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Wave-packet dynamics in energy space of a chaotic trimeric Bose-Hubbard system
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We study the energy redistribution of interacting bosons in a ring-shaped quantum trimer as the coupling
strength between neighboring sites of the corresponding Bose-Hubbard Hamiltonian undergoes a sudden
change 6k. Our analysis is based on a threefold approach combining linear response theory calculations as well
as semiclassical and random matrix theory considerations. The dk borders of applicability of each of these
methods are identified by direct comparison with the exact quantum-mechanical results. We find that while the
variance of the evolving quantum distribution shows a remarkable quantum-classical correspondence (QCC)
for all ok values, other moments exhibit this QCC only in the nonperturbative ok regime.
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I. INTRODUCTION

Understanding the intricate behavior of bosonic many-
body systems has been a major challenge for leading re-
search groups over the last years. Without doubt, the theoret-
ical interest was strongly enhanced by recent experimental
achievements in handling (ultra)cold quantum gases:
Namely, since the celebrated realization of atomic Bose-
Einstein condensates (BECs) in periodic optical lattices
(OLs) [1-4] and the creation of “atom chips” [5-8], we have
versatile tools at hand which allow for an unprecedented de-
gree of precision as far as manipulation and measurement of
the atomic cloud is concerned. While this has led, on the one
hand, to novel, concrete applications of quantum mechanics
like, e.g., atom interferometers [9—11] and lasers [1,4,12—14],
it also enabled us to investigate complex solid-state phenom-
ena, such as the Mott-insulator to superfluid transition [15]
or the Josephson effect [3].

Beside these advances, our understanding of bosonic
many-body systems is still very limited once we consider an
(external) driving: In the framework of BECs in OLs, this
can be, e.g., a modulation of the potential height or a tilting
of the lattice. Due to the time dependence of the driving
parameter, the energy of the system is not a constant of mo-
tion. On the contrary, the system experiences transitions be-
tween energy levels and therefore absorbs energy. This irre-
versible loss of energy is known as dissipation [16-19]. The
classical dissipation mechanism is by now well understood
[16], while quantum dissipation still poses some challenges.
In order to get a better insight into the problem, the main task
is to build a theory for the time-evolving energy distribution.
Apart from being of fundamental interest, such a theory will
also shed a new light on recent experiments with BECs in
amplitude-driven OLs [20,21]. It has been pointed out that
the energy absorption rate measurements can be used to
probe the many-body excitations of the system [22-26].

In the present work, we approach the problem of quantum
dissipation by studying the quantum dynamics of interacting
bosons on a ring-shaped lattice consisting of three sites (tri-
mer). Specifically, we will analyze the system’s response to a
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rectangular pulse of finite duration ¢ that perturbs the cou-
pling ky— k=ko+ Sk between adjacent sites. In the frame-
work of OLs this corresponds to a sudden change in the
intensity of the laser field and is readily achieved in the ex-
periment [20,21]. The associated dynamical scenario known
as wave-packet dynamics [18,27-29] is one of the most basic
nontrivial evolution schemes. Its analysis will pave the way
to understand more demanding evolution scenarios and ulti-
mately the response of interacting bosons under persistent
driving.

The minimal quantum model that describes interacting
bosons on a lattice with M wells is the Bose-Hubbard Hamil-
tonian (BHH), which incorporates the competition between
kinetic and interaction energy of the bosonic system. The
BHH is based on an M-mode approximation and hence its
validity is subject to the specific conditions discussed in
Refs. [2,30-32] (see also Sec. II). As far as the BHH is
concerned, the two-site system (dimer) has been analyzed
thoroughly from both the classical (mean-field) [33-35] and
the purely quantum viewpoints [33,36,37] and many exciting
results were found including their experimental realization
[38].

As a matter of fact, the dimer is integrable since the BHH
has two conserved quantities: the energy and number of
bosons. The addition of a further site—yielding either a lin-
ear chain (open boundary conditions) or a ring (periodic
boundary conditions)—is sufficient to make the resulting
system (trimer) nonintegrable and thus leads to (classically)
chaotic behavior. Here we consider a three-site ring' which
can be experimentally realized using optical lattice or mi-
crotrap technology [6—8,39]. For example, an optical poten-
tial in a ring configuration can be achieved by letting a plane
wave interfere with the so-called Laguerre-Gauss laser
modes as described in [40,41]. Another possibility to experi-
mentally create a three-site ring BEC trap [87] is given by a
combination of the methods described in Refs. [42,43]: In
the experiment of [42] a trapping potential is partitioned into

'We expect qualitatively similar results for a linear chain
configuration.
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three sections by a central repulsive barrier created with
blue-detuned laser light that is shaped to segment the har-
monic oscillator potential well into three local potential
minima. For better optical resolution (up to 1.2 wm) and
control of the coupling between the three condensates, one
can substitute the detuned laser source of Ref. [42] with the
one used in [43].

The motivation to study the quantum trimer is twofold:
That is, while remaining simple enough to allow for a thor-
ough analytical study, it displays a whole new class of com-
plex behaviors which are typical for longer lattices consist-
ing of many sites. The trimer has been studied quite
extensively in the classical (mean-field) regime [44-46].
Less attention was paid to the analysis of the quantum trimer
[29,47-52]. As a matter of fact, the majority of these studies
is focused on the statistical properties of levels [47,48,53],
while recently an analysis of the shape of eigenstates was
performed in Ref. [29]. However, knowledge of spectral and
wave-function statistics is not enough if one wants to predict
the dynamical behavior of a system.

In our study we combine three theoretical approaches: On
the one hand, we will use linear response theory (LRT),
which constitutes the leading framework for the analysis of
driven systems [18]. On the other hand, we employ an im-
proved random matrix theory (IRMT) modeling. Although
random matrix theory (RMT) was proven to be a powerful
tool in describing stationary properties (like level statistics
[48,53] and eigenfunctions [29]), its applicability to the de-
scription of wave-packet dynamics is not obvious [19,28].
The latter involves not only knowledge of the statistical
properties of the two quantities mentioned above, but also
the specific correlations between them. Finally, we will in-
vestigate the validity of semiclassical methods to describe
the quantum evolution. Our analysis indicates that some mo-
ments of the evolving energy distribution show a remarkable
level of quantum-classical correspondence (QCC)
[19,27,28], while others are strongly dominated by quantum
interference phenomena.

The structure of this paper is as follows: in the next sec-
tion, we introduce the Bose-Hubbard Hamiltonian that math-
ematically describes a quantum three-site ring lattice. We
identify its classical limit, leading to the discrete nonlinear
Schrodinger equation, and derive the classical equations of
motion. In Sec. III we discuss the notion of wave-packet
dynamics and introduce the observables studied in the rest of
the paper. We begin our analysis with the statistical proper-
ties of the spectrum and of the matrix elements of the BHH
(Sec. IV). This study allows us to introduce an IRMT mod-
eling which is presented in Sec. IV D. In Sec. V we extend
our previous analysis on the parametric evolution of the
eigenstates of the BHH [29] by comparing the actual
quantum-mechanical calculations with the results of the
IRMT modeling. We introduce the concept of parametric re-
gimes [29] and show how it can be applied to analyze the
parametric evolution of the local density of states (LDOS)
[19,29,54]. We then turn to the dynamics of the BHH (Sec.
VI) and extend the notion of regimes to the wave-packet
dynamics scenario. The predictions of LRT, IRMT modeling,
and semiclassics are compared with the exact quantum-
mechanical calculations for the trimeric BHH model. We find
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that the energy spreading OE(r) shows a remarkable
quantum-classical correspondence which is independent of
the perturbation strength k. In contrast, other observables
are sensitive to quantum interference phenomena and reveal
QCC only in the semiclassical regime. The latter can be
identified with the nonperturbative limit associated with per-
turbations &k > ok,,,. Section VII summarizes our findings.
II. BOSE-HUBBARD HAMILTONIAN

