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We give a simple multiround strategy that permits us to beat the shot-noise limit when performing inter-
ferometric measurements even in the presence of loss. In terms of the average photon number employed, our
procedure can achieve twice the sensitivity of conventional interferometric ones in the noiseless case. In
addition, it is more precise than the �recently proposed� optimal two-mode strategy even in the presence of loss.
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The shot-noise limit is the minimum noise level that the
Heisenberg uncertainty relations permit achieving when clas-
sical states are employed in the apparatuses. Many quantum
strategies have been proposed to beat the shot noise �1,2� and
to achieve the ultimate Heisenberg limit �12�, but virtually all
of them are very sensitive to noise and loss of photons �3�.
Only very recently were some interferometric strategies pre-
sented that can beat the shot noise even in the presence of
relevant losses of photons �4,5�. These are all instances of
parallel strategies �2�, where both arms of the interferometer
are sampled at the same time using a mode-entangled quan-
tum state of light �see Fig. 1�a��. In addition to the parallel
strategies, in quantum metrology it is also possible to
achieve the Heisenberg limit using multiround �or sequen-
tial� strategies �6,7�, which, in the noiseless case, are equiva-
lent in terms of resources and of achievable precision �2�.

Here we detail how multiround strategies can be used to
perform interferometry—see Fig. 1�b�. An appropriate input
state is prepared �we will analyze two examples below�. This
state is fed into the first interferometer arm. It picks up a
phase �+�, where � is the interferometric phase we want to
estimate and � is the absolute phase picked up by the free
evolution in the arm �which is equal to the phase which
would be picked up also in the reference arm�. The main
trick of multiround interferometry is the use of the unitary

U = �
n=0

M

�M − n��n� + �
n=M+1

�

�n��n� , �1�

where �n� is the Fock basis and M is the largest nonzero
component of the initial input state �if the input state has
infinite nonzero components, one can always choose M suf-
ficiently large so that the errors, due to the fact that not all
components of the state are affected by U, can be made
arbitrarily small�. The purpose of this unitary is to permute
the first M components of the Fock-state expansion of a state
in such a way that, when the state is sent back through the
reference arm, the absolute phase � is removed from the
state �only an irrelevant global phase factor eiM� persists�.
Thus, at the end of the round-trip of Fig. 1�b� �multiple round
trips are also possible�, only the relative phase � is imprinted
on the state. A measurement is finally performed to estimate
this phase.

Notice that the two boxes of Fig. 1�b� initially need to
share a synchronized phase reference. In fact, suppose that a
Fock state �n� in the first box corresponds to a state ei�n�n� in
the second box, where � is the phase offset between the two
boxes. Then the unitary U would introduce an unwanted
phase 2� in the states traveling through it. �From the point of
view of resource accounting, this essentially amounts to hav-
ing very precise synchronized clocks at the two boxes’ loca-
tions, so that �=0. However, from the practical point of
view, this is not a problem: all interferometers have unknown
phases between the two arms �because it is in practice im-
possible to build two macroscopic interferometer arms with
length accuracy of a tiny fraction of an optical wavelength�.
Hence, typically one builds the interferometer and then, fix-
ing the phase � to zero, moves one of the mirrors in order to
cancel all unknown phases, including �.�

The multiround interferometry employs the same average
energy and the same modes as the conventional �parallel�
strategies, but it can achieve twice the sensitivity and it is
more robust against noise. In fact, we show that, with an
appropriate choice of inputs, our protocol permits us to esti-
mate the phase with an error which is smaller than what is
achieved by the strategy detailed in Ref. �4�, which is
claimed to be the optimal two-mode strategy. In the presence
of loss, this is not unexpected, as parallel protocols rely on
entanglement, which is notoriously fragile to noise. Instead,
in the noiseless case, this can be seen easily with a simple
example. Recall that the Heisenberg limit �12� is essentially
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FIG. 1. �a� Parallel strategies for interferometry. Both arms of
the interferometer are sampled at the same time using a two-mode
entangled state. The phase factor � is imprinted in the state as a
phase difference between the two modes. �b� Sequential strategy
proposed here. A loss-resistant single-mode state is sent through the
first interferometer arm, sampling the phase �. Then a unitary trans-
formation is applied and the state is sent back through the other
interferometer arm. This is needed so that the final phase shift ex-
perienced by the state is only the relative phase in the interferom-
eter. The state is measured after one �or more� round-trips.
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an application of the time-energy uncertainty, ���h�1 /2,
where h is the generator of the unitary that inserts the phase
� into the system �14�: namely, h=a†a �a being the annihi-
lation operator of the first arm of the interferometer�. Opti-
mal two-mode states, such as the NOON state ��N0�
+ �0N�� /	2, have �h=N /2. However, the corresponding
single-mode “NO” state of same average number of
photons—namely, the state ��2N�+ �0�� /	2—has �h=N.
Both states achieve the Heisenberg-limited sensitivity of
��=1 / �2�h�, but in terms of the average number of photons
N, the NOON state can achieve ��NOON=1 /N, whereas the
NO state can achieve ��NO=1 / �2N�—i.e., twice the sensi-
tivity. The NO state is, however, just as sensitive to noise as
the NOON state: the loss of a single photon renders both
states useless to phase estimation.

