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We develop a method for executing robust and selective transfer of populations between a single level and
preselected superpositions of energy eigenstates. Viewed in the frequency domain, our method amounts to
executing a series of simultaneous adiabatic passages into each component of the target superposition state.
Viewed in the time domain, the method works by accumulating the wave function of the target wave packet as
it revisits the transition region, in what amounts to an extension of the piecewise adiabatic passage technique
�E. A. Shapiro et al., Phys. Rev. Lett. 99, 033002 �2007�� to the multistate regime. The viability of the method
is verified by performing numerical tests for the Na2 molecule.

DOI: 10.1103/PhysRevA.79.023422 PACS number�s�: 32.80.Qk, 33.80.�b, 42.50.Hz

I. INTRODUCTION

The availability of robust and selective methods of ex-
ecuting population transfers in multilevel quantum systems is
essential for a variety of fields such as precision spectros-
copy �1–5�, quantum computing �6–12�, control of molecular
dynamics and chemical reactions �13–15�, production and
control of cold molecules �16–19�, biophotonics �20�, and
nanoscience �21,22�. In this paper we propose a method for
transferring populations from a single energy eigenstate into
a selected superposition of states �wave packet� using shaped
broadband laser pulses. This simple method combines the
robustness of adiabatic population transfer �23–25� with the
flexibility of femtosecond pulse shaping techniques
�13,14,26,27�.

Our method is an integration of a number of earlier stud-
ies. Viewed in the frequency domain, it is an application of
coherently controlled adiabatic passage �CCAP� �22,28�,
which in itself was built as an extension of the three-state
stimulated Raman adiabatic passage �STIRAP� �25,29,30�,
and the adiabatic transfer between field-dressed states
�31–36� methods. The CCAP method presents a complete
solution to the nondegenerate quantum control problem, i.e.,
the execution of a complete population transfer between su-
perpositions �wave packets� of nondegenerate energy eigen-
states. The present method is different from the previous pro-
posals of CCAP into a wave packet in that it is based on a
simple scheme of piecewise chirping of a single broadband
laser pulse rather than employing two pulse trains with mu-
tually locked phase.

The proposed method works for any target spectrum that
is nondegenerate and sufficiently sparse. Represented in the
time domain, it acquires a clear interpretation if the target
spectrum is either harmonic, weakly anharmonic, or simply a
two-level one, i.e., if the target wave packet has a pro-
nounced oscillation period. In such a case our method works

as an extension of piecewise adiabatic passage �PAP�
�17,37,38� to the case of a target superposition of states. The
driving field is given by a train of mutually coherent pulses
separated by the oscillation period of the target wave packet.
Keeping the optical carrier phase of the pulses constant
throughout the entire train of pulses results in the piecewise
execution of periodic �Rabi� oscillations between the initial
and the target states. The introduction of a “piecewise chirp,”
expressed as a pulse-to-pulse variation in the optical phase,
is what eliminates the oscillations and renders adiabatic ro-
bustness to the population transfer.

Selectivity is obtained by tailoring the temporal and spec-
tral profiles of the train of pulses to the attributes of the target
wave packet dynamics �1,39–41�. Compatibility between the
pulse train attributes and the target wave packet dynamics
has also been noted in brute-force optimization studies
�15,42,43� aimed at either maximizing population transfer
into the target state �44–46� or stabilizing such transfer
against wave packet spreading and decoherence �47�. Some
possible mechanisms of the wave packet stabilization by a
pulse train are discussed in Refs. �47–51�.

The time profile of the field in our solution is reminiscent
of the “multi-RAP” pulse sequences of Ref. �36�. As dis-
cussed below, the difference between the two solutions is
manifest when the target wave packet consists of more than
two eigenstates. Our method is also related to the coherent
accumulation of transition amplitudes driven by a train of
laser pulses �1,4,52–57�, but the robustness is a unique prop-
erty of PAP.