The mathematical model that describes interacting bosons
in a (three-site) lattice is the Bose-Hubbard Hamiltonian,
which in second quantization reads

H=

N

3
> il =)~k bib;, h=1. (1)
i=1 i#j
Here we consider a three-site ring configuration which is
experimentally feasible with current optical methods where,
for example, the trapping potential is created by letting a
plane-wave interfere with the so-called Laguerre-Gauss laser

modes as described in [40]. The operators ﬁ,-:l;}Ll;,- count the
number of bosons at site i. The annihilation and creation
operators l;i and l;j obey the canonical commutation relations
[I;i,I;jT]zb‘,-,j. In the BEC framework, k=ky+ 6k is the cou-
pling strength between adjacent sites i and j, and can be
controlled experimentally (in the context of optical lattices
this can be achieved by adjusting the intensity of the laser
beams that create the trimeric lattice), while U
=4ah’a,/mV.g describes the interaction between two atoms
on a single site (m is the atomic mass, a, is the s-wave
scattering length of atoms which can be either positive or
negative, and V is the effective mode volume). It is inter-
esting to note that the BHH also appears in the context of
molecular physics where [36,55] k represents the electro-
magnetic and mechanical coupling between bonds of adja-
cent molecules i and j, while U represents the anharmonic
softening of the bonds under extension.

The Bose-Hubbard model for M sites is based on a
M-mode approximation [30] [in the limit of long lattices this
corresponds to a single- (lowest-) band approximation of the
OL [2]]. This assumption holds provided that the chemical
potential, the kinetic energy, and the interaction energy are
too low to excite states in the higher single-well modes
(higher Bloch bands accordingly). Therefore, the lattice must
be very deep [30,31,56], inducing large band gaps. Further-
more, the interaction energy has to be smaller than the
single-particle ground-state energy, so as to not considerably
modify the single-particle wave function. A Gaussian ap-
proximation of the wave function together with a standard
harmonic trap of size 10 um and a scattering length a;
=5 nm indicates that the BHH model is valid for up to sev-
eral hundred bosons per trap [30].

Hamiltonian (1) has two constants of motion: namely, the
energy E and the number of particles, NzElen,-. Having N
=const implies a finite Hilbert space of dimension N=(N
+2)(N+1)/2 [36,47], which can be further reduced by taking
into account the threefold permutation symmetry of the
model [29].
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For large particle numbers N> 1 one can adopt a semi-
classical approach for Hamiltonian (1). Formally, this can be
seen if we define rescaled creation and annihilation operators
é:=b;/\N. The corresponding commutators [c”i,cAjT]z 8,/ N
vanish for N1, and therefore one can treat the rescaled
operators as ¢ numbers. Using the Heisenberg relations ¢
— 1'% (¢; is an angle and ; is the associated action?), we
obtain the classical Hamiltonian H:

H o1
ﬁ =—0—= _2 112 - )\2 \“"Iiljei(‘P/'_(’Di), (2)
NU 2i:l i#j

where U=NU is the rescaled on-site interaction.

The dynamics is obtained from (2) using the canonical
equations dI,/ di=—dH/de; and de;/di=3H/dl,. Here 7=Ut
is the rescaled time. The classical dynamics depends both on
the scaled energy E=E/UN and the dimensionless parameter

N=k/U [35,45,47,49,57]. For A\—0 the interaction term
dominates and the system behaves as a set of uncoupled sites
(also known as the local-mode picture [36]), while in the
opposite limit of A — <, the kinetic term is the dominant one
(normal-mode picture [34,57,58]). In both limits the motion
is integrable, while for intermediate values of \ the trimeric
BHH (1) has a chaotic component [48]. We point out that the
classical limit is approached by keeping N and U constant,
while N— o [29]. This is crucial in order to keep the under-
lying classical motion unaffected.

III. PRELIMINARY CONSIDERATIONS AND OBJECT OF
THE STUDY

In this paper we study the trimeric BHH model (1) as a
control parameter, the coupling strength between lattice sites
is changed—i.e., ky— ko+ ok. In our analysis, we therefore
consider

H=H,- k(1)B, 3)
where the perturbation operator Bis

fON g
B=2bjb, (4)

i
and the unperturbed Hamiltonian H, is given by Eq. (1) with
k=ky. Quantum mechanically, we work in the HO eigenbasis.
In this basis 1:10 becomes diagonal—i.e., EQ=E(0)5W, where

m
{Eﬁ,?)} are the ordered eigenvalues and we can write

H=E,- 5B. (5)

Throughout this work we always assume that the per-
turbed Hamiltonian (k) and the unperturbed Hamiltonian
H(ky) generate classical dynamics of the same nature—i.e.,
that the perturbation dk=k—k is classically small, ok < ok
(see beginning of the next section for the definition of k).

The quantum-mechanical conservation of the particle number N
translates into conservation of total action /=21;.
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FIG. 1. (Color online) Scheme of the wave-packet dynamics
scenario: the perturbation is a rectangular pulse of duration ¢; at
which the measurement is done. The function f(r) represents the
rescaled time dependence of the perturbation 8k(r)= &k f(z) (black

line), while the dashed red line indicates its time derivative f(z).

This assures the applicability of classical LRT. Note, how-
ever, that this assumption is not sufficient to guarantee the
validity of quantum-mechanical linear response theory. Our
aim is to identify novel quantum-mechanical effects that in-
fluence the classical LRT results as the perturbation &k in-
creases. At the same time, we address the implications of
classically chaotic dynamics for the trimeric BHH and the
route to quantum-classical correspondence in the framework
of wave-packet dynamics.

For later purposes it is convenient to write the perturba-
tion as k()= Sk f(r) where Sk controls the “strength of the
perturbation,” while f(z) is the scaled time dependence [note
that if we had f(r)>cr—i.e., persistent driving—then &k
would be the “rate” of the driving]. Although our focus will
be on the wave-packet dynamics scenario where the pertur-
bation is a rectangular pulse of strength ok and duration
t—see Fig. 1 for a sketch of the resulting step function f{(z)
with k(£)=k(0)—we expect that the results presented here
will shed some light on the response of BHHs in the pres-
ence of more demanding driving scenarios.

A. Measures of the evolving distribution P(n|n)

In this subsection we discuss a number of observables that
will allow us to quantify the response of the system and the
spreading of the energy distribution.

We consider an initial microcanonical preparation de-
scribed by an eigenstate |n,) of the unperturbed Hamiltonian

H(k(0)). Given the driving scenario k(z), it is most natural to
analyze the evolution of the probability distribution

% (6)

P,(n|ng) = [(n|U(1)|ne)

where
U(t) = frexp(- ! f tdt’ﬁ(k(t’))) (7)
h 0

is the time-ordered evolution operator and f](k(t))|n(k(t)))
=E,(k(t))|n(k(z))). By convention, we order the states by
their energy. Hence we can regard P,(n|ng) as a function of
r=n-n, and average over the initial preparation (around
some classically small energy window), so as to get a
smooth distribution P,(r).
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FIG. 2. Poincaré sections of the phase space belonging to the classical trimer for N=1 and different parameter values (a) A=0.005, (b)
A=0.05, and (c) A=2. On the y axis we plot the action I3, while on the x axis the difference @,—¢; (in units of ) is plotted. The Poincaré

section corresponds to the plane ¢;=¢; and ¢; > ¢, of the energy surface E=02.

To capture various aspects of the evolving probability dis-
tribution P,(n|n,), we introduce here the survival probability
defined as

P(t) = [(no| U(0)|no)|* = P,(no|no) (8)
and the energy spreading
%) = \[Z Plnlno)E,~ )" (9)

which probes the tails of the evolving distribution. Yet the
evolution of P,(n|n,) is not completely captured by any of
these measures: As we will see in Sec. VI, the wave func-
tions can develop a “core” which is a result of a nonpertur-
bative mixing of levels [29]. We therefore define an opera-

tive measure that reflects the creation of the “core,” as the
width JE,,. which contains 50% of the probability:
5Ecore(t) = [”75% - n25%]A~ (10)

Here, A is the mean level spacing and n, is determined

q
through the equation =,P,(n|ny)=q.