The rest of the paper is devoted to presenting two ex-
amples of loss-resistant multiround interferometry based on
two different input states, the optimal phase state, and the
single-mode �m�m�� state. Both are able to beat the optimal
parallel strategy for some values of parameters.

We start by considering the single-mode optimal phase
state ��opt� introduced in �8,9� �and later extended to the mul-
timode case in �10�, building on �11��—i.e., the state

��opt� 
	 2

M + 1�
n=0

M

sin���n + 1/2�
M + 1

��n� , �2�

where M is a parameter identifying the average number of
photons, N=M /2. In the noiseless case, this state achieves a
precision ��� / �N+1� �9�, which scales as the Heisenberg
bound 1 /N—i.e., the ultimate precision �12� in the absolute
phase estimation. In addition, this state is highly robust to
loss, since the loss tends to deplete primarily the components
with large Fock numbers n, which are not very populated in
this state. Following the scheme of Fig. 1�b�, this state is sent
through the first arm of the interferometer, where it is subject
to a phase shift of �+�, where � is the interferometric phase
we want to estimate and � is the absolute phase picked up by
the free evolution in the arm. During this transit, the state is
also evolved by the loss map, described by the Kraus opera-
tors Ki
�	−1−1�i/2ai	a†a/2 /	i!, where a is the annihilation
operator of the optical mode and 	 is its transmissivity or
quantum efficiency. �Note that the loss and the phase accu-
mulation commute, so that the order in which we apply these
two transformations is irrelevant.� Then, the state is subject
to the unitary evolution U of Eq. �1� and it is sent back along
the reference arm. Thanks to the permutation of the Fock
components that U applies to the state, the free evolution is
effectively reversed, so that the absolute phase � that was
picked up in the first arm is removed while the radiation
travels back through the reference arm. Also in the reference
arm the state is typically subject to the loss �although there
are interesting cases where the reference may be considered
noiseless�. Finally, the state is subject to the measurement.
For the optimal phase state, a good measurement �9� can be
obtained by considering the orthogonal positive operator-
valued measure �POVM� composed of the projectors on the
Pegg-Barnett states

�
l� 

1

	M + 1
�
n=0

M

ei
l�n� with 
l =
2�l

M + 1
, �3�

with l=0, . . . ,M. The root mean square �RMS� of the prob-
ability distribution obtained from this POVM is a function of
the interferometer phase �. Its minimum value gives the
minimum error that our interferometer can achieve, which is
plotted as the solid lines in Fig. 2. In addition, we have also
directly estimated the error through the Holevo variance �13�
�
= �S


−2−1�1/2, where S
= ��ei
�� is the average value of
the function ei
 weighted with the probability obtained from
the continuous POVM �
��
�d
, obtained using the phase
states of Eq. �3� for arbitrary 
. The Holevo variance is more
appropriate than the rms for the estimation of the phase error,
since the phase is a periodic quantity �13�. However, as is
clear from our plots, the Holevo variance is well approxi-
mated by the rms when these two quantities are small
enough �compared to 2��.

It is tedious but straightforward to calculate that, after a
round-trip characterized by the same quantum efficiency 	 in
both arms, the state ��opt� evolves into

� =
2

M + 1 �
i,j=0

M

�1 − 	�i+j	M−j�
n,m

�n�mei��m−n��n��m� ,

�k 
 �k + j

j
�1/2�M − k − j + i

i
�1/2

sin���M − k − j + i +
1

2
�

M + 1
� ,

where the second sum runs between max �0, i− j� and M − j.

FIG. 2. �Color online� �Left� Solid line: error in the estimation
of the phase from the state �, i.e., minimum �over �� of the rms of
the probability p�l�, as a function of the average number of photons
N for 	=0.9. Lower dashed line: plot of the error from the optimal
two-mode lossy interferometry from �4�. Our single-mode method
achieves a higher precision for a wide range of parameters. Plus
signs: Holevo variance �
, which closely tracks the minimum rms.
Dot-dashed line: behavior of the two-mode state ��N0�+ �0N�� /	2,
which is optimal only for high 	 and low N. Upper dashed line:
average over � of the rms. The gray shaded area encloses the
“quantum” trajectories—i.e., the ones included between the shot-
noise limit 1 /	N	 and the Heisenberg limit 1 /N. �Right� Same as
the previous, but as a function of 	 for N=20.
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From this state, one can estimate the probability distribution
of the POVM of Eq. �3�: namely,

p�l� =
2

�M + 1�2�
i,j

�1 − 	�i+j	M−j��
n

�ne−in��+
l��2
.