This paper is organized as follows. In Sec. II, we present
the theory in the frequency space and illustrate it via numeri-
cal studies of population transfer in sodium dimers. In Sec.
III, we describe the population transfer in the time domain
and connect the two physical points of view. In Sec. IV, we
establish numerically the accuracy of the method and its sen-
sitivity to the pulse parameters. A discussion is provided in
Sec. V.
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II. MULTISTATE ADIABATIC CHIRPING—FREQUENCY
DOMAIN POINT OF VIEW

In this section we extend the CCAP �22,28� method of
using a multimode pulse to execute wave packet adiabatic
passage via an intermediate state to the chirped multimode
pulse case. As in Refs. �22,28�, we consider a quantum sys-
tem, initially in the ground state �0�, coupled by a laser field
��t�, made up of N discrete modes, of frequencies �n, to a
manifold composed of N excited states. Contrary to Refs.
�22,28� we allow the mode frequencies to slowly vary with
time, hence, we denote them as �n�t�.

The material Hamiltonian is

Ĥ = ĤM + �̂��t� = ĤM + 2f�t��̂�
n=1

N

�n cos��n�t� + �n� ,

�1�

where ĤM is the field-free Hamiltonian, and 2f�t��n and �n
are the mode amplitudes and phases, respectively. �̂ is the
dipole moment operator for the transition between the
ground state and the manifold of excited states. In the fore-
going numerical examples we assume that the target mani-
fold is composed of vibrational eigenstates on an excited
electronic state of a molecule. In this case the matrix ele-
ments of �̂ vary according to the Franck-Condon overlaps of
the nuclear parts of the corresponding vibrational wave func-

tions. We assume that each mode frequency �n�t�=�̇n�t� is
detuned by a small amount �n�t��En−E0−�n�t� with re-
spect to one of the excited levels �denoted n�, where E0 and
En are the field-free energies of the states �0� and �n�, respec-
tively,

�E0 − ĤM��0� = �En − ĤM��n� = 0. �2�

The material wave function expressed in a.u. ��=1� is ex-
panded as

�	�t�� = b0�t�e−iE0t�0� + �
n=1

N

bn�t�e−i�E0t+�n�t���n� . �3�

It is instructive to study the dynamics arising from the appli-
cation of the rotating wave approximation �RWA�
�13,14,24,25�. To do so we first average the nonstationary
Schrödinger equation over time scales of the order of 1 /�n,
resulting in

iḃ0�t� = f�t��
n=1

N

bn�t��0n�
l=1

N

�le
i���l−�n�t+�l�,

iḃn�t� = �n�t�bn�t� + f�t�b0�t��n0�
l=1

N

�le
i���n−�l�t−�l�. �4�

We also assume that each transition is driven by only one of
the field modes—the mode with the smallest �n�t� detuning.
Denoting by 
n�t�� f�t��n�n0e−i�n the �complex� Rabi fre-
quencies, and by b�t�= (b0�t� ,b1�t�¯bn�t�)T, the �column�
vector of expansion coefficients, with the superscript T

marking the “transpose” operation, we can now write the
Schrödinger equation in matrix form as

iḃ = Hb , �5�

where

H�t� =	
0 
1

��t� ¯ 
N
� �t�


1�t� �1�t� ¯ 0

] ] � ]


N�t� 0 ¯ �N�t�

 . �6�

While the first part of the RWA �Eq. �4�� amounts to neglect-
ing the terms which oscillate at optical frequencies, the sec-
ond part �Eqs. �5� and �6�� is equivalent to averaging the
Schrödinger equation over time scales of the order of
1 / ��n−�m�, resulting in loss of information about time
scales shorter than a vibrational period. Nevertheless, the
time-averaged Schrödinger Eq. �5� provides an accurate de-
scription of the wave function at the end of the process, after
many vibrational periods. We postpone the study of the dy-
namics on a finer time scale to the following sections.

We now tune the chirping of the mode frequencies such
that all the detunings are equal to one another, i.e., �n�t�
=��t�. This allows us to easily diagonalize H at any given
moment of time, obtaining N−1 degenerate “dark” eigen-
states whose �quasi-� energies are equal to ��t�, and two
“bright” eigenstates whose eigenvalues are

���t� = ��t�/2 � ��2�t�/4 + 
eff
2 �t��1/2, �7�

where 
eff
2 �t�=�n=1

N �
n�t��2. The eigenvectors corresponding
to the bright solutions are

b� = �cos ��bi + �sin ��b f , �8�

where

bi = �1,0, . . . ,0�T, b f = �0,
1, . . . ,
N�T/
eff, �9�

with tan �=�� /
eff. Note that each 
n, as well as 
eff,
depends on time via the common factor f�t�. Therefore the
definition of b f in Eq. �9� is time independent. Further,
tan + tan −=−1, and �−�0, hence,

sin − = − cos +,

cos − = sin +,

− = + −
�

2
. �10�

If at some instant ���t���
eff�t�, then one of the states rep-
resented by the b+ or b− vector coincides with the �i� state,
represented by the bi vector, and the other—by the �f� state,
represented by the b f vector.