IV. STATISTICAL PROPERTIES OF THE TRIMERIC BHH:
SPECTRA AND BAND PROFILE

The dynamical properties of the classical trimer were
thoroughly investigated in a number of papers [44—46]. Tt
was found that for intermediate values of the control param-
eter A, the system exhibits (predominantly) chaotic dynam-
ics. Some representative Poincaré sections [corresponding to

the plane ¢;=¢; and ¢, > ¢, of the energy surface E=0.2 of
Hamiltonian (2)] of the phase space are reported in Fig. 2. As
N\ decreases, one can clearly see the transition from integra-
bility to chaotic dynamics and back to integrability. We de-
termine the regime of predominantly chaotic motion based
on the nature of the phase space and the power spectrum

6‘(6) of the classical perturbation operator (the latter is dis-
cussed in detail in Sec. IV B). While regular motion results

in isolated peaks in C(&®), a continuous (but possibly struc-
tured) power spectrum indicates chaoticity. Accordingly, the
classical smallness condition 6k < &k, can be operatively de-

fined as the perturbation strength that leaves C(@) unaf-
fected. We have found that for 0.04<\=k/U<0.2 and an
energy interval H=~0.26*0.02 the motion is predominantly

chaotic. Choosing our parameter values to be ky=15 and U
=280, we find ok, = 20.

In the following we will concentrate on the above-
mentioned range of N values for which chaotic dynamics is
observed. The main question we will address is the follow-
ing: What are the signatures of classical chaos in various
statistical quantities upon quantization? As we shall see in
the following subsections, chaos manifests itself mainly in
two quantities: the spectral statistics of the eigenvalues {E,(,?)}
and the averaged profile {|B,,,|?) of the perturbation operator.
While the statistical properties of the levels have attracted
some attention in the past [47,59], the traces of chaotic dy-
namics in the shape of the perturbation operator (|B,,,|?) and
the statistical properties of its matrix elements were left un-
explored. In the next subsections we will address these issues
in detail and propose an improved random matrix theory
modeling which takes our statistical findings into consider-
ation.

A. Energy levels

In Fig. 3 we plot the parametric evolution of the eigen-
values Eflo) as a function of A for fixed effective interaction

strength U=280. From Fig. 3 one observes that the spectrum
becomes rather regular for very large . Indeed, for A — > a

. | . | . | . | .
0 0.1 0.2 0.3 0.4 0.5

A=k/U

FIG. 3. (Color online) Parametric evolution of the eigenvalues
ELO) as a function of the parameter N. The number of bosons is N
=40, and the effective interaction strength is U=280. In the main
figure the entire spectrum is plotted, while the inset is a magnifica-
tion of the small box. One observes a qualitative change in the
spectrum as A is changed. See text for details.
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FIG. 4. (Color online) The level spacing distribution P(S) of the BHH trimer for three representative values of the dimensionless ratio
N=k/U, which controls the underlying classical dynamics: (a) A=0.025(k=7), (b) A=0.05(k=14.5), and (c) A\=0.35(k=100). The red
dash-dotted line corresponds to the Poissonian distribution (14), which is expected for integrable systems: the dashed blue line corresponds
to the Wigner surmise (13) (chaotic systems), while the solid green line represents the fitted Brody distribution (15). In Fig. 15 we report the

fitted Brody parameter ¢ for various values of N. The system corresponds to N=230 bosons and U=280. The histograms include the 400

relevant levels around E=0.26.

transformation to the normal modes of the system diagonal-
izes the Hamiltonian and yields an equidistant spacing of the
eigenvalues [47]. In the local-mode limit—i.e., A — O—the

eigenvalues of H|, are obtained immediately from (1) and are
partly degenerate.3 However, in an intermediate-A regime
one observes a different behavior: namely, irregular evolu-
tion and level repulsion (see inset). This is a manifestation of
the classically chaotic behavior [60,61].

In order to establish this statement, we turn to the statis-
tical properties of the spectra. In particular, we will study the
level spacing distribution P(S) [47,48,59,53] where

En+1 _En

S =
" A

(11)
are the spacings of two consecutive energy levels which are
unfolded with respect to the local mean level spacing A. The
level spacing distribution represents one of the most popular
measures used in quantum chaos studies [61,60]. It turns out
that the sub-7 statistical features of the energy spectrum of
chaotic systems are “universal” and obey the RMT predic-
tions [62,63]. In contrast, nonuniversal, i.e., system-specific,
features are reflected only in the large-scale properties of the
spectrum and constitute the fingerprints of the underlying
classical dynamics.

The mean level spacing A can be estimated from the fact

that V'« N? levels span an energy window AE « UNE, around
some specific energy E [see Eq. (1)]. Our considerations in-
dicate the scaling relation
U
A=15—, 12
N (12)
where the proportionality factor was found by a direct fit of

our spectral data in the energy window around E=0.26 [29].
For chaotic systems the level spacing distribution P(S)

3We note that these are “accidental” degeneracies. In contrast,
systematic degeneracies resulting from the symmetry of the model
are eliminated by restricting the calculations to the symmetric sub-
space [47]. See also the following footnote.

follows the so-called Wigner surmise [61,64]

T 2
Par($) = e, (13)
indicating that there is a linear repulsion between nearby
levels. Instead, for generic integrable systems there is no
correlation between the eigenvalues and the distribution P(S)
is Poissonian:

Pi(S) =e75. (14)

In Fig. 4 we report some representative P(S) for levels in

the energy window around E=0.26.* One observes a quali-
tative change in the shape of P(S) from Poissonian-like as-
sociated with very small and large N values to Wigner-like
for intermediate values of \.

In order to quantify the degree of level repulsion (and thus
of chaoticity), various phenomenological formulas for P(S)
have been suggested that interpolate between the two limit-
ing cases (13, 14) (see, for example, [65,66]). Here we use
the so-called Brody distribution [66] given by the expression

(15)

where a=(1+¢)B, B=I"""[(2+¢)/(1+¢)], and T is the
gamma function. The two parameters « and B are deter-
mined by the condition that the distribution be normalized
with a mean equal to 1 [67]. The so-called Brody parameter
q is then obtained from direct fitting of 7,(S) to the numeri-
cally evaluated level spacing distribution. One readily veri-
fies that for g=0, the distribution P,(S) is Poissonian (14),
while for g=1 it takes the form of (13).

The fitted values of the Brody parameter ¢ for various \’s
are summarized in Fig. 5. We see that for very small and
very large A the Brody parameter is small, indicating classi-
cally regular motion, while for intermediate values 0.04 <\

P(S) = aste P,

*We note that for level spacing distribution it is essential [61] to
distinguish levels from different symmetry classes. Here, the statis-
tics is performed over the symmetric singlet states of the BHH. See
also Ref. [47].
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FIG. 5. The Brody parameter ¢ for the BHH plotted against the
dimensionless ratio N, which controls the underlying classical dy-
namics. The values of ¢ are obtained from fits to Pq(S) around E
=0.26 as reported in Fig. 4. Error bars are of the size of the circles.
The system corresponds to N=230 bosons and U=280. See text for
details.

< 0.2 we find g ~ 1, corresponding to classically chaotic mo-
tion. This result is in perfect agreement with the predictions
of the classical analysis.

B. Band profile

The fingerprints of classically chaotic dynamics can be
found also in the band structure of the perturbation matrix B.
As we will show below, the latter is related to the fluctua-
tions of the classical motion. This is a major step towards a
RMT modeling.

