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We demonstrate the existence of localized optical vortex and necklace solitons in three-dimensional �3D�
highly nonlocal nonlinear media, both analytically and numerically. The 3D solitons are constructed with the
help of Kummer’s functions in spherical coordinates and their unique properties are discussed. The procedure
we follow offers ways for generation, control, and manipulation of spatial solitons.
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I. INTRODUCTION

Spatial optical solitons are self-trapped beams of finite
spatial cross section that travel without divergence associated
with the freely diffracting beams. Owing to their novel phys-
ics, as well as potential applications, spatial solitons have
been under intensive study in the past decade �1� and rich
dynamics associated with them have been discovered. Vortex
solitons are optical beams that have phase singularities
mixed within the wave front curvature, and frequently appear
in the study of optical tweezers �2�, trapping and guiding of
cold atoms �3�, and entanglement states of photons �4�.
Necklace solitons are a special class of self-trapped beams,
which look like necklaces with the intensity and phase
modulated periodically along the azimuthal angle �5�. Sol-
jacic et al. predicted quasistable necklace beams in a Kerr
nonlinear �NL� medium theoretically �6�, and recently such
beams were observed experimentally �7�. Necklace vector
solitons also exhibit quasistable evolution in a saturable NL
medium, although with a slowly expanding rate �8�. It was
shown that the presence of topological charges can slow the
expansion of such beams. Metastable necklace solitons were
observed in lead glasses with a thermal nonlocal nonlinearity
�9�. Robust spatiotemporal necklace solitons in the cubic-
quintic Ginzburg-Landau system were reported in �10�. Dark
hollow beams have also attracted attention, thanks to their
potential for applications in the turbulent atmosphere �11�.
However, almost all necklace solitons reported so far inevi-
tably experience expansion during propagation, due to a net
outward force exerted on each “pearl” by all other pearls
forming the necklace �6�.

Nonlocality has also been a phenomenon of intense re-
search over recent years in various NL physical systems �1�.
Basically, nonlocality extends the effect of localized excita-
tions in a medium, allowing a degree of interconnection
among different regions of the medium in question �12�. It
has been shown recently that the stability of localized waves
is greatly enhanced in nonlocal nonlinear �NN� media. In
such media the NL response at a particular spatial location is
determined by the wave intensity in the neighborhood of this
location. Nonlocality often results from certain transport pro-
cesses, such as atomic diffusion �13�. It can also be a signa-

ture of a long-range interparticle interaction, e.g., in nematic
liquid crystals �14�. A spatially nonlocal �NLO� response is
also naturally present in atomic condensates, where it de-
scribes a noncontact bosonic interaction �15�. Extensive
studies of beam propagation in NN media revealed a range of
interesting features. In particular, it has been shown that non-
locality may affect modulational instability of plane waves
�16� and prevent catastrophic collapse of finite beams �17�,
as well as stabilize complex one-, two-, and three-
dimensional beams, including vortices �18–20�. Recently, it
has been shown that NLO media can support stable propa-
gation of rotating solitons, the so-called azimuthons �21�.
Recent theoretical studies demonstrated both stable and un-
stable evolution of azimuthons �22,23�. In the latter case it
has been shown that in a highly NLO regime the azimuthons
can undergo structural transformation resulting from the en-
ergetic coexistence of solitons of different symmetries. Nu-
merical and analytical studies revealed that the angular ve-
locity of azimuthons is governed by two contributions. There
is the linear component, determined solely by the spatial
structure of the beam �akin to the rotation of complex wave
structures resulting from the beating of their constituent
modes�, as well as the NL component, which is brought
about by the nonlinearity �22�.

In this work, we investigate in detail three-dimensional
�3D� highly NN solitons. We consider models for highly NN
media where the spatial solitons have already been observed,
such as lead glasses exhibiting self-focusing thermal nonlin-
earity �24�, photorefractive media �25�, and nematic liquid
crystals �14�. We study NL waves in a generic, highly NLO
optical system by solving the nonlocal nonlinear Schrödinger
equation �NNSE�, using the self-similar method. We demon-
strate breathers whose evolution is periodic and discuss soli-
tons in highly NN systems. We demonstrate that, by choos-
ing a suitable soliton parameter, the solitons can be
conveniently controlled and manipulated.

