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Quantum interferometers are generally set so that phase differences between paths in coordinate space
combine constructively or destructively. Indeed, the interfering paths can also meet in momentum space
leading to momentum-space fringes. We propose and analyze a method to produce interference in momentum
space by phase imprinting part of a trapped atomic cloud with a detuned laser. For one-particle wave functions
analytical expressions are found for the fringe width and shift versus the phase imprinted. The effects of
unsharpness or displacement of the phase jump are also studied, as well as many-body effects, to determine the
potential applicability of momentum-space interferometry. For a broad range of parameters and conditions it is
found that a “dark notch” in the momentum distribution depends linearly on the phase imprinted, with maximal
sensitivity for noninteracting atoms in the ground state of tight traps.
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I. INTRODUCTION

In most quantum interferometers the phase differential be-
tween paths that meet in a coordinate-space point or region
at a given time lead to constructive or destructive wave com-
binations and thus to fringes, but the paths can also interfere
in momentum space and produce momentum-space fringes.
In particular, during the crossing of a wave packet over a
small and thin barrier �compared to the energy and width of
the wave packet� �see Fig. 1�a��, the momentum distribution
can change dramatically, vanishing at the center of the dis-
tribution, and being enhanced at the wings. This process
would violate classical energy conservation �1�, and is due to
interference in momentum space between incident and trans-
mitted parts of the wave �2,3�.

The experimental implementation of this effect is, in prin-
ciple, possible with current cold-atom technology, by turning
off an effective detuned-laser barrier in the midst of the wave
packet passage, but a simpler-to-implement version is de-
scribed here. The effect of the scattering barrier in the origi-
nal proposal is to imprint an appropriate phase on approxi-
mately half the wave packet, and this can also be achieved by
shining part of a trapped, initially stationary, wave packet
with a strong laser pulse, during a short time in the scale in
which a perturbation propagates �the correlation time �4��
�see Fig. 1�b��. The phase imprinting technique was first in-
troduced with the purpose of generating vortices �5,6�. Here
we shall study the properties of the resulting fringes, and
show that the effect on the momentum distribution is similar
to the effect of the scattering process, with the creation of a
vanishing point �“dark notch”� at the center and enhance-
ment of the wings. Furthermore, we shall study the shift,
width, and visibility of this central dark notch as a function

of the imprinted phase, as a necessary step to determine the
potential applicability of momentum-space interferometry as
a new tool for quantum metrology. The imprinted phase car-
ries information about the laser interaction �time, laser inten-
sity, frequency� that can be obtained from the notch. We shall
see that the notch depends linearly on the phase imprinted in
a broad range of parameters and conditions, which allows for
a simple interferometric determination of an unknown phase.
By immediately removing the external trap, the momentum
distribution is essentially frozen after the imprinting, and
many-body effects cease to play a role. Then, the momen-
tum-space notch will become by expansion a coordinate-
space notch measurable with standard time-of-flight tech-
niques. Alternatively, the momentum distribution can be ac-
cessed by stimulated Raman transitions �7� or through the
single-particle reduced density matrix �8�.

In the following section we will describe the setting in
more detail for a single particle or many noninteracting par-
ticles. In Sec. III we will consider the role of interactions
within the mean-field regime and in Sec. IV we will look at
Tonks-Girardeau and noninteracting Fermi gases.

II. NONINTERACTING REGIME

We start considering the noninteracting regime in which
the single-particle description is valid. A highly anisotropic
three-dimensional harmonic trap is assumed, so that the
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FIG. 1. Schematic settings: �a� Imprinting of a phase � caused
by wave-packet passage above a weak, narrow potential. �b� Phase
imprinting caused by illumination with a detuned laser of a wave
packet in a harmonic trap.

