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From an extensive calculation of static properties of a trapped Fermi superfluid at zero temperature using a
density-functional formulation, we demonstrate a universal behavior of its observables, such as energy, chemi-
cal potential, radius, etc., over the crossover from the BCS limit to unitarity leading to scaling over many
orders of magnitude in fermion number. This scaling allows us to predict the static properties of the system,
with a large number ��105� of fermions, over the crossover with an error of 1%–2%, from the knowledge of
those for a small number ��10� of fermions.
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I. INTRODUCTION

The Pauli principle leads to an effective repulsion in iden-
tical fermions which could dominate the physical interaction
and control the dynamics. The dominance of Pauli repulsion
is responsible for the stability of our hadronic universe.
When this happens the system exhibits universal behavior
practically independent of or weakly dependent on the physi-
cal interaction. One classic example �1� of this is found in
the s-wave quartet nucleon-deuteron system with three spin-
parallel nucleons controlled by Pauli repulsion. The calcu-
lated scattering length for different nucleon-nucleon interac-
tions is essentially 6.3 fm, whereas the doublet s-wave
scattering length �not controlled by Pauli repulsion� for the
same interactions varies from −2 fm to 3 fm �1,2�. This uni-
versality is prominent in the limit of zero Fermi-Fermi inter-
action in the BCS theory of superfluid fermions leading to
universal properties of low-temperature superconductors �3�,
of cold neutron matter and neutron star �4,5�, and of a
trapped Fermi superfluid �6� at zero temperature. This uni-
versality also manifests �7–10� in a trapped Fermi superfluid
at unitarity as the Fermi-Fermi scattering length a goes to
infinity �a→−��. In this limit, though the physical interac-
tion is nonzero, the only interaction scale �scattering length�
disappears and the system acquires universal behavior. This
interaction scale is also absent in the BCS limit �a=−0� with
universal properties. Similar universality is found in other
fermionic systems with large �a� �11�.

The crossover from weak-coupling BCS limit to unitarity
�12� has been a very active area of research �5,7,10,13� after
the experimental realization �14,15� of this crossover in a
trapped dilute Fermi superfluid near a Feshbach resonance.
Using a complete numerical simulation of a density-
functional �DF� formulation �16�, we show that the deviation
from universality of a trapped dilute Fermi superfluid over
the crossover is orderly and the system continues to exhibit
nearly universal behavior possessing useful scaling relations
over many orders of magnitude involving energy, chemical
potential, radius, and number of Fermi atoms �N�. In this
crossover region the Pauli repulsion dominates over the
physical interaction leading to the universal behavior.

In Sec. II we present the density-functional formulation
that we use in this study. In Sec. III we present the numerical
results and establish the universal behavior of a trapped

Fermi superfluid in the BCS-unitarity crossover. Finally, in
Sec. IV we give some concluding remarks.

II. DENSITY-FUNCTIONAL FORMULATION

To study the universality, we use a Galilei-invariant DF
formulation for the crossover of a trapped two-component
Fermi superfluid �17�, equivalent to a hydrodynamical model
with the correct phase-velocity relation �6� v=��� / �2m�,
where v is the superfluid velocity, m the Fermi mass, and �
the phase of the order parameter ��r� at position r, which
satisfies �Eq. �35� of �17�, but with a distinct g�x� consistent
with the known small-x behavior of energy of a uniform
Fermi gas�

�−
�2

8m
�2 + U + ��n,a����r� = �0��r� , �1�

��n,a� =
�2

2m
�3�2n�2/3g�n1/3a� , �2�

�0 =	 dr� �2

8m
����2 + U�2 + ��n,a��2� , �3�

where 
�2�r�dr=N, and

g�x� = 1 +
��1x − �2x2�

�1 − �1x + �2x2�
, �4�

with �1=4� / �3�2�2/3, �2=300, �1=40, �2=�2 / �1−	�,
��n ,a� the bulk chemical potential, �0 the chemical poten-
tial for the trapped system, n=�2 the density of atoms, and
U=m
2r2 /2 the harmonic trap of frequency 
. �Different
parametrizations of g�x� were used in Ref. �18�.� Here we
take 	=0.44 consistent with Monte Carlo calculations �5,13�
and experiments �19� of a uniform Fermi superfluid at uni-
tarity. The parameters �1, �2, �1, and �2 are chosen so that
the model �i� agrees with the fixed-node Monte Carlo
�FNMC� �7� and Green-function Monte Carlo �GFMC� �20�
results for the energy of a trapped superfluid at unitarity �for
N�30� and over the crossover �7,17�, �ii� provides a smooth
interpolation between the energies of a superfluid at the BCS
and unitarity limits �17,21�, and �iii� satisfies the known BCS
limit �22� of the bulk chemical potential ��n ,a� �two lowest-
order terms of Eq. �1� of �23��.
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In Ref. �17� we used the following simple expression for
the function g�x� in place of that given by Eq. �4�:

g�x� = 1 +
�x

1 − �x
, �5�

with �=20� / �3�2�2/3, and �=� / �1−	�. This choice does not
satisfy the known weak interaction BCS limit limx→0 g�x�
→1+4�x / �3�2�2/3 �17,18,23�. Equation �5� was used in Ref.
�17� as a simple model to satisfy the BCS-unitarity crossover
Monte Carlo results �21� for energies of trapped fermions.
The bulk energy �and chemical potential� of a Fermi gas in
the weak-couping BCS limit can be written as an expansion
in the parameter x=n1/3a as discussed in Ref. �23�. Lee and
Yang �22� calculated the coefficients of the series in a spe-
cific model of interacting fermions as quoted in Eq. �1� of
�23�. These coefficients can be related to the coefficients in
an expansion of g�x� in the small x limit. The x-independent
constant in g�x� and the coefficient of the x term �
=4� / �3�2�2/3 in this series are reasonably model indepen-
dent. However, coefficients of x2 will be dependent on the
interaction model. In Ref. �17� we changed the coefficient of
the x term from that proposed in �23�, to simulate the effect
of the �unknown� higher-order terms in the x expansion of
g�x�. The coefficient of the x term can be kept at the Lee-
Yang value 4� / �3�2�2/3 provided we include a x2 term in the
expansion of g�x� and we have done this in Eq. �4�. How-
ever, the coefficient of the present x2 term does not and
should not agree with that of the known expansion quoted in
Eq. �1� of �23�. This is because this coefficient now simulates
the contribution of higher-order terms. Although the analytic
expression g�x� is modified here from that given by Eq. �5�
to �4�, from a numerical �calculational� point of view the
change is negligible as we can see from Fig. 1, where we plot
the two parametrizations of the function g�x� given by Eqs.
�4� and �5�. In Ref. �17�, we used the function g�x� of Eq. �5�
to reproduce some Monte Carlo results �21� for energy of a
trapped-fermion system over the BCS to unitarity crossover.
We have now performed the same calculations with the func-
tion g�x� of Eq. �4�—illustrated below in Fig. 4�b�—and we
verified that the results for energy remain practically un-
changed.

The gradient term in Eq. �1� provides a correction to the
local density approximation �LDA� �24� obtained by setting
the gradient term to zero. LDA is a good approximation for a
large N, when the bulk chemical potential ��n ,a�, a positive
term responsible for Pauli repulsion in the system even for

attractive �negative� a, is very large. The gradient term is
consistent with the hydrodynamic flow of paired fermions of
mass 2m �6,17�. To study the scaling of the solution of Eq.
�1� we note that in the BCS and unitarity limits the bulk
chemical potential ��n ,a� has, respectively, the following
simple forms �5,6,13�: �2�3�2n�2/3 / �2m� and
	�2�3�2n�2/3 / �2m�, which shows the scaling ��n ,a��n2/3 in
both limits. In these limits the energy functional is given by
�6�

E =	 dr� �2

8m
����2 + U�2 +

3�2�

20m
�3�2�2/3�10/3� , �6�

��E�
 + �Epot
 + �EFermi
 , �7�

where �=1 in the BCS limit and �=	=0.44 at unitarity
�5,13�, and �E�
, �Epot
, and �EFermi
 are, respectively, the
expectation values of the three terms in Eq. �6�. This “ana-
lytic” dependence of E on � leads to a simple virial theorem,
postulated and studied experimentally in �25�, connecting
�E�
, �Epot
, and �EFermi
 at the BCS and unitarity limits. For
the exact �, energy E is a minimum. To derive the virial
theorem, we take the Cartesian system r��x ,y ,z�, and the
norm-preserving scaling transformation ��x ,y ,z�
→�
��
x ,y ,z�. The condition of minimum energy is
�dE /d
�
=1=0. The 
-dependent part of energy now becomes
E
=
2�E�

x 
+
−2�Epot
x 
+
2/3�EFermi
, where the suffix x de-

notes x component. The minimization condition yields
�Epot

x 
= �E�
x 
+ �EFermi
 /3. By summing over three compo-

nents, we have the virial theorem �Epot
= �E�
+ �EFermi
, or
equivalently, E=2�Epot
 at the BCS and unitarity limits. The
deviation in percentage from the virial theorem in the cross-
over can be estimated by the percentage defect function �
=100�E−2�Epot
� /E.

In the LDA one has the following analytic solutions for
the energy, chemical potential, and mean-square radius of the
trapped system �24�: E / ��
�= �3N�4/3�� /4, �0 / ��
�
= �3N�4/3�� /3, �r2
 / �� /m
�= �3�4/3N1/3�� /4. The absence of
the parameter a in ��n ,a� of Eq. �2� in the BCS and unitarity
limits leads to the following properties: �i� the scaling
��n ,a��n2/3 for the uniform Fermi superfluid, �ii� scaling
E / ��
�, �0 / ��
��N4/3, and �iii� the virial theorem, E
=2�Epot
 for the trapped Fermi superfluid. These universal
properties lead to predictability of the Fermi superfluid in the
BCS and unitarity limits, e.g., predicting the energy for a
large number of fermions from the knowledge of that for a
small number of fermions obtained by accurate “exact” cal-
culation. This is important as exact calculations for large
systems are very difficult, if not impossible.

To extend the above predictability over the crossover,
where analytical �LDA� results are not available, we study
the deviation from the universal properties of a Fermi super-
fluid in the crossover region. We find that the deviation is
orderly, which allows us to restore a universal and predict-
able behavior of the trapped Fermi superfluid, so that one can
predict the properties of a large system from a knowledge of
those for a small system.
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FIG. 1. �Color online� The function g�x� vs x as defined by Eqs.
�4� and �5�.
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III. NUMERICAL RESULTS

We solve Eq. �1� by transforming it to time-dependent
form by replacing �0 by a time derivative. We express en-
ergy variables in units of �
, length in �� / �m
�, and time in

−1. The resultant equation is then discretized by the semi-
implicit Crank-Nicholson algorithm using a typical space
step 0.04 and time step 0.001 and then solved by imaginary
time propagation. The chemical potential �0 is then calcu-
lated via Eq. �3�, energy in the BCS and unitarity limits via
Eq. �6�, and the energy in the crossover region via a numeri-
cally constructed energy functional. In Table I we display
energy per particle in units of EF= �3N�1/3�
 �the Fermi en-
ergy of an ideal Fermi gas at the trap center� or
E / ��
�3N�4/3� along the crossover for different N and a. In
Table II we report the respective chemical potentials
�0 / ��
�3N�4/3�.