Consider a given ergodic trajectory (I(7), ¢(7)) on the en-
ergy surface H(I(0),(0);ky)=E (with N=const). We can
associate with it a stochasticlike variable

- JH
F) = = — (@), ¢(0):k(@). (16)

which can be seen as a generalized force. For the BHH (5)
this is simply given by the perturbation term—i.e.,

F=Z\Lgeters), (17)
i#j
which corresponds to a momentum boost since it changes the
kinetic energy [68]. It may have a nonzero average—i.e., a
“conservative” part—but below we are interested only in its
fluctuations.

In order to characterize the fluctuations of F(7), we intro-
duce the autocorrelation function

CA =(FDFT+D) —(F, (18)

where 7=Ur is a rescaled time. The angular brackets denote
an averaging which is either microcanonical over some ini-
tial conditions (1(0), ¢(0)) or temporal due to the assumed
ergodicity.

For generic chaotic systems (with smoothly varying po-
tentials), the fluctuations are characterized by a short corre-
lation time 7, after which the correlations are negligible. In
generic circumstances 7 is essentially the ergodic time. For
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FIG. 6. (Color online) The power spectrum of the classical tri-
mer (2) at energy E=0.26, U=280, and No=0.053. The classical

cutoff frequency wclzéclfj ~280 is indicated by vertical dashed
lines.

our system we have found 7,~ 2 [see Eq. (20)].

The power spectrum of the fluctuations C(@) is given by
a Fourier transform:

C(@) = f i C(Pe'“d7, (19)

and for the case of the trimer (2) is shown in Fig. 6. We see

that C(w) has a (continuous) frequency support, which is
bounded by @, = 1, corresponding to w, =280 (indicated by
dashed vertical lines in Fig. 6). The cutoff frequency wy is
inversely proportional to the classical correlation time—i.e.,

27
We = "_"- (20)

Tel
These characteristics of the power spectrum are universal for
generic chaotic systems. Finally, we see that within the fre-

quency support the power spectrum C(@) is structured, re-
flecting system-specific properties of the underlying classical
dynamics.

The classical power spectrum C(&) is associated with the
quantum-mechanical perturbation matrix B according to the
semiclassical relation [69,70]

N*A ~ E,-E
UimE<|Bnm|2>= C(w= i’lﬁ m)-

(21)

U2m

Hence the matrix elements of the perturbation matrix B are
extremely small outside a band of width

b=hwy/A=hoyN/U. (22)

In the inset of Fig. 7 we show a snapshot of the perturbation
matrix |B,,,|%>, which clearly exhibits a band structure. In the
same figure we also display the scaled quantum band profile
for N=230. The agreement with the classical power spec-

trum C(w) is excellent. We have checked that the relation
(21) is very robust [19,29,54] and holds even for a moderate
number of bosons N=350. Combining Egs. (12) and (22)
with @y =1 (see above) and the definition of b, we find for

the chaotic regime around E=0.26 that b~ 0.6N, which is
confirmed by the numerics.
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FIG. 7. (Color online) The band profile (27U/N?A)|B,,,|* ver-
sus w=(E,—E,,)/% is compared with the classical power spectrum
C(w). The number of particles is N=230 and \y=0.053. Inset: a
snapshot of the perturbation matrix B,,,,,.

It is important to realize that upon quantization we end up
with two distinct energy scales [19,29,54]. One is obviously
the mean level spacing A~ 1/N [see Eq. (12)], which is
associated with the unperturbed Hamiltonian. The other en-
ergy scale is the bandwidth

Ay=bA o U, (23)

which contains information about the power spectrum of the
chaotic motion and is encoded in the perturbation matrix B.
The latter energy scale is also known in the corresponding
literature as the “nonuniversal” energy scale [71], or in the
case of diffusive motion, as the Thouless energy [72]. One
has to notice that deep in the semiclassical regime N—
these two energy scales differ enormously from one another.
We shall see in the following sections that this scale separa-
tion has dramatic consequences on the theory of wave-packet
dynamics.

C. Distribution of matrix elements of the perturbation
operator

We further investigate the statistical properties of the ma-
trix elements B,,,, of the perturbation matrix by studying their
distribution. RMT assumes that upon appropriate “unfold-
ing” they must be distributed in a Gaussian manner. The
unfolding aims to remove system-specific properties and to
reveal the underlying universality. It is carried out by nor-
malizing the matrix elements with the local standard devia-
tion o=(|B,,,|*) related through Eq. (21) with the classical

power spectrum C(w).

The existing literature is not conclusive about the distri-
bution of the normalized matrix elements w=B,,,,/ . Specifi-
cally, Berry [73] and more recently Prosen and Robnik
[70,74] claimed that P(w) should be Gaussian. On the other
hand, Austin and Wilkinson [75] have found that the Gauss-
ian is approached only in the limit of high quantum numbers,
while for small numbers—i.e., low energies—a different dis-
tribution applies: namely,

N

F(E) w2\ (V=32

Pcouplings(w) = ﬁ(l - W) 2y
)

This is the distribution of the elements of an N-dimensional
vector, distributed randomly over the surface of an
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FIG. 8. (Color online) Distribution of rescaled matrix elements
w around E=0.26 rescaled with the averaged band profile. The
dashed red line corresponds to the standard normal distribution,
while the circles (O) correspond to a best fit from Eq. (24) with a
fitting parameter N=342. The system corresponds N=230, U=280.

N-dimensional sphere of radius VN. For N— o this distribu-
tion approaches a Gaussian.

In Fig. 8 we report the distribution P(w) for the elements
of the perturbation matrix B. The dashed line corresponds to
a Gaussian of unit variance, while the circles are obtained by
fitting Eq. (24) to the numerical data using N as a fitting
parameter. Although we are deep in the semiclassical regime
(i.e., N=230), none of the above predictions describes in a
satisfactory way the numerical data. We attribute these de-
viations to the existence of small stability islands in the
phase space. Trajectories started in those islands cannot
reach the chaotic sea and vice versa. Quantum mechanically,
the consequence of this would be vanishing matrix elements
B,,,, which represent the classically forbidden transitions.

D. RMT modeling

More than 50 years ago, Wigner [62,63] proposed a sim-
plified model to study the statistical properties of eigenvalues
and eigenfunctions of complex systems. It is known as the
Wigner banded random matrix (WBRM) model. The corre-
sponding Hamiltonian is given by Eq. (5) where B is a
banded random matrix [76-78]. This approach is attractive
both analytically and numerically. Analytical calculations are
greatly simplified by the assumption that the off-diagonal
terms can be treated as independent random numbers. Also
from a numerical point of view it is quite a tough task to
calculate the true matrix elements of B. It requires a prelimi-

nary step where I:IO is diagonalized. Due to memory limita-
tions, one ends up with quite small matrices. For example,
for the Bose-Hubbard Hamiltonian we were able to handle
matrices of final size N'=30 000 maximum. This should be
contrasted with RMT simulations, where using a self-
expanding algorithm [19,27,79] we were able to handle sys-
tem sizes up to N'=1000 000 along with significantly re-
duced CPU time. We would like to stress, however, that the
underlying assumption of the WBRM—namely, that the off-
diagonal elements are uncorrelated random numbers—has to
be treated with extreme care. The applicability of this model
is therefore a matter of conjecture, which we will test in the
following sections.
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FIG. 9. (Color online) Schematic representation of the two no-
tions of the kernel P(n|m). Left: projection of one perturbed eigen-
state |n(ky+ ok)) (bold blue level) on the basis |m(kg)) of the unper-
turbed Hamiltonian. Averaging over several |n’) states around
energy E, yields the averaged shape of eigenfunctions (ASOE).
Right: alternatively, if P(n|m) is regarded as a projection of one
unperturbed eigenstate |m) (bold blue level) on the basis |n) of the
perturbed Hamiltonian and averaged over several states around E,,,
it leads to the local density of states (LDOS).