PHYSICAL REVIEW A 79, 023616 �2009�

1050-2947/2009/79�2�/023616�8� ©2009 The American Physical Society023616-1

http://dx.doi.org/10.1103/PhysRevA.79.023616


transverse degrees of freedom remain frozen and the system
becomes effectively one dimensional, along the axis with
lowest trap frequency �. It is useful to introduce dimension-
less variables, namely, a dimensionless position y=�m�

� x,
where x is the dimensional position and m is the mass of the
single particle, and a dimensionless momentum q=� �

m�k,
where k is the dimensional wave number. The Hamiltonian
describing the system is H=− �2

2m
�2

�x2 + m�2

2 x2 and in the above
dimensionless variables we get H= ��

2 �− �2

�y2 +y2�. The corre-
sponding eigenvalues are En= ��

2 �2n+1� and the eigenstates
are �n�y�= 1

�2nn!��
Hn�y�e−y2/2, where Hn�y� is the nth Hermite

polynomial. The eigenstates are normalized such that
�dy�n�y��m�y�=�n,m.

Initially, the trapped particle is described by the wave
function �0�y� in coordinate space. Then a phase is imprinted
on the right-hand side of the trap, i.e., for y	0. For atoms,
this can be achieved by shining an appropriate detuned laser
pulse for a short time t. The detuned laser acts as a mechani-
cal potential V
�y� on the atom, where V=�2� /4�, � is the
Rabi frequency, and � is the detuning �laser frequency minus
transition frequency�. If the time t is short, the effect is to
imprint a phase �=−Vt /� on the wave function for y	0.
The wave function in coordinate space becomes �0�y�ei�w�y�

with w�y�=
�y�, and in momentum space


0�q� =
1

�2�
�

−�

0

dy�0�y�e−iqy + ei� 1
�2�

�
0

�

dy�0�y�e−iqy .

Each momentum gets an amplitude contribution from two
different terms and we may expect interferences in �
0�q��2
for �	0. In the following, this interference pattern will be
studied and analytical expressions will be found for the
fringe shift, width, and visibility versus the phase � im-
printed. The effects of unsharpness or spatial displacement of
the phase jump are also studied.

A. Reference case

Let us first study the effect of imprinting a phase � on the
ground state of the harmonic trap, n=0. In this case the mo-
mentum probability density becomes

�
0�q��2 =
e−q2

��
	cos
�

2
� + sin
�

2
�erfi
 q

�2
�	2

, �1�

which has a zero at q0, a solution of

erfi
 q0

�2
� = − cot
�

2
� . �2�

Momentum distributions for this reference case after dif-
ferent phase imprintings are displayed in Fig. 2�a�. Note the
optimality of �=� to produce a deep minimum, in fact a
zero, exactly at the peak of the original distribution, q0=0,
and the enhancement at the wings. In the following, we will
concentrate on this central dark notch. The “motion” of q0
with � can be seen in Fig. 2�a�, and in more detail in Fig.
3�a� �solid line�, where q0 is plotted versus �. It shows a
linear behavior in � /2���3� /2 and slight deviations be-
yond that range. The width �q=q+−q− of the central inter-
ference dip is defined as the difference between the momen-
tum q+ of the maximum on the right-hand side of the
minimum and the momentum q− of the maximum on the
left-hand side. Figure 3�b� �solid line� shows the width ver-
sus the phase. Note that the width is always greater than �2�
�value of the thick dotted line�.

Another important quantity is the visibility of the mini-
mum, which we define as
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FIG. 2. Momentum probability density for different phase im-
printings �. �a� Reference case �ground state, perfectly sharp, and
centered imprinting� y0=0, �=0. �b� Effect of shifting the onset of
the imprinting, y0=0.3, �=0. �c� Effect of smoothing the onset of
the imprinting, y0=0, �=0.1. �d� Effect of atom-atom interaction,
solution of the GPE: y0=0, �=0, g=20.
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v =
min���
0�q���2 − �
0�q0��2�

�
0�q+��2 + �
0�q−��2

2
+ �
0�q0��2

. �3�

This visibility is plotted in Fig. 3�c� �solid line�. From the
calculations we can infer that the visibility limits the working
range of the interferometer to � /2�
�3� /2, and is opti-
mal around 
=�.