The paper is arranged as follows. In Sec. II we introduce
the highly NN model and obtain the self-similar breather and
soliton solutions in spherical coordinates. In Sec. III we com-
pare our exact analytical results with the numerical solutions.
One of our main findings, that the azimuthons emerge from
the internal modes of stationary highly NN soliton solutions,
like vortices and necklaces, is detailed in Sec. IV. Section V
presents conclusions.
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II. THE GENERAL NN MODEL AND SELF-SIMILAR
SOLITON SOLUTIONS

A. Highly NN model

We consider an optical beam propagating along the z axis
of a NL self-focusing material with the scalar amplitude of
the electric field E�r� , t�=��r� , t�exp�ik� ·r�− i�t�+c.c. Here r�
= �x ,y ,z�, k� is the wave number vector, � is the optical fre-
quency, and ��r� , t� is the slowly varying amplitude. We as-
sume that the refractive index change N�I�, induced by the
beam intensity I�r� , t�= ���2, can be described by the NLO
model

N�I��r�,t� =� R�r� − r���I�r��,t�dr��. �1�

The response function R�r�� is assumed to be a real, positive
definite, localized, and rotationally symmetric function �i.e.,
R�r��=R�r�� that satisfies the normalization condition
�R�r��dr�=1. The width of the response function R�r� deter-
mines the degree of nonlocality. For a singular response
R�r��=��r��, the refractive index becomes a local function of
the light intensity, N�I�= I�r� , t�, i.e., the refractive index
change at a given point is solely determined by the light
intensity at that very point. With increasing width of R�r�� the
light intensity in the vicinity of the point r� also contributes to
the index change at that point. In the opposite limit, when the
response function is much broader than the intensity distri-
bution, the NL term becomes proportional to the response
function, N�I�=−PR, where P is the beam power. The NLO
response �1� leads to the following NNSE governing the evo-
lution of an optical beam in appropriately chosen dimension-
less coordinates:

i
��

�t
+

1

2
�2� + N�I�� = 0. �2�

It has been shown that as long as the response function is
monotonically decaying, the physical properties of solutions
to Eq. �2� do not depend strongly on its shape �16–20�. For
convenience in our calculations we choose to work with the
Gaussian response function

R�r� − r��� =
1

��2e−�r� − r���2/�2
. �3�

Assuming that the intensity distribution is peaked at the ori-
gin, one can expand the response function at the origin, to
obtain N�I��−P�R0+R2r2�. In this case the highly NNSE
becomes the linear SE, leading to a NL optical model in
which the change in the NL term is proportional to a NL
function of the power, �N�I��−�2�P�r2. Although linear in
�, the model still describes a highly NL phenomenon of
solitons through the dependence of the coefficient � on the
beam power P �12�. For this reason the model is referred to
as the highly nonlocal nonlinear SE. It has been used in �14�,
for example, to explain the experimental observation of op-
tical spatial solitons in nematic liquid crystals.

In the highly NLO limit, the wave equation governing the
beam propagation in 3D NN media is reduced to

i
��

�t
+

1

2
�2� − sr2� = 0, �4�

where s is the parameter proportional to �2�P�, containing
the influence of the beam power. Note that P is constant,
equal to the total input power P0. The beam intensity does
not explicitly enter the evolution equation any longer, and
the model becomes linear. Hence, in solving Eq. �4� we will
also be solving a linear quantum mechanical problem,
namely, the 3D quantum harmonic oscillator �QHO�. Al-
though many different solutions to the time-independent
QHO in different coordinate systems are known �26�, we
could not locate any analytical solutions to the time-
dependent 3D QHO. Hence, we will be looking for self-
similar time-dependent solutions of Eq. �4� in the form of
localized 3D wave packets. Such solutions will naturally im-
pose certain conditions on the input parameters and the pa-
rameters describing these solutions. It should also be noted
that beam collapse cannot occur in Eq. �4�.