In fact, the WBRM model involves an additional simpli-
fication. Namely, one assumes that the perturbation matrix B
has a rectangular band profile of bandwidth b. A simple
inspection of the band profile of our BHH model (see Fig. 7)
shows that this is not the case. We eliminate this simplifica-
tion by introducing a RMT model that is even closer to the
dynamical one. Specifically, we generate the matrix elements
B,,, from a Gaussian distribution with a variance that is
given by the classical power spectrum according to Eq. (21).
Thus the band structure is kept intact. This procedure leads
to a random model that exhibits only universal properties,
but lacks any classical limit. We will refer to it as the im-
proved random matrix theory model (IRMT).

V. LOCAL DENSITY OF STATES AND QUANTUM-
CLASSICAL CORRESPONDENCE

As we change the parameter &k in the Hamiltonian (5),
the instantaneous eigenstates {|n(k))} undergo structural
changes. Understanding these changes is a crucial step to-
wards the analysis of wave-packet dynamics [29,54]. This
leads to the introduction of the “kernel”

P(n|m) = [(n(ko + 8k)|m(ko))I?, (25)

which can be interpreted in two ways as we schematically
depict in Fig. 9. If regarded as a function of m, P(n|m)
represents the overlap of a given perturbed eigenstate |n(k
+ 6k)) with the eigenstates |m(kg)) of the unperturbed Hamil-
tonian. The averaged distribution P(r) is defined by r=n
—m, and averaging over several states with roughly the same
energy FE, yields the averaged shape of eigenfunctions
(ASOE). Alternatively, if regarded as a function of n and
averaging over several states around a given energy E,,, the
kernel P(r) represents up to some trivial scaling and shifting
the LDOS:

P(E|m) = 2 [(n(k)|m(ko))|*SE - E,,). (26)

Its line shape is fundamental for the understanding of
the associated dynamics (see Sec. VI), since its Fourier

PHYSICAL REVIEW A 79, 023621 (2009)
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FIG. 10. (Color online) The kernel P(n|m) of the BHH plotted
as a function of the perturbed energies E, (LDOS representation)
and for various perturbation strengths k> Skqy. The averaged
shape of eigenfunctions is given by the same kernel P(n|m) and is
obtained by just inverting the energy axis. Here, N=70, and A\,
=0.053.

transform is the so-called “survival probability amplitude.”
In the following we will focus on the LDOS scenario.

A. Parametric evolution of the LDOS

An overview of the parametric evolution of the averaged
P(n|m) is shown in Fig. 10 [29]. Beginning as a delta func-
tion for 8k=0, the profile P(n|m) starts to develop a nonper-
turbative core as ok increases above some critical value Skp.
For even stronger perturbations, P(n|m) spills over the entire
bandwidth A,. We will show that if ok exceeds another criti-
cal value &k, the LDOS develops classical features. In the
following we will identify the above parametric regimes and
discuss the theory of P(n|m) in each one of them.

1. Perturbative regimes

We start with the discussion of the perturbative regimes.
We distinguish between two cases.

Standard perturbative regime. The simplest case is obvi-
ously the first-order perturbation theory (FOPT) regime
where, for P(n|m), we can use the standard textbook ap-
proximation Ppopr(n|m)=1 for n=m, while

5°[B,,,,[*
(En - Em)2
for n# m. The border &k, for which Eq. (27) describes the

LDOS kernel can be found by the requirement that only
nearest-neighbor levels be mixed by the perturbation. We get

Propr(n|m) = (27)

Okgm = Al o (28)

where for the right-hand side of Eq. (28) we have used the
scaling relations for A and o [see Egs. (12) and (21)]. In Fig.
11(a) we report our numerical results for the BHH, together
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FIG. 11. (Color online) The quantal profile P(n|m) (solid black
line) as a function of E,,—ES,?) for the BHH model is compared with
Py (dashed red line) and with the corresponding Pryr (dash-
dotted green line) of the IRMT model. The perturbation strength &k
is in (a) standard perturbative regime 8k=0.05 and (b) extended
perturbative regime 6k=0.3. The system corresponds to N=230,

U=280, and ko=15. Here kg, =0.09 and Sk, =1.02.

with the perturbative profile Pgropr(n|m) obtained from Eq.
(27) and the outcome of the IRMT modeling. The FOPT, Eq.

(27), has as an input the classical power spectrum C(w),
which via Eq. (21) can be used in order to evaluate the band
profile B,,,,. All three curves fall on top of one another.

Extended perturbative regime. If k> kypy, but not too
large, then we expect that several levels are mixed nonper-
turbatively. This leads to a distinction between a “core” of
width I" which contains most of the probability and a tail
region which is still described by FOPT. This nontrivial ob-
servation can be justified using perturbation theory to infinite
order. It turns out that the nonperturbative mixing on the
small scale I" of the core does not affect the long-range tran-
sitions [54,80] that dictate the tails. Therefore we can argue
that a reasonable approximation is [54]

(B,

Pp(nlm) = E—E )T

(29)

Our numerical data, reported in Fig. 11(b), indicate again an
excellent agreement with the theoretical prediction (29). At
the same time, we observe that also the proposed IRMT de-
scribes quite nicely the actual profile P(r). Note that the
resulting line shape is strikingly different from a Wigner
Lorentzian (as predicted by the traditional RMT modeling)
and is rather governed by the semiclassical structures of the
band profile |B,,,|>. Instead, a Wigner Lorentzian would be
obtained if the band profile of the perturbation matrix were
flat.

The core width I' is evaluated by imposing normalization
on P.(n |m) [29]. Our numerically evaluated I is reported in
Fig. 12. We see that for very small 6k we get that ' <A, In
this case, the expression (29) collapses to the FOPT expres-
sion (27). In fact, the inequality I'< A can be used in order to
estimate the limit kg, of the validity of FOPT. As soon as
we enter the extended perturbative regime, we find (see Fig.
12) that I" grows as

PHYSICAL REVIEW A 79, 023621 (2009)

FIG. 12. (Color online) Various measures of the spreading pro-
file for the BHH and IRMT models: the quantal spreading 6E (black
line with O), the quantal spreading JE,, of the perturbative profile
given by Eq. (29) (red line with [J), the spreading SEgypr (Violet
line with <) obtained from the IRMT modeling, the analytical
spreading OE,,, (green line with A) obtained from (34), the core-
width I" (orange line with V), and the classical spreading SE,, (blue
line). The dashed line has slope 1, while the dash-dotted line has
slope 2 and are drawn to guide the eye. The systems correspond to

N=70 bosons, ky=15, and U=280. See text for details.
o\2
| S 5k£ A. (30)

The core width I' [and thus Eq. (29) for the LDOS] is mean-
ingful only as long as we have I'<<A,—i.e., as long as we
can distinguish a core-tail structure. This condition allows us
to evaluate the perturbative border &k

U
Ok N (31)

In our numerical analysis we have defined oky, as the
perturbation strength for which 50% of the probability re-
mains at the original site, but we have checked that the con-
dition I'=A gives the same result. For determining &k, we
use the following numerical procedure: We calculate the
spreading SE= \/ZnP(n|m)(E§S)—E,,)2 of P(r). Next we cal-
culate 6E,(Sk), using Eq. (29). This quantity always satu-
rates for large ok because of having a finite bandwidth. We
compare it to the exact SE(Sk) and define k> for instance,
as the 80% departure point. In Fig. 13, we present our nu-
merical data for okyy, and Ok, by making use of the scaling

prt

T T T T
B
1000 ) # ;b) {1000
o F 1F
s f 6®/§ 1t ] &
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FIG. 13. (Color online) The parameters (a) &kqp, and (b) Skpy

various U, N, and for Np=0.053. A nice scaling in accordance with
Eqgs. (28) and (31) is observed.

for
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FIG. 14. (Color online) Upper panel: the kernel P(n|m) (LDOS
representation) in the nonperturbative regime Sk=10 for N=230
and N=0.053. The results of the BHH model (solid black line) are
compared with P (red dashed line), Pyt of the IRMT model
(dash-dotted green line), and the classical profile P (blue line with
O). Lower panel: a time series E(f) which leads to the classical
profile P (E) (see text for details).

relations (28) and (31). A nice overlap is evident, confirming
the validity of the above expressions.