B. Analytical approximations for the reference case

The goal now is to derive approximate analytical formulas
describing the properties of the central dark notch as a func-

tion of the imprinted phase. From
��
0�q��2

�q =0, we get the ex-
treme points of �
0�q��2 as solutions of

�cos��

2
� + sin��

2
�erfi� q

�2
��

z1

� �q cos��

2
� − sin��

2
��eq2/2� 2

�
− q erfi� q

�2
���

z2

= 0. �4�

Note that if q is a solution of Eq. �4� for �=�+�� then −q
is a solution for �=�−��.

One of the solutions of Eq. �4� fulfilling z1=0 and de-
scribing the momentum of the minimum is approximately
given by

q0 ���

2

� − �

2
¬ q̃0 �5�

�based on a linearization of z1=0 around ��� and q�0�.
This describes a linear displacement of the minimum with �.
Figure 3�a� shows the exact momentum of the minimum q0
�solid line� and q̃0 �thick dotted line� versus �.

Now we shall obtain expressions for the �momentum of
the� left maximum q−, and the right maximum q+. An ap-
proximate solution of z2=0 is

q+ �
�

�2�
¬ q̃+,

which follows from a linearization of z2=0 around ��0 and
q�0. Another approximate solution of z2=0 is

q− � −
2� − �

�2�
¬ q̃−,

obtained by linearizing z2=0 around ��2� and q�0. Thus
we get for the width of the interference dip

�q = q+ − q− � q̃+ − q̃− = �2� ¬ �q˜.

Figure 3�b� compares the numerically calculated exact width

�q �solid line� with �q̃ �thick dotted line�.
We can also find a simple expression for the visibility.

From Eq. �1� and using also the approximations of the mo-
mentum of the two maxima and the minima and retaining
only the first order in � we get

�
0�q−��2 � � + ��� − �� , �
0�q0��2 � 0,

�
0�q+��2 � � − ��� − �� ,

where

� =
e−�/2

��
erfi
��

2
�2

� 0.210,

� =
e−�/2

�3/2 erfi
��

2
�
− 2e�/4 + � + � erfi
��

2
�� � 0.148.

The final result is
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FIG. 3. Momentum interferometry for the ground state n=0. �a�
Momentum of the minimum of the probability density versus the
phase-imprinted �. �b� Width of the minimum versus �. �c� Visibil-
ity of the minimum versus � �see Eq. �3��. Analytical approxima-

tions: thick dotted lines, ṽ, �q̃, q̃0; dotted lines, v̄, �q, q̄0 �Thomas-
Fermi with g=20�. Exact results: Solid line, reference case, v, �q,
q0 with y0=0, �=0, as in Fig. 2�a�; boxes, effect of shifting, v, �q,
q0 with y0=0.3, �=0, as in Fig. 2�b�; triangles, effect of smoothing,
v, �q, q0 with y0=0, �=0.1, as in Fig. 2�c�; circles, effect of inter-
action, v, �q, q0 based on the solution of the GPE with y0=0, �
=0, g=20, as in Fig. 2�d�.
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v � 1 −
�

�
�� − �� ¬ ṽ ,

also shown in Fig. 3�c� �thick dotted line�. It gives a lower
bound for the exact result v �solid line�.

C. Perturbations of the reference case

In this subsection we examine the effect of perturbations
of the reference case. First we want to discuss the effect of
shifting the edge of the phase imprinted region, y0, out of the
center of the trap, i.e., we have w�z�=
�y−y0�. Right after
the phase imprinting, the zeroth eigenstate now becomes
�0�y�ei�w�z�=�0�y�ei�
�y−y0�, and the momentum distribution
becomes

