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We study an experimental scheme to generate Gaussian two-mode entangled states via beam splitter. Spe-
cifically, we consider a nonclassical Gaussian state �squeezed state� and a thermal state as two input modes, and
evaluate the degree of entanglement at the output. Experimental conditions to generate entangled outputs are
completely identified and the critical thermal noise to destroy entanglement is analytically obtained. By doing
so, we discuss the possibility to link the resistance to noise in entanglement generation with the degree of
single-mode nonclassicality.
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I. INTRODUCTION

In quantum information processing more and more atten-
tion is directed to the continuous variable �CV� systems as
they have emerged as an alternative resource to the discrete
level systems. The CV states of considerable importance are
the Gaussian ones. The interest in this special class of states
stems from the experimental feasibility to produce them
from reliable sources �1� and to control them using acces-
sible tools such as beam splitters, phase shifter, and squeez-
ers �2�. The two-mode entangled Gaussian states have been
utilized in many of quantum information applications �3–7�.

Entanglement between two Gaussian modes is routinely
generated in laboratory, e.g., the two output beams of a non-
linear optical device �parametric down converter� �1�. Alter-
natively, a beam splitter, one of the linear optical devices,
can also be used to generate quantum entanglement between
two modes �8�. There have been many studies for producing
entanglement using beam splitter as an entangler �9–14�. In
particular, Kim et al. studied the entangler properties with
many different input states, such as Fock states, pure- and
mixed-Gaussian states. They conjectured that in order to ob-
tain an entangled two-mode state out of a beam splitter, it is
necessary to have a nonclassical state at one input, which
was later proved in �15�. Furthermore, the sufficiency of
single-mode nonclassicality to generate entangled states via
beam splitter was demonstrated by Asboth et al. �16�. On
another side, the separability criteria to detect such entangled
outputs via beam splitter have also been derived �17,18�.
Remarkably, a broad class of uncertainty inequalities was
presented to detect entanglement produced using generalized
single-mode nonclassical states, which include higher-order
amplitude squeezing and high-order photon statistics �18�.

In this paper, we investigate in detail the entanglement
generated via beam splitter using two uncorrelated Gaussian
input modes. In particular, we consider a nonclassical single-
mode state �squeezed state� and a thermal state at two input
modes, respectively. We note that Wolf et al. �19� also con-
sidered a closely-related problem, i.e., they derived the con-

ditions to generate bipartite Gaussian entanglement using
passive transformations, focusing on the optimal scheme.
They proved that a 50:50 beam splitter is the optimal choice
regardless of experimental parameters, and remarkably, that
the optimal degree of entanglement depends on the smallest
eigenvalues of the input covariance matrix. In other words,
the degree of entanglement is solely determined by the de-
gree of nonclassicality regardless of the purity of input state.
In realistic situations, however, there always occurs an ex-
perimental error in designing beam splitter, so a careful
analysis of nonoptimal cases is further required.

In this respect, we first want to identify the whole experi-
mental conditions to successfully generate entangled Gauss-
ian states. Second, a deeper issue is to establish the link
between single-mode nonclassicality and two-mode en-
tanglement in general. A specific question we address is
whether there exists a monotonic relation between the degree
of input nonclassicality and the critical temperature �degree
of noise� at which the output entanglement disappears. For
this purpose, we parametrize an arbitrary single-mode Gauss-
ian state in terms of the nonclassicality depth � �20� and
purity u, and study the behavior of entanglement as a func-
tion of �, u, n̄ �thermal photon number at input�, and the
beam splitter transmittance. We demonstrate that the mono-
tonic relation between the single-mode nonclassicality � and
the critical thermal noise n̄c exists only at the optimal choice
of 50:50 beam splitter and that n̄c is generally a function of u
as well as � for other choices of beam splitter.