Similar to the textbook case of adiabatic following in a
two-level system �24�, when ��t� is made to vary slowly
enough, the system makes a smooth transition from state �i�
to state �f�. We show in the Appendix that there are no tran-
sitions between the �� � bright eigenstates and the dark
states. As a result, the dark states remain unpopulated at all
times. Hence it is possible to make the adiabatic population
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transfer complete, provided that the bandwidth of the pulse
covers the whole range of the target energies En.

In order to create the required field, one can start with a
single broadband laser pulse and spectrally shape it in the
way illustrated in Fig. 1�a�. Here, the field is frequency
chirped in the neighborhood of each resonance frequency
�n

res= �En−E0�, according to

���� = �nF�� − �n
res�ei���� − �n

res�2/2ei��t0−�n�. �11�

The real amplitude envelope F��� reaches its maximum of 1
at �=0 and serves to suppress the pulse spectrum between
the resonance regions. The requirements for this suppression
will be discussed in Sec. IV. For Gaussian profile of the field
envelope near each �n

res,

F�� − �n
res� = exp�− �� − �n

res�2/2��
2 � . �12�

The above form corresponds to the field parameters of Eq.
�1� assuming the form

�n�t� = �n
res�t − t0� +

�t

2
�t − t0�2 + �c,

f�t� =
�w�2��1/2

�1 + ��
2 ��

4 �1/4exp�− �t − t0�2/2�t
2� ,

�c = − arg�1 − i����
2 �/2,

�t
2 = �1 + ��

2 ��
4 �/��

2 ,

�t = ����
4 /�1 + ��

2 ��
4 � . �13�

In the adiabatic transfer into a preselected superposition
state, the real amplitudes �n=���n

res� and phases �n are cho-
sen such that the vector b f given by Eq. �9� represents the �f�
target state. The direct correspondence between Eqs. �7� and
�8� and the equations describing adiabatic following in a
two-level system driven by a single-component chirped pulse
�24� suggests that the variation of each chirped resonant fre-
quency must exceed 
eff.

Figure 1 shows a simulation of the adiabatic transfer be-
tween the v=0 vibrational state of the Na2�X 1�g

+� ground
electronic state, and a vibrational wave packet composed of
the v=7, . . . ,12 states of the A 1�u

+ state �58�. In order to
assess the fidelity of the transfer we have also computed the
population of neighboring X 1�g

+ and A 1�u
+ vibrational lev-

els. Panel �a� shows a field spectrum obtained by frequency
modulating a sin2 �t-type pulse. The pulse duration is 55 fs
�full width at half maximum in the intensity profile� and its
central wavelength is 638 nm, with chirp parameter ��=2
�105 fs2. As discussed in detail in Sec. III, the piecewise
chirped pulse of panel �a� corresponds in the time domain to
the train of pulses shown in Fig. 1�b�.

In Figs. 1�c�–1�e� we display the dynamics of the popula-
tion transfer. As demonstrated in Fig. 1�e�, the populations of
the target wave packet energy components practically coin-
cide with the predictions of Eq. �9�. In Fig. 1�f� we demon-
strate the selectivity of the method by changing the ampli-
tudes �n and the phases �n characterizing the field
components. In each case, the distribution of the final popu-
lations in the target manifold remains close to that predicted
by Eq. �9�, though the component phases could at times de-
viate from the target ones, somewhat lowering the magnitude
of the overlap with the target wave packet to 0.8–0.95.
This point is discussed further in Sec. IV.