�
0�q��2 =
e−q2

��
	cos
�

2
� + sin
�

2
�erfi
q − iy0

�2
�	2

. �6�

From
��
0�q��2

�q =0, we get the extreme points as solutions of

��

2
q exp
−

1

2
�q2 − y0

2���z�2 = sin
�

2
�Re�zeiqy0� , �7�

where z=cos� �
2 �+sin� �

2 �erfi�
q−iy0

�2
�. Again, if q is a solution of

Eq. �7� for �=�+�� then −q is a solution for �=�−��. In
addition, Eq. �7� does not change if y0 is replaced by −y0, so
the solutions are the same for �y0. If y0�1, Eqs. �6� and �7�
are independent of y0 to first order in y0, and therefore the
approximations in Sec. II B for the case y0=0 still hold. An
example for y0=0.3 is plotted in Fig. 2�b�. The correspond-
ing momentum, width, and visibility of the minima versus �
is also plotted in Fig. 3 �boxes�. The main effect of increas-
ing y0 is to lower the visibility �Fig. 3�c��.

Finally, we want to look at the effect of a more realistic
smooth profile of the imprinted phase, instead of using an
idealized step function. Therefore, we consider now a sig-
moid function

w�y� =
1

2
�1 + tanh�y/��� , �8�

which for �→0 becomes 
�y�. The results for a smoothing
�=0.1 can be seen in Figs. 2�c� and 3 �triangles�. Smoothing
results mainly in a shift of the maximum of the visibility �see
Fig. 3�c��.

D. Momentum interference for excited states

We shall next consider the effect of phase imprinting on
excited states of the harmonic trap with the simplest profile
w�y�=
�y�. The probability amplitude in momentum space
is then given by

�
n�q��2 =
1

2�2nn!��

� 	�
0

�

dyHn�y�e−y2/2��− 1�neiyq + ei�e−iyq�	2

,

which clearly simplifies for n=0 to Eq. �1�.

Let us look for q0 fulfilling �
n�q0��2=0, i.e., for the mo-
mentum of the minimum. Assuming q0�1 such that
�−1�neiyq0 +ei�e−iyq0 ���−1�n+ei��+ iq0��−1�n−ei��y,

�
n�q0��2 �
1

2�2nn!��

� ���− 1�n + ei��An + iq0��− 1�n − ei��Bn�2,

where we have introduced An=�0
�dyHn�y�e−y2/2, and Bn

=�0
�dyyHn�y�e−y2/2. Solving this for �
n�q0��2=0, we get

q0 � i
�− 1�n + ei�

�− 1�n − ei�

An

Bn
. �9�

The cases in which n is even or odd will be examined sepa-
rately.

�a� n even. We are interested in the motion of the zero
�
n�q0��2=0 for ���. From Eq. �9� we get in first order in
�−� that

q0 �
An

Bn

� − �

2
¬ q̃0.

Examples for the exact solution q0 and the approximation q̃0
for n=0,2 can be found in Fig. 4�a�.

�b� n odd. Now we are interested in the motion of the zero
�
n�q0��2=0 versus � for ��0. From Eq. �9� we get in first
order in � that

q0 �
An

Bn

�

2
¬ q̃0.

Examples for the exact solution q0 and the approximation
q̃0 for n=1,3 can be found in Fig. 4�b�.

In addition, Fig. 4�c� shows the value of the ratio
An

Bn
for

odd and even n. Clearly, increasing n makes the interferom-
eter less sensitive to phase variations and n=0 provides the
optimal behavior.

III. MEAN-FIELD REGIME

We shall consider now the role of the interactions within
the mean-field approach. In the mean-field regime, for low
enough temperatures the phase fluctuations can be sup-
pressed �9�. Weakly interacting ultracold gases in one dimen-
sion �1D� are then described by the Gross-Pitaevskii equa-
tion �GPE�.