B. Self-similar solution method

The second term in Eq. �4� represents the diffraction and
the third term originates from the optical nonlinearity. We
treat Eq. �4� in spherical coordinates, by the method of sepa-
ration of variables. Note that s	0. The separation of vari-
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FIG. 1. �Color online� Comparison of analytical solutions with
the numerical simulations for the �022 wave packet, for different
parameters 
=1.6 �top row� and 0.6 �bottom row�. �a� Analytical
solution for intensity from Eq. �20�. �b� Numerical simulation of
Eq. �2�. The propagation times are 2	sw0

2t=0,� /4,� /2, from left
to right.
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ables ��t ,r ,� ,��=F�t ,r�Y�� ,�� leads to the following two
equations:

−
1

Y

 1

sin �

�

��
�sin �

�Y

��
� +

1

sin2 �

�2Y

��2
 = l�l + 1� , �5�

2r2

F

i

�F

�t
+

1

2r2

�

�r
�r2�F

�r
� − sr2F
 = l�l + 1� , �6�

where l is a non-negative integer. Equation �5�, of course, has
spherical harmonics for the solution,

Ylm��,�� =	 �l + m�!
m�1 + q2��l − m�!


�cos�m�� + iq sin�m���Pl
m�cos �� , �7�

where the parameter q� �0,1� determines the modulation
depth of the beam intensity �5�, and m is a real number.

Following Refs. �18,27�, we define the complex field as
F�t ,r�=A�t ,r�eiB�t,r�, where A and B are real functions of t
and r. Substituting F�t ,r� into Eq. �4�, we find the following
coupled equations for the phase B�t ,r� and the amplitude
A�t ,r�:

− A
�B

�t
+

1

r

�A

�r
+

1

2

�2A

�r2 −
1

2
A� �B

�r
�2

− sr2A −
l�l + 1�

2r2 A = 0,

�8�

�A

�t
+

�A

�r

�B

�r
+

1

r
A

�B

�r
+

1

2
A

�2B

�r2 = 0. �9�

To find a self-similar solution of Eqs. �8� and �9�, we assume
that the amplitude and the phase have the forms �18,19�

A =
k

	w3
f��� , �10�

B = a�t� + b�t�r + c�t�r2, �11�

where k is the normalization constant, w�t� is the beamwidth,
f��� is a real function to be determined, ��t ,r�� is a self-
similar variable, a�t� is the phase offset, and c�t� is the chirp.
The functions ��t ,r��, b�t�, and c�t�, defined by the form of A
and B, are found from Eq. �9�: �=r /w, b=0, c
= �1 /2w��w /�t. The amplitude A�t ,r� is found from Eq. �8�,
by solving the following differential equation for f:

d2f

d�2 +
2

�

df

d�
+ 
− �2�w3d2w

dt2 + 2sw4�
−

l�l + 1�
�2 − 2w2da

dt

 f = 0. �12�

Inserting a variable transformation f���=�le1/2−�2/2g���,
from Eq. �12� we obtain

d2g

d�2 +
2

�
�l + 1 − �2�

dg

d�
+ 
− �2�w3d2w

dt2 + 2sw4 − 1�
− �2l + 3� − 2w2da

dt

g = 0. �13�

To further simplify Eq. �13�, we introduce another variable
transformation �2=�, and after some algebra arrive at

d2g

d�2 + �l +
3

2
− �� dg

d�
+ ng = 0, �14�

d2w

dt2 + 2sw −
1

w3 = 0, �15�

1

4
�− �2l + 3� − 2w2da

dt
� = n , �16�

where n �=0,1 ,2 , . . . � is a non-negative integer. Equation
�14� is the well-known Kummer’s equation, whose solutions
are known as Kummer’s hypergeometric functions �28�,
namely, g= 1F1�−n , l+ 3

2 ,��.
Taking �w�t��t=0=w0 and ��dw�t� /dt��t=0=0 and integrating

Eq. �15� yields �18�

w2 = w0
2�1 + �
 − 1�sin2�2	sw0

2t�� , �17�

where 
=1 /2sw0
4. Hence, from Eq. �16� and from the defi-

nition of c�t�, we obtain

a�t� = a0 − �2n + l +
3

2
� tan−1�	
 tan�2	sw0

2t��

2	s
w0
4

, �18�

c�t� =
	sw0

2�
 − 1�sin�4	sw0
2t�

1 + 
 − �
 − 1�cos�4	sw0
2t�

. �19�

Using Eqs. �10� and �11�, we finally get the exact self-similar
breather solution of Eq. �4�:

�nlm =
k�cos�m�� + iq sin�m���

	w3
Pl

m�cos ��� r

w
�l


e1/2−r2/2w2

1F1�− n,l +
3

2
,

r2

w2�ei�a�t�+c�t�r2�, �20�

where w�t�, a�t�, and c�t� are determined by Eqs. �17�–�19�
and

k =	2l+2−n�2l + 2n + 1�!!
	�n!��2l + 1�!!�2

	 �l + m�!
m�1 + q2��l − m�!