This paper is organized as follows. In Sec. II, a single-
mode Gaussian state is briefly introduced with its covariance
matrix in terms of nonclassical depth � and purity u. In par-
ticular, the covariance matrix of the two-mode output state
via a beam splitter is obtained for the case that a nonclassical
�squeezed� Gaussian state and a thermal state are used as two
input modes. In Sec. III, the degree of entanglement at the
output is evaluated in terms of the logarithmic negativity and
the experimental conditions to successfully generate en-
tangled output are derived together with optimal setting. The
critical thermal noise to destroy entanglement is analytically
obtained and discussed in relation to the degree of single-
mode nonclassicality. In Sec. IV, our main results are sum-
marized with concluding remarks.*hyunchul.nha@qatar.tamu.edu
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II. TWO-MODE STATES OUT OF BEAM SPLITTER

Consider a lossless beam splitter whose input ports are
fed by two single mode fields with complex amplitude �1
and �2, respectively. The complex amplitudes of the fields at
the output ports are given by

��1

�2
� = MB��1

�2
� , �1�

where MB is the beam splitter transformation matrix given as

MB = � cos � sin �ei�

− sin �e−i� cos �
� . �2�

The transmittance of the beam splitter is represented by
cos2 � and the phase difference between the reflected and the
transmitted fields by �.

Nonclassical Gaussian state—Let the first input mode,
�1, to the beam splitter be a single mode Gaussian state
defined by a characteristic function of the form

��x� = exp�−
1

2
x†V1x� , �3�

where x†= ��1
� ,�1�, and V1 is the covariance matrix

V1 = � a b

b� a
� �4�

�a: real, b= �b�ei�: complex�. In Eq. �3�, we ignore the term
linearly dependent on x which describes the displacement in
phase space. This is because the local displacement at each
input emerges as another form of local displacements at the
output two modes so that it does not affect entanglement
property at all.

A Gaussian state may be classical �coherent and thermal
states� or nonclassical �squeezed states�. A number of mea-
sures have been proposed to quantify the degree of nonclas-
sicality for a single-mode state �20–24�. One of them, which
will be used in this paper, is based on the Glauber-Sudarshan
P function �25� defined as

P��� =
1

	2� d2�����e1/2���2−���+���, �5�

where ����	Tr
D���
� is the characteristic function. The P
function renders it possible to express the expectation values
of normally ordered operator functions in close correspon-
dence to the calculation of mean values in a classical sto-
chastic theory. A quantum state is said to have a classical
analog if its P function has the properties of a classical prob-
ability density. In general, however, the P function may fail
to be a probability distribution. A quantum state is called
nonclassical if its P function is either singular or not
positive-definite.

The integral in Eq. �5� may not be evaluated for a non-
classical state in general. However, a smooth and positive
definite function that becomes acceptable as a classical prob-
ability distribution is introduced by the convolution transfor-
mation of the P function �20� as

R��,�� =
1

	�
� d2�e−1/��� − ��2P��� . �6�

For a given P function, there exists a certain value of �m such
that the R function becomes positive-definite for ���m. The
threshold �m generally takes a value in the rang of �0,1� and
is regarded as a measure of nonclassicality �20�. In case of a
Gaussian state with covariance matrix V1, the condition for
the positive definiteness of R�� ,�� becomes

V1 + �� −
1

2
�I 
 0, �7�

and �m thus takes a value in �0, 1
2 �. From now on, � is used

instead of �m to denote the nonclassical depth, and for the
covariance matrix V1 in Eq. �4�, the degree of nonclassicality
is given by

� = max�0,− a + �b� +
1

2

 . �8�

On the other hand, the degree of mixedness in a prepared
quantum state 
 can be characterized by its purity u=tr�
2�
ranging from 0 �completely mixed state� to 1 �pure states�.
For a Gaussian state with covariance matrix V1, the purity
becomes �26�

u =
1

2�det V1

. �9�

In terms of the degree of nonclassicality � and the purity u,
one can thus express the elements of the covariance matrix
V1 of a nonclassical Gaussian state as

a =
1

4u2�1 − 2��
+

1

4
�1 − 2�� , �10�

�b� =
1

4u2�1 − 2��
−

1

4
�1 − 2�� . �11�

Although the parameter b is complex, its phase � does not
play any role in the output entanglement �Eqs. �20� and
�21��. Therefore, only two real parameters, � and u, are suf-
ficient to describe a general Gaussian state for our purpose.