Assume that an effectively 1D Bose-Einstein condensate
is prepared in the harmonic trap. The condensate wave func-
tion is the ground state of the 1D �stationary� GPE

���x� = −
�2

2m

�2��x�
�x2 +

m�2

2
x2��x� +

�

2
g1D���x��2��x� ,

where � is the chemical potential and g1D is the effective 1D
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coupling parameter related to the three-dimensional scatter-
ing length �10�. We assume that �dx���x��2=1. By introduc-
ing uª2� / ����, gª� m

��g1D, and ��y�ª�4 �

m���� �

m� y� we
can write this equation in dimensionless form,

u��y� = −
�2��y�

�y2 + y2��y� + g���y��2��y� ,

with �dy���y��2=1. The ground state can be numerically
computed by using the imaginary time method �11,12�. For
�=0, it is well known that as the mean-field interaction is
increased, the density profile becomes more uniform, while
the resulting momentum distribution �
�2 is sharply peaked
�13,14�. To study the effect of a small g as a perturbation of

the previous results, we shall imprint a phase � on the
ground-state wave function and calculate the minimum of
the resulting interference pattern in momentum space. An
example with g=20 is shown in Fig. 2�d�. The visibility, the
width, and the momentum of the minimum versus � with g
=20 is shown in Fig. 3 �circles�. The main effect is that the
slope in Fig. 3�b� decreases with increasing atom-atom inter-
action, i.e., the sensitivity of the interferometer with respect
to � decreases with increasing g. A large atom-atom interac-
tion g may also perturb the measurement of the momentum
distribution by time-of-flight techniques. There is, however,
also a positive effect: an increase of g makes the interference
dip sharper and improves the visibility �see Fig. 3�c��.

It is possible to derive analytical approximate formulas
for large g. For g�1 the condensate enters into the Thomas-
Fermi regime �13,14�. The mean-field interaction is then so
large that the kinetic energy can be neglected in the Hamil-
tonian so that the time-independent GPE reads u��y�= �y2

+g���y��2���y�. The Thomas-Fermi wave function is then
given by �TF�y�=��u−y2� /g with u= �3g /4�2/3 whenever
�y��d and zero elsewhere; d=�u is the Thomas-Fermi half-
width.

The probability distribution in momentum space after a
phase imprinting � with a profile w�y�=
�y� is given in this
case by

�
TF�q��2 =
3�

8dq2
J1�qd�cos
�

2
� + H1�qd�sin
�

2
��2

.

�10�

Here, J1�k� is the Bessel function of first order and H1�y� is
the first order Struve function �15�. �
TF�q��2 /d is plotted for
different values of � in Fig. 5. Again there is a minimum for
�=� at q=0, which is shifted if � is changed.

The minima and the maxima of �
TF�q��2 for a fixed � can
be found by looking at the zeros of the derivative, this leads
to the equation

1

qd
�J1�qd�cos��

2
� + H1�qd�sin��

2
��

a1

1

�qd�2��qdJ2�qd�cos��

2
� + �2 + �qdH−2�qd�sin��

2
���

a2

= 0.
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FIG. 4. Momentum interferometry for excited states. ��a� and
�b�� Momentum of minimum versus �. �a� n=0: exact value q0
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Making a1=0 and using a linearization around q�0 and �
��, we arrive at

q �
3�

8d
�� − �� ¬ q̄0,

where d= �3g /4�1/3, which allows one to find d measuring
the notch displacement. Making a2=0 and using a lineariza-
tion around q�0 and ��0, we arrive at

q �
8

3�d
� ¬ q̄+,

and by using a linearization around q�0 and ��2�, we
arrive at

q � −
8

3�d
�2� − �� ¬ q̄−.

An estimate of the width is then �q= q̄+− q̄−= 16
3d . An approxi-

mation for the visibility can also be derived as in Sec. II B,

v � 1 − 0.5�� − �� ¬ v̄ .

The approximate values of the notch momentum, width, and
visibility in the Thomas-Fermi regime are also plotted in Fig.
3 �dotted lines�.