The error in the estimation of the phase from a measurement
on � is given by the rms of p�l�, plotted in Fig. 2 as a
function of the average photon number N and quantum effi-
ciency 	. The graphs of Fig. 2 show that our scheme can
beat the shot noise also for low values of N, where in addi-
tion to the asymptotic behavior, the scaling constant is also
important �8,15�.

The second input state we consider is a single mode
analogous of the �m�m�� state introduced in �5�—i.e., the
state

��M� + �M���/	2, �4�

where M �M� and whose average photon number is N
= �M +M�� /2. Again, it is straightforward to obtain the out-
put state, after the round-trip of Fig. 1�b�:

� = �
j=−�

M�

� j�j + ���j + �� + �
j=0

M

� j�j��j�

+
1

2�
j=0

M�

� j�e−i���j + ���j� + ei���j��j + ��� , �5�

� j = �
i=max�0,j�

M�

f ij�M�

i
��i + �

i − j
�� 2, �6�

� j = �
i=j

M

f ij�M

i
�� i

j
�� 2, �7�

� j = �
i=j

M�

f ij��M�

i
��M

i
��i + �

i − j
�� i

j
��1/2

, �8�

with �
M −M� and f ij 
�1−	�2i−j	M−i+j. To extract the
phase from the state �, in analogy to the two-mode case of
�5�, we can measure the observable

A = �
k=0

M�

�M − k��M� − k� + �M� − k��M − k� . �9�

Then, the error on the phase can be obtained from the rms of
A using error propagation: namely,

�� = �A�� �

��
�A�� =

	� − cos2�����2

��sin������
, �10�

where �=�k=0
M� �k+�k−�+�k+�k+� and �=�k=0

M� �k. This quan-
tity is plotted in Fig. 3 from which it is evident that, also in
this case, the multiround protocol can achieve a better sensi-
tivity than the optimal two-mode one. One can employ the
techniques suggested in �5,16� �for the two-mode case� to
implement also the single-mode �m�m�� and its related ob-

servable A presented here, but our scheme is simpler as it
does not entail entanglement. It may appear surprising that
the state � permits one to achieve a greater precision than the
NOON state ��N0�+ �0N�� /	2 even for high values of 	. As
discussed above, this is essentially due to the fact that a
single-mode state performs better than a two-mode state in
terms of the average number of photons, N.

In conclusion, we have given a strategy for determining
the relative phase in an interferometer using single-mode
states that are sent through the interferometer in a round-trip,
interleaved by the unitary U of Eq. �1�. This entails that �a�
in the noiseless case a double sensitivity can be reached over
the optimal two-mode states �such as the NOON state� in
terms of the average number of photons and �b� in the lossy
case we can achieve a better phase sensitivity than what is
claimed to be the optimal two-mode strategy �4�, proving
that multiround protocols are preferable in the presence of
noise. The robustness in the face of loss stems from two
main properties. On one side there is no entanglement be-
tween different modes and it is well known that entangle-
ment is very sensitive to noise �3�. On the other side, the fact
that we are using a single mode permits a doubling of the
phase sensitivity over the two-mode entangled case, since all
the photons travel through one mode only. One may object
that the increased phase sensitivity arises because we are
devoting more resources to the estimation. This objection is
unfounded since the average number of photons employed in
the two strategies is the same, N. One cannot even say that in
the two-mode strategies the phase � is sampled by fewer
photons, because the number of photons that travel through
an arm of an interferometer is an undefined quantity �the
“which path” information is complementary to the phase in-
formation�. One can only bound the number of photons trav-
eling through each arm with the total number of photons, N,
injected in the interferometer.

We thank R. Demkowicz-Dobrzanski for having kindly
provided the data of the optimal two-mode state of �4�.

FIG. 3. �Color online� �Left� Solid line: error in the estimation
of the phase from the state � of Eq. �5�—i.e., minimum �over �� of
the function �� of Eq. �10�—as a function of the average number
of photons N for 	=0.9. Here M�=3 and M =2N−3. Dashed line:
plot of the error from the optimal two-mode lossy interferometry
from �4�. Again, as in Fig. 2, our single-mode method achieves a
better sensitivity in some range. Dot-dashed line: behavior of the
state ��N0�+ �0N� /	2�. The inset is an enlargement for small values
of N. �Right� Same as the previous, but as a function of 	 for N
=20, M =30, and M�=10.
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