2. Nonperturbative regime

For 6k> ok the core spills over the bandwidth and
therefore perturbation theory, even to infinite order, is inap-
plicable for evaluating P(n|m). In this regime, we observe
that also the IRMT fails to reproduce the actual line shape of
P(n|m) as can be seen from Fig. 14(a). In fact, RMT mod-
eling leads to a semicircle

P(nlm) = 1/2wAW4 - [(E, - E, )/ AT, (32)

as predicted by Wigner [62].

What is the physics behind the LDOS line shape in the
nonperturbative regime? Due to the strong perturbations,
many levels are mixed and hence the quantum nature be-
comes “blurred.” Then, we can approximate the spreading
profile by the semiclassical expression [54,80,81]

dld
panim= | St omite. G

where p,,(I,¢) and p,(I,¢) are the Wigner functions that
correspond to the eigenstates |m(ky)) and |n(k)), respectively.
In the strict classical limit, p can be approximated by the
corresponding ~ microcanonical distribution px NE
—H({1;}.{¢;})) determined by the energy surface E. The lat-
ter can be evaluated by projecting the dynamics generated by
Ho({IL}.{¢:})=E, onto the Hamiltonian H({I;},{¢;})=E(2).

In Fig. 14(b) we plot the resulting E(r)=H (), ¢(7)) as a
function of time for the Hamiltonian (2). The classical dis-
tribution P (n|m) is constructed [Fig. 14(a)] from E(f) by
averaging over a sufficiently long time. The good agreement
with the quantum profile P(n|m) is a manifestation of the
detailed quantum-classical correspondence which affects the
whole LDOS profile in the nonperturbative regime.

PHYSICAL REVIEW A 79, 023621 (2009)

Coming back to the failure of the IRMT approach, we are
now able to understand it formally from the scaling relation

(31) of the perturbative border &k~ U/N. Specifically, we
observe that the nonperturbative limit can be approached ei-
ther by increasing the perturbation strength &k or, alterna-
tively, by keeping Sk constant and increasing N. As we have
seen before, increasing N means to approach the classical

limit (keeping U=const). On the other hand, it is clear that
the IRMT model lacks a classical limit. Therefore, we cannot
expect it to yield a correct description of P(n|m) in that
regime. Instead, for ok> &k, the LDOS is completely dic-
tated by semiclassical considerations as can be seen from
Fig. 14(a).

B. Restricted vs detailed quantum-classical correspondence

It is important to distinguish between detailed and re-
stricted QCC [18,82]. The two types of QCC are defined as
follows: (a) detailed QCC means P(r)= P(r), while (b) re-
stricted QCC means OE,~ JE.

Obviously restricted QCC is a trivial consequence of de-
tailed QCC, but the converse is not true. It turns out that
restricted QCC is much more robust than detailed QCC. In
Fig. 12 we see that the dispersion 6Ey, of either P(r) or
Prrvr(r) is almost indistinguishable from JE. In fact, this
agreement of the second moment JE persists also for the
case of the perturbative profile (29). This is quite remarkable
because the corresponding LDOS profiles (quantal, perturba-
tive, IRMT, and classical) can become very different!

The possibility of having restricted QCC was pointed out
in [54,81] in the framework of quantum systems with chaotic
classical limit. A simple proof presented in Ref. [54] indi-
cated that the variance of P(r) is determined by the first two
moments of the Hamiltonian in the unperturbed basis—i.e.,

SE? = (m|H?|m) — (m|H|m)?
= Sk[{m|B2|m) — (m|B|m)*]
= 8k 2 |Bnm|2 - |Bmm|2 : (34)

Having a OE, that is determined only by the band profile is
the reason for restricted QCC and is also the reason why
restricted QCC is not sensitive to the RMT assumption.

VI. WAVE-PACKET DYNAMICS

We now turn to the time-dependent scenario of the wave-
packet dynamics which is related to the response of a system
to a rectangular pulse. Its physical realization in the frame-
work of the BHH has been described in Sec. III.

In the next subsections we will discuss the time-evolving
energy profile in each of the three ok regimes which we have
identified in the framework of the LDOS study. We start our
analysis with the classical dynamics (Sec. VI A) and then
turn to the evolution of the quantum profile P,(r) (Sec.
VI B). In the same subsection we will present an analysis of
the IRMT and semiclassical modeling and identify both their
weakness and regimes of validity.
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FIG. 15. (Color online) The classical energy spreading SE (%)
for the BHH (normalized with respect to the perturbation strength
Sk and the boson number N) is plotted as a function of time. The
dashed line has slope one and is drawn to guide the eye.

A. Classical dynamics

The classical picture is quite clear: The initial preparation
is assumed to be a microcanonical distribution that is sup-
ported by the energy surface Hy(I, ¢)=E(0)=E, , where the
Hamiltonian is given by Eq. (2). Taking H(\) to be a gen-
erator for the classical dynamics, the phase-space distribution
spreads away from the initial surface for #>0. “Points” of
the evolving distribution move upon the energy surfaces of
H(I, ¢). Thus, the energy E(1)=Hy(I(z), ¢(r)) of the evolving
distribution spreads with time. We are interested in the dis-
tribution of E(7) of the evolving “points.”

A quantitative description of the classical spreading is
easily obtained from Hamilton’s equations:

dE()

_ H_
dr =[H,Hlpp + ar =— Skf(t) F(1), (35)

where [-]pg indicates the Poisson brackets and f(z) is a rect-
angular pulse—i.e., f(¢+')=1 for 0 <t' <r. Integrating the pre-
vious expression and then taking a microcanonical average
over initial conditions, we get for the energy spreading the
classical LRT expression

t
!,— 5ECI_ >
OE (1) = 8kN2[C(0) - C(1)] = Tal

5Ecl’

<< Tels

t> Tel-
(36)

In the last step, we have expanded the correlation function
for t< 7, as C(t) = C(O)—%C”(O)tz. For > 7, due to ergod-
icity, a “steady-state distribution” appears, where the evolv-
ing “points” occupy an “energy shell” in phase space. The
thickness of this energy shell equals J6E,. Thus, the classical
dynamics is fully characterized by the two classical param-
eters 7, and OE.

Figure 15 shows the scaled classical energy spreading
OE(1)/ (N6k) for the BHH. The heavy dashed line has slope
1 and is drawn to guide the eye. In agreement with Eq. (36)
we see that 8E(7) is first ballistic and then saturates at 7

~2m/U=0.02.
One can also calculate the entire classical evolving profile
P, (). Using a phase-space approach similarly to the LDOS

PHYSICAL REVIEW A 79, 023621 (2009)

case in Sec. V A 2, we propagate, up to time ¢ under the
Hamiltonian H, a large set of trajectories {E},_, that origi-
nally are supported by the energy surface H(I,¢)=E(t=0)
=E, . Projecting them back onto H, yields a set of energies
{E},_, whose distribution’ constitutes the spreading profile
P (1) at time 7. We will discuss Pg(r) in Sec. VIC.

B. Quantum dynamics

Now we would like to explore the various dynamical sce-
narios that are generated by the Schrodinger equation for
a,(t)=(n|y(t)). Namely, we want to solve

da i i
—=——-FEa,-—>,B , 37
dt ﬁ nan ﬁ % nmam ( )

starting with an initial preparation a,=9,,, at t=0—i.e., an
eigenstate of the unperturbed system. We describe the
energy-spreading profile for >0 by the transition probabil-
ity kernel P,(n|m)={(|a,(t)|*). The angular brackets stand for
averaging over initial states (m) belonging to the energy in-

terval 0.25S5m$0.27. We characterize the evolving distri-
bution using the various measures introduced in Sec. III A. If
the evolution is classical-like, then, according to the classical
analysis presented previously, P,(n|m) will be characterized
by a single energy scale SE(f), meaning that any other mea-
sure like OE..(f) reduces (up to a numerical factor) to SE(z).
We will use this criterion in the following in order to identify
for which &k regimes the evolution is classical-like and for
which ones it develops quantum features.