IV. TONKS-GIRARDEAU AND NONINTERACTING
FERMI GASES

At low enough densities, and under tight-transverse con-
finement, ultracold gases enter the Tonks-Girardeau �TG� re-
gime �16�, in which the strength of the effective short-range
interactions becomes so large that the mean-field theory fails
�17�. Fortunately, Bose-Fermi duality offers a powerful and
exact approach, exploiting the similarities between the TG
and spin-polarized noninteracting Fermi gases. The
ground-state wave function of the latter in a harmonic
trap is the familiar Slater determinant �F�y1 , . . . ,yN�
= 1

�N!
detn,k=�0,1�

�N−1,N� �n�yk�, built from the set of single-particle
orthonormal eigenstates ��n�y��. Such an atom Fock state
can be efficiently prepared using the atom culling technique
as described in �18,19�. Note that the wave function �F is
totally antisymmetric and vanishes whenever the positions of
two particles coincide. The TG wave function is obtained
from �F by imposing the correct symmetry under permuta-
tion of particles, i.e., using the Fermi-Bose �FB� mapping
�16�

�TG�y1, . . . ,yN� = �
1�j�k�N

sgn�yk − yj��F�y1, . . . ,yN� .

Clearly, both dual systems share the same density pro-
file �17� �TG/F�y , t�=N���TG/F�y ,y2 , . . . ,yN ; t��2dy2¯dyN

=�n=0
N−1��n�y , t��2, as is the case for any other local correlation

function. However, their momentum distributions

n�q� = �2��−1� dy dy�eiq�y−y����y,y�� �11�

are drastically different. Provided that the reduced single-
particle density matrix �RSPDM� of spin-polarized fermions
is

�F�y,y�� = �
n=0

N−1

�
n
*�y��n�y�� , �12�

the momentum distribution is the sum nF�q�=�n=0
N−1��̃n�q��2

�where �̃n denotes the Fourier transform of �n�. For the TG
gas, an efficient way of computing the RSPDM has been
introduced �20,21�, namely,

�TG�y,y�� = �
l,n=0

N−1

�
l
*�y�Aln�y,y���n�y�� , �13�

where A�y ,y��= �P−1�T det P and the elements of the matrix
P are Pln�y ,y��=�dz �

l
*�z�
n�z�sgn�z−y�sgn�z−y��, which

reduces to Pln=�ln−2�y
y�dz �

l
*�z�
n�z� for y�y� without loss

of generality. The momentum distribution of the TG gas can
thus be obtained as a double Fourier transform.

We consider a phase imprinting with w�y�=
�y�. Under
this phase imprinting, a remarkable difference arises between
the momentum distribution of both dual systems. For a mod-
erate N the visibility of the interference fringes in the TG gas
is reduced �see Fig. 6�a�� but in the fermionic case the pattern
has been washed out completely �see Fig. 6�b��. For larger N
the visibility of the TG dip decreases. It is hence clear that
the observation of such effect in any of these dual systems
would be difficult, and we turn our attention to a closely
related alternative approach.

Recently, a parity-selective evaporation �PSE� method has
been proposed, which allows one to prepare, in principle,
excited states composed exclusively of odd-parity single-
particle eigenstates �22�. This is achieved by shining a blue-
detuned laser at y�0, which removes the even-parity ei-
genstates. For a spin-polarized Fermi gas the excited
many-body wave function becomes �F�y1 , . . . ,yN�
= 1

�N!
detn,k=1

N �2n−1�yk�. The corresponding momentum distri-
bution exhibits a well-defined zero at q=0 for all N which is
stationary, and robust against significant smoothing of the

FIG. 6. Interference in momentum space, N=10, a �=� phase
is imprinted for y	0 �solid line�; the momentum distribution for
�=0 is also depicted �dashed line�. �a� TG gas. �b� Fermi gas. �c�
TG gas after parity-selective evaporation. �d� Fermi gas after parity-
selective evaporation.
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phase-imprinting profile. The TG wave function equally fol-
lows from the Bose-Fermi map for PSE-prepared states.
However, the nTG�q� is qualitatively insensitive to the se-
lected parity of the single-particle states, and lacks any prin-
cipal peak �or dip� potentially useful for momentum-space
interferometry �see Fig. 6�c��. On the other hand, the pattern
nF�q� in the fermionic case is reversed under phase imprint-
ing, turning a zero into a peak in the momentum distribution
�see Fig. 6�d��. Let us consider again a phase imprinting with
the sigmoid profile �8�. In Fig. 7 we have calculated the shift
of the maximum in nF�q� as a function of � for the cases �
=0 �Heaviside function� and �=0.5. The dependence is
found to be linear even in the presence of the large smooth-
ing in the profile �=0.5.