To understand the universal nature of E and �0 of Tables
I and II for different N, we study the nonlinear input ��n ,a�
to Eq. �1�. In Fig. 2�a� we plot 4�2n��n ,a� / �h2n2/3� vs
�a�n1/3 for a�0. In the BCS ��a�n1/3→0� and unitarity
��a�n1/3→�� limits one has the perfect scaling, ��n ,a�
�n2/3, with deviation from this behavior in the crossover
region. Next, to study the behavior of E and �0 of the
trapped Fermi superfluid, we plot in Fig. 2�b� the numeri-
cally calculated E /N4/3 and �0 /N4/3 vs N for a=−0, −0.5,
and −� and the FNMC �7,9� and GFMC �20� results. Perfect
scalings, �0, E�N4/3, are observed for large N in the BCS
and unitarity limits, with deviation in the crossover region
and for small N. A careful analysis of the �0, E data of Fig.
2�b� for small N reveals in the crossover region the average
scalings �E /N2/3−0.37��N2/3 and ��0 /N2/3−0.27��N2/3. If
these scalings were really perfect then plots of �E /N2/3

−0.37� /N2/3 or ��0 /N2/3−0.27� /N2/3 vs �a� for a fixed N
would lead to universal curves independent of N.

To quantify the deviation of the Fermi superfluid in the
crossover region from universality, we study the deviation of
our result for the trapped Fermi superfluid from the virial
theorem, E=2�Epot
. For this purpose we plot the function
�=100�E−2�Epot
� /E vs �a� for different N in Fig. 3�a�. The
shift of the curves with N clearly shows that the results are
dependent on a and N. We find that the maximum deviation
from the virial theorem in the crossover region is quite small
and is about 4%. A careful examination of Fig. 3�a� shows
that this dependence on �a� is linear in logarithmic scale and
can be included by plotting � vs ���, �=N1/6a, as can be seen
from Fig. 3�b�. In Fig. 3�b� we find that all curves for � have
collapsed essentially on a single curve. However, the curve
for N=10 is a bit different from others, which confirms that
there is a deviation from universality for smaller N. This
���= �N1/6a� dependence of properties of a trapped Fermi su-
perfluid is quite universal as we see in the following.

Now we study the universality in E and �0 of the trapped
Fermi superfluid obtained from a solution of Eq. �1�. We plot
the function ���E�N ,a� /N2/3−0.37� /N2/3 vs �a� for different
N in Fig. 4�a�. �We recall that the universal nature of the
function � was obtained from an analysis of results in Fig.
2�b��. We find that as in Fig. 3�a� the results for different N
are distinct. If the system were really dominated by univer-
sality, a plot of the scaled quantities ���E�N ,�� /N2/3

−0.37� /N2/3 vs ��� would lead to universal curves. This is
indeed found in Fig. 4�b�, where we also included the FNMC
results �7� for small N=4,8. For small N there is some de-
viation from universality which disappears for N�10. We
note that in Fig. 4�b� the N=30 and in Fig. 2�b� the large-N
FNMC and GFMC data lie on the universal curves. These

TABLE I. Dimensionless energies E / ��
�3N�4/3� of a trapped Fermi superfluid along the crossover. The
last two columns, �4� and �10�, give the predicted energies for N=105 employing scaling �8� using the
energies for N�=4 and 10, respectively.

a\N 10 102 104 105 105�4� 105�10�

−0.001 0.2656 0.2539 0.2501 0.2499 0.2428 0.2470

−0.01 0.2652 0.2531 0.2478 0.2459 0.2393 0.2434

−0.1 0.2550 0.2364 0.2146 0.2046 0.2027 0.2049

−1 0.2079 0.1869 0.1740 0.1714 0.1731 0.1740

−10 0.1897 0.1731 0.1670 0.1665 0.1686 0.1693

−100 0.1875 0.1714 0.1662 0.1659 0.1682 0.1688

TABLE II. Same as Table I for the chemical potential �0.

a\N 10 102 104 105 105�4� 105�10�

−0.001 0.3449 0.3361 0.3333 0.3331 0.3284 0.3312

−0.01 0.3443 0.3351 0.3304 0.3281 0.3237 0.3263

−0.1 0.3310 0.3139 0.2880 0.2749 0.2743 0.2753

−1 0.2670 0.2474 0.2326 0.2290 0.2315 0.2314

−10 0.2409 0.2277 0.2225 0.2219 0.2249 0.2246

−100 0.2376 0.2254 0.2215 0.2212 0.2242 0.2241
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universal curves yield the simple formula for the energy of a
large system with N atoms in terms of that of a small system
with N� atoms �N�N��,