.

Hence, when 
=1 the beam diffraction is exactly bal-
anced by the nonlinearity. Since w�t�=w0 for 
=1, the beam
width is independent of the propagation distance. The param-
eters are given by w�t�=w0, c�t�=0, and a�t�=a0− �2n+ l
+ 3

2 �t /w0
2. Thus, the exact self-similar soliton solution of Eq.

�4� can be written as
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�nlm
s =

k�cos�m�� + iq sin�m���
w0

3/2 Pl
m�cos ��� r

w0
�l


e1/2−r2/2w0
2

1F1�− n,l +
3

2
,

r2

w0
2�


ei�a0−�2n+l+3/2�t/w0
2�. �21�

III. COMPARISON WITH THE NUMERICAL
SIMULATION OF THE NNSE

The breather solutions of Eq. �20� and the soliton solu-
tions of Eq. �21� are the stable exact solutions of the linear
Eq. �4�. They do not represent the soliton solutions of NNSE
�2�, and they do not provide any hard evidence about the
existence and stability of such solutions. However, there are
indications of the existence and stability of similar soliton
solutions coming from our numerical treatment of Eq. �2�,
for certain nonlocal nonlinearities.

We want to ascertain that, if one takes a breather solution
as the initial field in Eq. �2� and propagates it, no instabilities
develop for long propagation times. To simulate the propa-
gation, we use the following input beam parameters:

�022�0,r,�,�� =
k�cos�2�� + iq sin�2���

	w0
3

P2
2�cos ��


� r

w0
�2

e1/2−r2/2w0
2�1 −

2r2

7w0
2�eia0, �22�

and assume that the material response is the Gaussian func-
tion �3�. We also choose �0=100, so that we are in the highly
NLO regime. We present contour plots above a cutoff inten-
sity of the optical field distributions �unlm�2 in 3D, choosing
the initial width to be w0=1. Figure 1 compares the analyti-
cal breather solution of Eq. �20� for q=0 with the numerical
simulation of Eq. �2�, for different 
. The numerical solution
of Eq. �2� is thus performed to provide evidence on the sta-
bility of breathers in the highly NN region, and to compare
with the analytical solutions. As expected, no collapse is
seen, and a very good agreement with the analytical solution
is obtained. Similar behavior is seen for other initial fields.

It is seen in Fig. 1 that the wave packet changes from two
pairs of ellipsoids at the initial time into four smaller ellip-
soids at 2	sw0

2t=� /2, when 
	1. Also, the interval between
the packets in the pair expands as the beam propagates. On
the contrary, the interval contracts when 
�1, and the size
of the packets increases with the propagation. The wave pe-
riodically repeats this contraction-expansion cycle, and the
interval between the packets oscillates periodically as the
wave propagates. Even though the solutions are presented for
only one cycle of the breather evolution, the behavior per-
sists for many cycles. For 
�1, we call these wave packets
the Kummer breathers.

IV. DISCUSSION OF SOLUTIONS

A. Vortex solitons

When m=0, from Eq. �21� one obtains Gaussian solitons.
In Fig. 2 a collection of intensity distributions of Gaussian

solitons with different n and l is presented. They do not
change in time. For l=0 the soliton forms a sphere. Obvi-
ously, when all of the three parameters are zero, the soliton is
called the fundamental Gaussian soliton in the 3D space. The
larger n, the smaller the sphere’s radius. For l=1, there are
two layers along the vertical �z-axis� direction, and the soli-
ton forms a pair of ellipsoids. The larger n, the flatter the
ellipsoids. For n=1, l	1, the soliton forms several torus-
shaped structures in the middle, but at the outside there is
still a pair of ellipsoids. In general, there exist l−1 tori and
n+1 pairs of ellipsoids at the outside. The maximum optical
intensity is reached at the farthermost ellipsoids, along the
vertical direction.