An overview of the spreading profiles for three represen-
tative ok strengths is given in Fig. 16. A qualitative differ-
ence in the spreading is evident: In Fig. 16(a) the probability
is mainly concentrated in the initial level for all times (stan-
dard perturbative regime). In Fig. 16(b) one can distinguish
two different components in the P,(n|m)—the “core” [char-
acterized by OF,..()] and the “tail” component [character-
ized by SE(t)]—both of them being smaller than the band-
width (extended perturbative regime). For even stronger
perturbations, the core spills all over the bandwidth [see Fig.
16(c)] and the dynamics is nonperturbative. In the following
we discuss each of these regimes separately.

1. Perturbative regimes

For small perturbations ok <k, [see Fig. 16(a)], the
probability is mainly concentrated in the initial level during
the entire evolution. This is the FOPT (standard perturbative)
regime where the perturbation mixes only nearby levels and
little probability escapes to the tails.

As the perturbation strength is increased, Okgy, <ok
< Skpy [Fig. 16(b)], levels within the bandwidth are mixed
and one can distinguish two different components in the pro-
file P,(r): The core characterized by SF,.(f), where most of
the probability is concentrated, and the tail component, char-
acterized by OE(r). The latter is reported in Fig. 17(a) to-

5Technically, this requires calculating the histogram with a bin
size given by the mean level spacing A.
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FIG. 16. (Color online) The profile P,(r) of the BHH plotted as
a function of time for various perturbation strengths &k < &gy, (a),
Ok < 8k < Skpy (b), and Sk > Sk, (c). Note the different scale in

(c). Here, N=70, E=0.26 and \y=0.053.

gether with the classical spreading SE (7). The remarkable
fact is that, as far as SE(r) is concerned, the agreement with
the classical result is perfect. This might lead to the wrong
impression that the classical and quantum spreading are of

PHYSICAL REVIEW A 79, 023621 (2009)

the same nature. However, this is definitely not the case.

In order to reveal the different nature of the quantum
spreading in the perturbative regime we turn to the analysis
of the core width SE_,.(¢) [see Fig. 17(b)]. If the spreading
were of classical type, this would imply that the evolving
profile would be characterized by a single energy scale, and
thus SE(f) ~ OE,..(f). However, as can be seen in Fig. 17(b),
this is certainly not the case: For &k < dky, we have that
OE core(1)=A for all times while for &kgy, < Sk < ok, the core
width fulfills the inequalities A <SE () <SE(r)<A,. In
fact, this separation of energy scales allows us to use pertur-
bation theory in order to evaluate theoretically the evolving
second moment of the energy distribution. We get for the
transition probability from an initial state m to any other state
n+m

F(@,)
B 2\ Wy ' 38
Bl 2 o

Sk
P (n|lm)= '
Here F,(w):(wt)zsincz(wt/ 2) is the spectral content of a
constant perturbation of duration ¢ and sinc(x)=sin(x)/x.
Substituting the above expression into Eq. (9), we get the
LRT expression (36) for SE(f). We have also calculated the
second moment resulting from the IRMT modeling. The out-
come is reported in the inset of Fig. 17(a) and shows that
within the perturbative regime the IRMT modeling provides
the same results (as far as the second moment is concerned)
as the LRT calculations. Therefore we conclude that for ok
< 6kpy the IRMT modeling, the LRT results, the classical
results OE,, and the quantum calculations for the second
moment SE(¢) of the BHH match one another.

Encouraged by this success of LRT and IRMT modeling
to describe the second moment SE(z) of the energy spread-
ing, we can further use them to evaluate the survival prob-
ability P(r). Assuming a Markovian picture of the dynamics,
LRT predicts [19]

“do~ Fl(w
P(1) =exp|:— 5k2f ﬁc(w)#] . (39)

which after substituting the spectral content F (w) can be
rewritten in the form

2 o
P(t)=exp{—<%) f_m;l—j;&(w)ttsin&(%t)]. (40)

For short times (1< 7;) during which the spreading is ballis-
tic like, the term sinc®(wt/2) is broad compared to the band
profile and can be approximated by ¢, leading to

Skt \*
P(t)zexp[—C(T=0)<7> ] (41)
For longer times (r>7,), on the other hand, the term
tsinc’(wt/2) is extremely narrow and can be approximated

by a delta function &(w). This results in a Fermi-golden-rule
(FGR) decay
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FIG. 17. (Color online) Left panel: the (normalized) energy spreading SE(¢) for the BHH and the IRMT model (inset) for three different
perturbation strengths k=0.05 < &kgy, (solid black line), kg < Sk=0.3 < Sk, (dashed red line), and Sk=5>> ok, (dash-dotted green line).
The classical expectation SE(z) is represented in all three plots by a dashed blue line for comparison. In the inset the black dash-dotted lines
have slope 1 and % respectively, and are drawn to guide the eye. While for the BHH model one observes restricted quantum-classical
correspondence in all regimes, this is not the case for the IRMT model (inset): For perturbations &k> &k, the energy spreading SE(1)
exhibits a premature crossover to diffusive behavior. Right panel: the evolution of the corresponding core width 6E () for the BHH model
is plotted. In the perturbative regimes one observes a separation of scales SF,.(f) < SE(1) <A, which is lost for strong perturbations &k

> Sk, Where OE (1) approaches more and more the classical expectation 6E (7). Here, N=230, U=280, E=0.26, and \y=0.053.

2
P(t) = exp[- (%) Clo= O)t} , (42)

which can be trusted as long as P(¢) ~ 1. This can be con-
. . . Sk
verted into an inequality #<7,,=("5")*7.

In Fig. 18(a) we plot our numerical results for the trimeric
BHH model together with the theoretical expectation (39)
(we note that the outcome of the IRMT modeling matches
exactly the results of the LRT and thus we do not overplot
them). In both perturbative regimes we observe a short initial
Gaussian decay [as implied by Eq. (41)], which is followed
by the exponential FGR decay. In the FOPT regime [inset of
Fig. 18(a)] the entire decay until saturation is described by
LRT. In the extended perturbative regime [see Fig. 18(a)],
the overall agreement is still pretty good. However, here the
perturbative break time 7, is shorter and one finds a devia-
tion around the time 7,,~0.01.

2. Nonperturbative regime

Once we enter the nonperturbative regime 6k > ok, [see
Fig. 16(c)], the core spills over the bandwidth and the sepa-
ration of energy scales is lost, leading to SE(f) ~ OE (1)
> A, [see Fig. 17(b) for sk=5]. In this case the evolving
energy distribution becomes totally nonperturbative. Still, for
short times 7= (%,?)Tcl < 1,, defined by the requirement that
P(r)~1 [see Eq. (41)], the evolving probability kernel
P,(n|m) [and therefore the spreading SE(¢)] is described ac-
curately by the FOPT expression (38).

