�0��+�0�ei�t + a†�0��−�0�ei�t�

+ �a�0��−�0�e−i��p+�−g�t + a†�0��+�0�ei��p+�−g�t��

= ��̄p
Q�a�+ + a†�−� , �C4�

where the last equality came from applying the rotating wave
approximation, and the third arose from working entirely in
the Heisenberg picture where a and a† have previously in-
corporated the variation. The Pauli spin raising and
lowering operators similarly derive from d���t� /dt
= �i /�����−g�z /2,���+U�2

† ��� /�tU�2, with U�2=e−H0Lt/�

and explicit time variation absent, giving ���t�
=���0�e�i�−gt.

Therefore,

H� = ��−g�z/2 + ��a†a + 1/2� + ��̄p
Q�a�+ + a†�−� ,

�C5�

which can be evaluated in the �−n�− �g�n+1�� manifold to be

H� = ��n + 1��p	1 0

0 1

 +

�

2	 � 2�̄p
Q�n + 1

2�̄p
Q�n + 1 − �


 .

�C6�

The Hamiltonian in �C6� can be diagonalized to obtain the
manifold �−n�− �g�n+1�� states, and the eigenenergies are

E−n = ��n + 1��p +
�

2
��2 + 4�̄p

Q2
,

Eg�n+1� = ��n + 1��p −
�

2
��2 + 4�̄p

Q2
. �C7�
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