For q=1 and m�0, one obtains vortex solitons. Figure
3�a� shows the intensity of solitons above a cutoff, with the
same l ,m �l=m� but different n. It is seen that for fixed n, the
larger the parameters l and m, the flatter the soliton along the
vertical direction. For different n, but still the same l and m,
the larger the parameter n, the flatter the soliton along the
vertical direction and also the larger the radius. The optical
intensity is zero at the central point �x ,y ,z�= �0,0 ,0�. Figure
3�b� shows solitons with the same n, but l different from m.
For equal l and n, the larger the parameter m, the smaller the
soliton radius in the horizontal plane. The larger the param-
eter n, the flatter the soliton along the vertical direction and
the larger the radius. There are �l+1−m� layers along the
vertical direction. The optical intensity is zero at the central
point.

As seen in Fig. 3, the vortex soliton displays radial sym-
metry; the soliton distribution does not depend on the azi-
muthal angle. The physical origin of this phenomenon can
qualitatively be understood from the nature of nonlocality.
The NL nonlocality here means that the NL polarization of
the medium has the symmetry of the electric field. Owing to
the additional assumption of strong nonlocality, resulting in a
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FIG. 2. �Color online� Gaussian solitons, for m=0. The param-
eters are �a� n=0, l=0,1 ,2 ,3 from left to right; �b� n=1, l
=0,1 ,2 ,3 from left to right.
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harmonic potential, the distributions of the optical field and
the intensity are obviously independent of the azimuthal
angle.

B. Necklace solitons

In the limit q=0 and m�0, and for some specific values
of the parameters �n ,m , l�, we observe necklace �also called
multipole� solitons. In Fig. 4 we present some examples of
necklace soliton intensity. We find that the larger the param-
eter l, the larger the soliton radius in the horizontal plane. It
is seen that the distributions change regularly with the azi-
muthal angle. For the same n but for different l, there are
�l+1−m� layers along the vertical direction. For l=m soli-
tons, the number of ellipsoids is determined by m. These
multipole solitons have 2m ellipsoids. For l�m �l�0 and
m�0� solitons, the number of ellipsoids is determined by
both l and m. We find that the number of ellipsoids in each
layer is decided by m, and the layer number is decided by n.
The necklace solitons have 2m�n+1��l+1� ellipsoids, and
form n+1 necklace layers surrounding the central point.

These characteristics of necklace solitons can be ex-
plained easily. In a highly NN medium, the refractive index

is determined by the intensity distribution over the entire
transverse coordinate space, and under proper conditions the
nonlocality can lead to an increase of the refractive index in
the overlap region, giving rise to the formation of necklace
solitons. Note that, when the NLO response function is much
wider than the beam itself, the range of nonlocality in the
medium is very large and the width of the refractive index
distribution greatly exceeds the width of an individual light
spot.

V. CONCLUSIONS

We have studied 3D self-similar spatial wave solutions of
the Schrödinger equation in spherical coordinates, in the

FIG. 3. �Color online� Vortex solitons, for q=1. �a� l=m; the
parameters are l=m=3,2 ,1 from left to right. Top row n=1; bottom
row n=2. �b� l�m, l=4, m=3,2 ,1 from left to right. Top row n
=1; bottom row n=2.

(a)

(b)

FIG. 4. �Color online� Necklace solitons. The parameters are �a�
n=0, top row l=2, m=1,2 from left to right; middle row l=3, m
=1,2 ,3 from left to right; bottom row l=4, m=1,2 ,3 ,4 from left to
right. �b� n=1, top row l=2, m=1,2 from left to right; middle row
l=3, m=1,2 ,3 from left to right; bottom row l=4, m=1,2 ,3 ,4
from left to right.
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highly NN region, both analytically and numerically. Ana-
lytical solutions have been obtained, and numerical simula-
tions have been performed, to confirm the stability of local-
ized solutions. The 3D self-similar spatial wave packets are
built out of spherical harmonics and Kummer’s hypergeo-
metric functions. In addition to the fundamental solitons,
these solutions may come in the form of 3D vortex and neck-
lace solitons.
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