The remarkable fact is that although for > 1, the evolv-
ing profile P(n|m) is totally nonperturbative, this crossover
is not reflected in the variance [see Fig. 17(a)]. The agree-
ment with the LRT results of Eq. (36) is still perfect. Instead,
the crossover can be detected by studying other moments
like OE.,.(f), which acquire classical characteristics—i.e.,
OE (1) = SE(1) = SE (1) [see Fig. 17(b)]. Thus we are led to

1 T T T T T T T 31
— IRMT ~ 8k=0.05 - IRMT
T ° |FT(LDoS)”
05k 0.9+ 44 L
= . P R B P ] =
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FIG. 18. (Color online) The survival probability P(r) for the BHH and three different perturbation strengths (a) dk=0.05< &k, (inset),

Ok < 8k=0.3 < kpy (main figure) and (b) 6k=5> k. The solid black line represents the exact numerical result, while the dash-dotted
green line is the LRT result (39) calculated using the IRMT model. The inset of panel (a) represents the FOPT regime, while the main figure
corresponds to the extended perturbative regime. Here the break time is 7~ 0.1 (see Sec. VIB 2). In the nonperturbative regime (b), the
LRT breaks down close to the calculated break time 7,,~0.001. In this panel we superimpose the Fourier transform of the LDOS as blue

circles. The agreement with P(z) is excellent. Here, N=230, U=280, E=0.26, and No=0.053.
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the conclusion [18,28] that the LRT predictions are not ap-
plicable, while detailed QCC would possibly validate semi-
classical considerations. We will examine this assumption
more carefully in Sec. VI C.

What about the IRMT modeling? In the inset of Fig. 17(a)
we report the numerical results for the spreading SE(7) of the
IRMT model. We observe that as soon as we enter the non-
perturbative regime, the spreading SE(r) shows a qualita-
tively different behavior than the dynamical BHH model.
Namely, after an initial ballistic spreading (taking place for
times 1 <t,), we obsem premature crossover to a diffu-
sive behavior SE(f)=v2Dgt. The following heuristic picture
can explain the diffusive behavior of the IRMT modeling. At
1~ 1o < Ty, the evolving distribution becomes as wide as the
bandwidth, and we have OE.~ 6E~ A, rather than OE,
< OE<A,. Once the mechanism for ballisticlike spreading
disappears, a stochasticlike behavior takes its place. This is
similar to a random-walk process where the step size is of
the order A, with transient time #,.

The same deviations are observed for other observables as
well. In Fig. 18(b) we report our results for the survival
probability in the nonperturbative regime. We find that the
IRMT modeling (which for short times gives the same re-
sults as LRT, not shown in the figure as they are indistin-
guishable from the IRMT results) breaks down after an ini-
tial Gaussian decay (41), which holds up to a break time
tor~0.001. Instead, the behavior of P(7) can be obtained by
a Fourier transform of the LDOS. Specifically, we have that

P(r) = (ko) e ™0 (ko)) 2

> e EnR| (k) [ (ko) )2 ’

2
, (43)

f P(E|lm)eE""dE

where P(E|m) is given by Eq. (26). In Fig. 18(b) we super-
impose the outcome of Eq. (43) (see blue circles) together
with the survival probability evaluated by the numerical in-
tegration of the Schrodinger equation. An excellent agree-
ment is evident.

C. Detailed versus restricted QCC

In the previous subsection we have assumed that the
evolving wave packet is developing detailed QCC in the

nonperturbative regime and for times t>tprl=(5—(];’§) 7y (for
earlier times FOPT—or equivalently IRMT considerations—
apply).

In Fig. 19 we report four snapshots of the evolving
quantum-mechanical profile (black lines). In the same figure
we report the IRMT results (dash-dotted green lines) together
with the classical calculations (blue lines with O). As we
have discussed above we distinguish two phases in the evo-
lution: For <7, the IRMT modeling (or equivalently the
FOPT) is applicable, while for 1> 7 the evolving profile is
described by its classical counterpart P(¢). During this sec-
ond phase, the evolution predicted by the IRMT is diffusive,
leading to a Gaussian shape for P,(n|m).

PHYSICAL REVIEW A 79, 023621 (2009)

VII. CONCLUSIONS

In this paper we have studied the evolving energy distri-
bution of a three-site ring-shaped Bose-Hubbard model in
the chaotic regime. The evolution is triggered by a change 6k
in the tunneling rate k& between neighboring lattice sites,
which in the context of ultracold atoms in optical lattices is
realized by a change in the intensity of the trapping laser
field. The specific scenario that we have analyzed in detail is
the so-called wave-packet dynamics in energy space corre-
sponding to a constant driving pulse of finite duration ¢.

We followed a threefold approach to the problem which
combines purely quantum-mechanical as well as semiclassi-
cal and random matrix theory considerations. This enabled
us to identify both the strengths and limitations of each
method.

We find the appearance of three dynamical Sk regimes:

the standard perturbative (k< Sk > U/N*?), the extended

perturbative (5kqm< Ok < Skipyy U/N), and the nonperturba-
tive regime (6> Jk,y). The first two regimes can be ad-
dressed using LRT or RMT calculations. In contrast, the last
regime requires a combination of LRT and RMT calculations
and semiclassical considerations. The former approach de-
scribes the evolving energy distribution for short times while
the latter applies for longer times. Interestingly enough we
have found that the variance SE%(f) of the evolving energy
distribution shows a robust quantum-classical correspon-
dence for all ok values, while other moments exhibit this
QCC only in the nonperturbative regime identified with the
classical limit. In this regime, even an improved RMT mod-
eling fails to describe the long-time behavior of SE(z), lead-
ing to a premature crossover from ballistic to diffusive be-
havior.

The motivation of the present study is driven both by
theoretical and experimental considerations. On the funda-
mental level, we would like to understand the manifestation
of quantum-classical correspondence in the context of quan-
tum chaotic dynamics, where chaos enters not due to geo-
metrical considerations (“chaotic” shape of the trap), but due
to many-body interactions [83]. At the same time, our results
are also of immediate relevance to various branches of phys-
ics. For example, in the framework of ultracold atoms loaded
in optical traps one is interested in understanding measure-
ments of the energy absorption rates induced by potential
modulations [20-26]. Another application arises in molecular
physics: As mentioned in Sec. II, the Bose-Hubbard Hamil-
tonian also models bond excitations in small molecules
[57,84]. In this respect, the wave-packet dynamics investi-
gated here describes the vibrational energy redistribution of
an initial excitation [84].

As far as the experimental realization of our study is con-
cerned, microtraps [8] are promising candidates for such
time-dependent potentials [85], while optical lattices have
already been successfully used in similar setups. Specifically,
the studied dynamical scenario is readily implemented by
changing the intensity of the laser field using a simplified
version of the experiments of the Zurich group [20,21]. In
contrast to the periodic modulation presented there, the opti-
cal lattice depth has to be altered in a steplike manner. Such
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FIG. 19. (Color online) Snapshots of the evolving quantum profile P,(r) obtained from the BHH (black line) and the IRMT model
(dash-dotted green line) as well as the classical profile Pfl(r) (blue line with O) in the nonperturbative regime 6k=5> Jk,,, plotted against
the energy difference E—E,. After the quantal transition period £~ 0.002 [see Fig. 17(b)], there is no scale separation between the core and
the tail component and one observes overall detailed QCC. However, the initially excited component |y decays slower in the quantum case.

Here, N=230, U=280, E=0.26, and \y=0.053.

experiments have been successfully performed by Greiner et
al. [86] where the intensity of the trapping laser field was
suddenly raised. A rise time was achieved much faster than
the tunneling time between neighboring sites, but slow
enough so as not to excite higher vibrational modes of the
wells.

Concerning the measurement of the energy distribution
P,E) and the associated absorption of energy due to the
driving, various techniques may be applied. Using standard
time-of-flight measurements, one can determine, for ex-
ample, the release energy of the condensate and the momen-
tum distribution of the atomic cloud, which we expect to
provide the relevant information on the variance SE*(f) of
the energy distribution. Another possibility is to probe the
P,E) via phase diffusion measurements [86]. Experimen-
tally, the BEC can be prepared (almost) in one eigenstate.
The driving pulse induces a broadening in the energy distri-

bution, leading to (decaying) oscillations in the contrast
(blb, . +bb. ) between neighboring sites. We expect that
the functional form of the decay can be directly related to the
core width I" and thus be used to detect the three parametric
Ok regimes. While these measurements are in principle sen-
sitive to decoherence due to residual interaction with the
noncondensed atoms, we note here that for two-site systems
coherence times of several hundred milliseconds were ob-
served [88].
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