The mechanism of the population transfer becomes trans-
parent if the laser field is represented by a phase-space �Hu-
simi� spectrogram. Figure 2�a� shows the spectrogram of the
field of Figs. 1�a� and 1�b�. Each point displays the absolute
value of the overlap integral of the field with a Gaussian
probe pulse

��p��t� = exp�−
1

2
� t − t0

�p�

�t
�p� �2

− i��p�t + i���p� − �0�t0
�p��

�14�

of long duration ��t
�p�=1000 fs�. The frequency and time

axes correspond to ��p� and t0
�p�, respectively. It is clear that

the field drives a number of adiabatic passages simulta-
neously: An adiabatic transition into nth excited level may
occur when the instantaneous frequency component �n
crosses the nth resonance at �n

res=En−E0.
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FIG. 1. �Color online� Piecewise adiabatic following in Na2. �a�
Amplitude spectrum �solid� and frequency-dependent phase �dashed
blue� of the driving field. �b� The driving field as a function of time.
��c� and �d�� Populations of various vibrational levels of the ground
and excited electronic states. �e� Final populations of A 1�u

+ states
predicted by the theory �full circles, red�, and obtained in the nu-
merical simulation �empty squares, blue�. �f� Same as �e� for the
case when the spectral region corresponding to the transition into
one of the excited levels is blocked.
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The mechanism displayed here is quite different from that
of the “molecular � pulse” �59–63�, where a transition into
the manifold of excited states is driven by a single
frequency-chirped laser field. While in the scheme proposed
here all the transitions take place simultaneously, in the case
of a molecular � pulse the energy of the initial state shifted
by the energy of one photon, �E0+��t��, crosses all the target
energies one by one. As a result, the system passes through a
chain of avoided crossings. This is illustrated in Fig. 2�b�
which shows the spectrogram ��t

�p�=200 fs� of the molecu-
lar � pulse obtained from the original unshaped field, used in
our numerical examples, by applying a single frequency
chirp of ��=2�104 fs2. Although a molecular � pulse can
transfer all the initial population into the excited manifold in
a robust way, the relative amplitudes of the states in the
resulting wave packet are not controllable unless the target
manifold consists of only two states. In the latter case, em-
ploying either up- or down-frequency chirp allows popula-
tion transfer in either the lower or the higher eigenstate of the
target manifold �35�. We refer the reader to Ref. �63� for a
detailed analysis of the population transfer by molecular �
pulses.

The question of selectivity also arises when comparing
our method to the family of Stark-assisted adiabatic transfers
�64�, and the transfer via multiple successive rapid adiabatic
passages �36�. While in both examples the possibility of ro-
bust and selective transfer into either one of the two target
states has been found, it is not clear whether these methods
can enable population transfer into a selected superposition
of target states, especially if N�2.

Since our method relies on single-photon transitions, only
dipole-coupled target states are accessible. This implies us-
ing the sets of angular momentum eigenstates different from
those accessible by the STIRAP-based CCAP proposals
�18,28� which rely on resonant Raman transitions form the
initial to the target manifold.

III. MULTISTATE ADIABATIC CHIRPING—TEMPORAL
POINT OF VIEW

In order to understand the dynamics of the population
transfer on a finer time scale, here we develop the time-

domain description of the process. Figure 1�b� shows the
time-dependent driving field of the above example. The time
analog of Eq. �11� is

��t� = Ref�t�exp�i�0�t − t0� + i�t�t − t0�2/2 + i�c�g1�t� ,

�15�

where �0=�n0

res is chosen to coincide with the frequency of a
transition into one of the central states �n0� of the excited
wave packet, and

g1�t� = 2�
n=1

N

�n exp�i�En − En0
��t − t0� + i�n� . �16�

Equation �16� is similar to an expression describing wave
function dynamics of a fictitious wave packet in the target
manifold, with the amplitudes of eigenstates given by
�n exp�i�n�. If the target spectrum and the distribution of the
complex field amplitudes �n exp�i�n� are both smooth, then
the interference between the different frequency components
of the field results in a train of short pulses separated by the
vibrational period Tvib=dEn /dn of the target wave packet.
The field pattern is restored whenever �En−En0

�t�2�m for
all n and any integer m. Such a train of short pulses is seen in
Fig. 1�b�. Further, if the target spectrum is harmonic, then the
field spectrum is a frequency comb with equally spaced
teeth, and the pulse shape is preserved within the train. If the
spectrum is anharmonic, then the shape evolves from pulse
to pulse within the train, reflecting the spreading of the target
wave packet as it revisits the transition region.

When the target spectrum is weakly anharmonic, the pulse
train of Eq. �15� is composed of pulses which differ from one
another in four essential ways: First, the adjacent pulses may
have different overall power. Second, their central frequen-
cies differ by �tTvib. Third, and most important, the lth pulse
has an extra overall phase equal to �t�lTvib�2 /2, where l=0
corresponds to the middle of the pulse train; and fourth, ow-
ing to the anharmonicity, the condition �En−En0

�t=2�m is
fulfilled for different n at slightly different times, leading to
change in the pulse duration from pulse to pulse.