E�N,�� = N4/3E�N�,��/N�2/3 − �

N�2/3 , �8�

with �=0.37, and where we have neglected the small con-
stant 0.37 compared to the large quantity E�N ,�� /N2/3.
When N and N� are both large, formula �8� becomes
E�N ,��=E�N� ,���N /N��4/3. We note that, in Eq. �8�, ener-
gies are to be considered for the same � and not a. We
indeed calculated the energies for N=105 atoms using the
data for N�=4 and 10. The predictions so obtained for N�
=4,10, listed Table I, compare well with the calculated re-

sults within about 3% and 2% errors, respectively. In Fig.
4�c� we plotted scaled chemical potentials vs ��� for N=10 to
106 and find that they all lie on the same universal curve. In
this case also a prediction of chemical potential for large N
using the same for a small N� can be made through the
scaling formula �8� but now with �=0.27 as obtained from
an analysis of Fig. 2�b�. The predicted �0 for N=105 using
the data for N�=4 and 10, listed in Table II, compare well
with the calculated results within an error of less than 1.5%.

Because of the universal behavior due to the dominance
of Pauli repulsion, other observables of a Fermi superfluid
are also correlated with energy and atom number. For ex-
ample, the root-mean-square radius �r
 has the scaling �r

�N1/6 in BCS and unitarity limits. In Fig. 5 we plot �r
 /N1/6

vs N for different a. Again there is a slight violation of this
scaling for small N and in the crossover region, which could
be remedied by a fine-tuning of the type �8�. Nevertheless,
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FIG. 2. �Color online� �a� Dimensionless bulk chemical poten-
tial 4�2m��n ,a� / �h2n2/3� of a uniform Fermi gas vs �a�n1/3 for
a�0. �b� Chemical potential and energy �0�N ,a� /N4/3 and
E�N ,a� /N4/3 of a trapped Fermi gas vs N for a=−0, −0.5, −�. The
energies of FNMC �7,9� and GFMC �20� calculations at unitarity
are also shown. �Energies and scattering lengths are expressed in
oscillator units.�
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FIG. 3. �Color online� �a� The plot of �=100�E�N ,a�
−2�Epot
� /E�N ,a� for different N vs �a�; and �b� �=100�E�N ,��
−2�Epot
� /E�N ,�� vs ���, ��N1/6a. Scattering lengths are ex-
pressed in oscillator units.
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this clearly shows that the radius of a large trapped Fermi
superfluid is predictable from the knowledge of radius of a
small system not only in the BCS and unitarity limits but
also along the crossover. In the case of nuclei, where Pauli
repulsion plays an important role, correlations exist among
binding energy, radius, and the number of nucleons �26�.

IV. CONCLUSION

In conclusion, from an extensive numerical study of the
static properties of a trapped two-component Fermi super-
fluid using a Galilei-invariant DF formulation �17�, equiva-
lent to a generalized hydrodynamic formulation with the cor-
rect phase-velocity relation �6�, we establish that, because of
the dominance of the Pauli repulsion, the trapped Fermi su-
perfluid has a universal behavior not only in the BCS and
unitarity limits but also in the crossover region. This allows
for a prediction of the static properties �energy, chemical
potential, rms radius, etc.� of a large Fermi superfluid in the

crossover region from a knowledge of the same of a small
system through a scaling relation, cf. Eq. �8�. The thus pre-
dicted energy and chemical potential of a system with 105

atoms from a knowledge of the same with 4 �10� atoms is
found to have an error of less than 3% �2%�. Actually, for
small systems one needs to introduce finite-size effects, such
as, higher-order gradient corrections and shell effects. The
2–3% discrepancy quantifies the contribution of such effects.
Although we used a DF formulation in the present study, due
to the dominance of Pauli repulsion and existence of robust
scalings, we do not believe our conclusion to be so peculiar
as to have no general validity.
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