Thermal state input—Let the second input mode, �2, to
the beam splitter be a thermal state defined as


th = �
n

n̄n

�1 + n̄�n+1 �n��n� , �12�

where n̄ is the average photon number

n̄ = �exp� ��

kBT
� − 1�−1

, �13�

where kB is the Boltzmann constant and T is the absolute
temperature. The thermal state is a classical Gaussian state
with the covariance matrix V2 given by
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V2 =�n̄ +
1

2
0

0 n̄ +
1

2
� , �14�

with purity uth=1 / �2n̄+1�.
Two-mode output—Having one-mode Gaussian state of

nonclassicality � and purity u at one port and thermal state at
the other port of the lossless beam splitter, the characteristic
function of the two-mode input field can be written as
���1 ,�2�=exp�− 1

2w†Vinw�, where w†	��1
� ,�1 ,�2

� ,�2�
represents the complex amplitudes of input modes and
Vin	V1 � V2 the covariance matrix �27�. On the other hand,
the beam splitter action �Eqs. �1� and �2�� yields the
covariance matrix of the output characteristic function
���1 ,�2�=exp�− 1

2v†Voutv� �v†	��1
� ,�1 ,�2

� ,�2�� as

Vout = � A C

C† B
� . �15�

Here, the 2�2 matrices A, B, and C are given by

A =�a cos2 � + �n̄ +
1

2
�sin2 � b cos2 �

b� cos2 � a cos2 � + �n̄ +
1

2
�sin2 �� ,

B =�a sin2 � + �n̄ +
1

2
�cos2 � be−2i� sin2 �

b�e2i� sin2 � a sin2 � + �n̄ +
1

2
�cos2 �� ,

C = sin � cos ���a − n̄ −
1

2
�ei� be−i�

b�ei� �a − n̄ −
1

2
�e−i�� .

�16�

III. QUANTITATIVE MEASURE OF ENTANGLEMENT

In this section, we study the degree of entanglement of the
output two-mode states with the covariance matrix in Eq.
�15�. A state described by a density operator 
 is called sepa-
rable if it can be written as a convex sum of the product
states, i.e.,


 = �
i

pi
A
i

� 
B
i , �17�

where 0� pi�1 and �ipi=1. Otherwise, it is called en-
tangled. A number of schemes have been proposed to verify
quantum entanglement between two modes of the field
�28–32�. In particular, it was shown that PPT criterion is
sufficient and necessary for 1�n-modes bipartite Gaussian
states. Instead of using these criteria, we consider the quan-
titative measure of entanglement based on the logarithmic
negativity �33�.

The logarithmic negativity is defined as N	 log2�
PT�,
where �A�	 tr�A†A denotes the trace norm and 
PT is the
partially transposed density operator. For a general n-mode
Gaussian state, the trace norm is determined by the eigenval-
ues of −�Vr��2, the so-called symplectic eigenvalues of the
real covariance matrix Vr. Here, the elements of the symplec-
tic matrix � are given by the commutation relations,
�R� ,R��= i���, where R� ��=1, . . . ,2n� denotes the canoni-
cal variables �34�. For the covariance matrix in Eq. �15�, the
characteristic equation to evaluate the symplectic eigenval-
ues under partial transposition becomes �33�

�4 − �Det�A� + Det�B� − 2 Det�C���2 + Det�Vout� = 0,

�18�

where A , B, and C are the submatrices of the matrix Vout in
Eq. �15�. Let two positive roots of this equation be ��. The
logarithmic negativity is then given by �33�

N = max
0,− log2�2�−�� + max
0,− log2�2�+��

= max
0,− log2�2�−�� , �19�

because the condition Det�Vout�=Det�Vin�= �2n̄+1�2

16u2 

1

16 al-
ways holds so that the larger root emerges as 2�+�1.

Using Eqs. �15� and �16�, the negativity can be repre-
sented in terms of parameters �, u, n̄, and �, which turns out
to be

N = max�0,−
1

2
log2�S −�S2 −

�2n̄ + 1�2

u2 �
 , �20�

where

S 	
1

2
��n̄ − � + 1�S+ − �n̄ + ��S−cos 4 �� , �21�

with

S� 	
1

u2�1 − 2��
� �2n̄ + 1� . �22�

Note that the negativity does not depend on the phase shift �
at the beam splitter. In the following, we study in detail the
degree of entanglement as a function of the experimental
parameters.

A. Optimal beam splitter

In Eq. �21�, S takes extremal values at �=0 and 	
4 . We

obtain S=S0	 1
2u2 + �2n̄+1�2

2 at �=0, and S=S	
4

	 �2n̄+1�
2 � 1

�u2�1−2��� +1−2�� at �= 	
4 . As S0, 	

4
are both positive,

so is S for the whole range of angles �. The logarithmic
function in Eq. �20� is a monotonically decreasing function
of S and the negativity therefore becomes maximal at the
largest value of S.