Therefore, between both dual systems the TG gas is pre-
ferred using phase imprinting, whereas in combination with
PSE, the fermionic system is a better candidate.

V. DISCUSSION

The localized phase-imprinting method �4� on trapped
cold atoms has been discussed up to now mostly in connec-
tion with the generation and study of solitons. In this paper
we have instead focused on the characterization of the mo-
mentum distribution right after the phase imprinting.

First, phase imprinting of half the wave packet can be
regarded as a simple way to realize the interferometry in
momentum space that has been previously put forward for
more complex scattering processes between cold atoms and
weak laser barriers �1–3�. Similar to the scattering setting, a
central dark notch appears in the momentum distribution af-
ter phase imprinting, as well as an enhancement of the
wings. An advantage with respect to the scattering method is
that there is no need to make the momentum width of the
incident wave packet small to get the same transmission co-
efficient and therefore the same phase shift for all momenta.
Thus we can make the trap tighter and tighter increasing the
sensitivity.

Furthermore, the characterization of the momentum dis-
tribution is a preliminary step to determine the potential ap-
plicability of momentum interferometry where an unknown
phase should be determined from the momentum shift of the
central dark notch.

We have studied different configurations, regimes, and
perturbations. The momentum dark notch for noninteracting
particles in the ground state provides the most sensitive

meter for the imprinted phase among the different states con-
sidered. In dimensionless units, the momentum of the dark
notch versus the imprinted phase is in this case given by
q̃0=��

2
�−�

2 �see Eq. �5��. In dimensional units we get for the
corresponding velocity

ṽ0 =���

m

�

2
�3/2� − �

�
,

such that we can enhance the sensitivity to phase differences,
in principle, to arbitrarily high values by increasing �. If the
external trap is immediately removed after the phase imprint-
ing, the momentum distribution is essentially frozen and the
velocity ṽ0 can be measured with a standard time-of-flight
technique. Assuming a free time of flight of duration t after
the phase imprinting, the dark notch will move a distance
s̃0= tṽ0. If the spatial resolution is �s, the resolvance r of the
momentum interferometer can be defined for the reference
case as

r ª
�

��
=

t

�s
���

m

�

2
�3/2

,

where �� is the minimum resolvable deviation of the phase
from �. For t=200 ms, m=mass�87Rb�, �=2��2 kHz and
�s=5 �m, we get r�239. The effects of unsharpness or
spatial displacement of the phase jump have also been stud-
ied and the results qualitatively still hold. Many-body effects
in the mean-field regime lead to a mild sensitivity loss but
also to an interesting increase of visibility. In all cases there
is still a linear dependence of the dark notch velocity on the
phase �, i.e., ṽ0��−� such that the phase can be deter-
mined from the velocity of the dark notch.

Other extreme regimes, such as the Tonks-Girardeau gas
of bosons or an ideal Fermi gas diminish the interference,
except, in the latter case, when an auxiliary parity-selection
procedure is applied to retain odd states. A peak is then
formed with linear dependence on the imprinted phase, very
stable with respect to the smoothness of the profile of the
imprinting laser.

Finally, note that even though there are no atom-atom
interactions in the reference case, some of the aspects usually
attributed to the solitons may already be recognized, in par-
ticular, the formation of the dark notch in momentum repre-
sentation and its shift with the value of the phase jump or its
smoothness. Dynamical studies of the state evolution will
provide further comparison with soliton dynamics and will
be dealt with elsewhere.
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FIG. 7. Displacement of the maximum of the momentum distri-
bution as a function of the phase imprinted, for parity-selective
evaporation, and a fermionic cloud with only odd states. The sym-
bols correspond to a smooth phase-imprinting profile with �=1 /2,
whereas for the lines �=0.
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