For the case of S−
0, i.e., 1
u2�1−2�� 
 �2n̄+1�, in which the

thermal photon number is relatively small, the maximum
value of S occurs at �= 	

4 �50:50 beam splitter�. On the other
hand, for the case of 1

u2�1−2�� � �2n̄+1�, in which the thermal
photon number is large, the maximum occurs at �=0, which
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essentially corresponds to no beam-splitter action and leads
to no entanglement at all. Therefore, we conclude that the
optimal choice of beam splitter is a 50:50 one regardless of
all other parameters �� ,u, and n̄.�

B. Case of 50:50 beam splitter

In this case, the negativity is reduced to

N = max
0,− log2
��2n + 1��1 − 2��� . �23�

The degree of entanglement is thus independent of purity, u,
and depends only on the nonclassicality, �. From Eq. �23�,
the critical thermal noise for the vanishing negativity, N=0,
is obtained as

n̄c =
�

1 − 2�
. �24�

If n̄� n̄c, the entanglement at the output disappears. Note that
the critical value n̄c is a “monotonic” function of nonclassi-
cality � regardless of purity u. Therefore, the resistance to
noise, n̄c, in generating entangled output can be understood
as equivalent to a measure of single-mode nonclassicality, �.
At the maximal squeezing, �→ 1

2 , the critical value ap-
proaches n̄c→�, i.e., entanglement persists at any level of
noise.

C. Case of general beam splitter

For a general beam-splitter angle �, the critical value n̄c is
obtained by requiring 2S=1+ �2n̄+1�2

u2 in Eq. �25�. Unlike the
case of 50:50 beam splitter, the critical noise n̄c and the loga-
rithmic negativity N depend on the initial purity u as well as
the nonclassicality � of the input state. This implies that the
interpretation of the critical noise as a measure of nonclassi-
cality is not valid for a general beam-splitter setting. For
example, at the choice of �= 	

12 , the critical value becomes
n̄c=0.75 for �=0.3 and u=1 �pure-state�, and n̄c�0.36 for
�=0.4 and u=0.2 �mixed-state�. In this example, the higher
nonclassical depth leads to the lower critical thermal noise.

Case of near-optimal BS: Let us denote the beam splitter
angle by �= 	+�

4 , where � is a small error. The fractional
deviation from the optimal transmittance 1/2 then corre-
sponds to e	 �

2 , and the critical thermal noise is found to be

n̄c �
�

1 − 2�
�1 − 2e2 �1 − ���1 − u2�

1 − u2�1 − 2��2� , �25�

which shows the dependence on the purity as well as the
nonclassicality of the input state. In case of very small
squeezing, ��1, the dependence on the purity is negligible
as n̄c���1−2e2�. On the other hand, close to maximal
squeezing, �→ 1

2 , we obtain n̄c� 1
2−4� �1−e2�1−u2��.

In the following, we consider in more detail the case of
general BS angles.

Pure-state input: Let us consider the case that the non-
classical resource at the input is pure, i.e., u=1. we plot the
negativity as a function of beam-splitter angle � and the ther-
mal photon number n̄ for a fixed value of � �degree of non-
classicality� in Fig. 1. Obviously, the entanglement becomes

optimal for the choice of �= 	
4 and decreases as the angle

deviates from 	
4 . In this case, one can obtain the analytic

expression of critical thermal noise as n̄c= �
1−2� , which is re-

markably independent of angle �. Therefore, although the
degree of entanglement varies with the beam-splitter param-
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FIG. 1. �Color online� Entanglement �logarithmic negativity� as
a function of the thermal photon number n̄ and the beam splitter
angle � for a pure-state Gaussian input �u=1� with nonclassical
depth �. �a� �=0.2, �b� �=0.4, and �c� �=0.45.

TAHIRA et al. PHYSICAL REVIEW A 79, 023816 �2009�

023816-4



eter �, the entanglement disappears at the same level of noise
n̄c= �

1−2� regardless of �.
Mixed-state input: In general, the degree of entangle-

ment grows with increasing nonclassical depth � and purity
u. In Fig. 2, the logarithmic negativity is plotted as a function
of the purity u and the beam-splitter angle � at a fixed level

of thermal noise. We see that a successful generation of en-
tangled output occurs in a broader range of angles � with
increasing purity u. In Fig. 3, the critical noise n̄c is plotted
as a function of purity u and the beam-splitter angle � for a
fixed nonclassical depth �=0.4. As the purity u increases, the
distribution of critical value n̄c becomes broader with respect
to the beam-splitter angle, and it eventually becomes flat at
u=1, as argued in the previous paragraph.

IV. CONCLUSIONS AND REMARKS

In summary, we have investigated in detail the generation
of entangled Gaussian states via a beam splitter using a
single-mode squeezed state and a thermal state as two inputs.
We have identified the condition to successfully produce an
entangled state at the output, and evaluated the degree of
entanglement as a function of experimental parameters, i.e.,
the nonclassical depth � and the purity u of nonclassical
source, the thermal photon number n̄, and the beam-splitter
angle � �transmittance�.

We have established the connection between the critical
thermal noise n̄c and the nonclassical depth �, and showed
that the connection gains a strong interpretation only at the
optimal choice of 50:50 beam splitter. In other cases
��� 	

4 �, the critical noise is a function of the purity u as well
as the nonclassical depth � so that a higher nonclassicality
does not necessarily lead to a more robust resistance to ther-
mal noise.

It is noteworthy that the critical noise in Eq. �24� to de-
stroy output entanglement coincides with the amount of ther-
mal noise that can be introduced to the input Gaussian state
to destroy its single-mode nonclassicality �squeezing� in a
specialized setting: Suppose one starts with a vacuum state
�0� to produce a mixed squeezed state 
 that has the
covariance in Eq. �4� and the nonclassicality �. In general, 

can be expressed in the Kraus-sum representation as

=�iMi�0��0�Mi

†, where �iMiMi
†= I. Now, if the initial

vacuum state is replaced by a thermal state with the photon
number n̄th as 
�=�iMi
thMi

†, it is easy to show that the
single-mode state 
� becomes classical at n̄th= �

1−2� , which is
none other than the critical noise in Eq. �24�. Therefore, the
two contextually different noises coincide quantitatively in
the Gaussian regime. Of course, the result n̄th= �

1−2� is valid
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FIG. 2. �Color online� Entanglement �logarithmic negativity� as
a function of the purity u and the beam splitter angle � at a fixed
level of thermal noise n̄ for the nonclassical depth �=0.45. �a�
n̄=1 and �b� n̄=4.
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FIG. 3. �Color online� The critical thermal
noise n̄c as a function of the purity u and the
beam splitter angle � for a fixed nonclassical
depth �=0.4. The right plot �b� shows a magni-
fied view over a narrow range of u close to 1.
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only for ��
1
2 , and thus cannot be readily extended to non-

Gaussian regime, e.g., Fock states ��=1�. Nevertheless, it
seems plausible to have such a relation even for non-
Gaussian states in a different form.

We also note that Lee �20� attempted to connect the non-
classical depth � to the thermal photon number required to
destroy all nonclassical aspects of the state. However, the
link by Lee is rather formal, and precisely speaking, the pa-
rameter � in Eq. �6� is a Gaussian noise �35� not necessarily
arising from a thermal state: When an initial state 
 is ex-
posed to a Gaussian noise as


� =� d2�P���D���
D†��� , �26�

where the state 
 is displaced in phase space by the amount
of � with the Gaussian weighting P���	 1

	�e−���2/�, the P
function of the output state 
� is none other than the convo-
lution in Eq. �6�, with the identification �=�. �Note that this
Gaussian noise is different from the noise process mentioned

in the preceding paragraph.� On the other hand, if one mixes
the initial state with a thermal state with at 50:50 beam-
splitter, then output state possesses the P function as P���
=2R��2��, that is, a scaled distribution of the R function of
Eq. �6�. Not to mention that the scaled function represents a
different density operator, it is also known that a scaling
transform in phase space does not generally map a physical
state to another physical one �36,37�. In contrast, our con-
nection of � to critical thermal noise has a clear physical
meaning in a realistic experimental scheme. Our scheme is,
however, restricted to the class of Gaussian states and it is
thus desirable to extend the current issues to non-Gaussian
states in future.
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