Figure 2�c� shows the spectrogram of the field of Figs.
1�a� and 1�b� using short ��t

�p�=50 fs� probe pulses, whose
exact form is given by Eq. �14�. Naturally, the representation
in terms of short probe pulses gains temporal resolution but
loses frequency resolution. The optical phase of the short
pulses within the train varies quadratically with the pulse
number. This is displayed in Fig. 2�c� by the variation in
color along the central-frequency section, from orange
�phase equal to zero� in the middle of the train, to purple and
blue, and finally to green �phase �3� /2�, at the very tails.
Note that the pulse-to-pulse drift of the central frequency is
not noticeable on the scale of the figure.

The field in the above example is similar to that intro-
duced in Ref. �38� for the piecewise adiabatic passage in a
two-level system. This is readily seen both in the frequency-
domain representation �by comparing Fig. 1�a� with Fig. 3�b�
of Ref. �38��, and in the time-domain representation. The
almost-periodic pulse train only drives transitions between
the �i� and �f� states. The field, tailored to fit the periodic
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FIG. 2. �Color online� Field spectrograms. �a� Absolute values
of the overlap integral of the pulse train field with probe Gaussian
pulses. The red horizontal lines show the resonance frequencies
�n

res. �b� Spectrogram of a conventional frequency-chirped pulse. �c�
Expansion of the pulse train field in short probe pulses. The ampli-
tude of each projection on a probe pulse is shown by brightness, its
phase by color. The white dotted line marks the spectral center of
the pulse.
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evolution of the �f� state, peaks every time this state revisits
the Franck-Condon region. At these instants a superposition
state ��� can be represented by the unit Bloch vector of Fig.
3, defined by the  and � angles,

��� = cos�/2��i� + sin�/2�ei��f� . �17�

The present 1+many-level system differs from the two-
level system in a fundamental way, since here the relative
phases of the components of the target wave packet change
all the time. There are points of similarity as well, because
here too, the process can be depicted, as shown in Fig. 3, by
the discontinuous motion of a unit vector on a �“Bloch”�
sphere, with the polar angle =0 representing �i� and =�
representing �f�. The effect of each pulse �of short duration ��
is now viewed as a rotation P̂�R��P� of the Bloch vector by
an angle �P=��
eff�t�dt about the y axis. The change in the
carrier phase between consecutive pulses, equal to �F, can be

represented by an additional rotation about the z axis, F̂
�Rz��F�. Thus, the overall evolution due to the pulse train

of Eq. �15� is represented by a sequence Û= ¯ T̂F̂P̂T̂F̂P̂¯.

The operator T̂, which corresponds to the free evolution of
the wave packet between pulses, keeps the Bloch vector ori-
entation at the beginning of each short pulse in the train
equal to that at the end of the previous one.

The product F̂P̂ of two rotations can be viewed as an
overall rotation by an angle �0 about an instantaneous axis
defined by the �0 ,�0� angles, given to lowest-order expan-
sion in �P, �F as

�0 = ���P
2 + �F

2�/2�1/2, �0 = � �/2 − �F/2,

tan 0 = � �P/�F. �18�

By maintaining the same value of �F and �P throughout the
pulse train we can induce piecewise rotations of the Bloch
vector about the “adiabatic” trajectory traced out by �0 ,�0�.
As shown in Fig. 3, by slowly varying the values of �P ,�F
we can make the Bloch vector follow this adiabatic trajec-
tory. Such piecewise following can be realized provided �i�

the y and z rotations are small �i.e., each pulse should induce
an angular change much smaller than � and each increment
in the carrier phase should be small too�; �ii� �0 ,�0� should
not move much from pulse to pulse, i.e.,

�0 � ���P
2 + �F

2�/2�1/2. �19�

In the pulse train of Eq. �15�, initially �P� ��F� :
eff is
small, while the pulse-to-pulse phase change is significant.
As �P increases and ��F� decreases, the states originating in
�i� and �f� move toward the equator of the Bloch sphere.
They cross the equator as soon as �F changes sign, and fi-
nally interchange with each other. Depicted in the original
nonrotated frame, the trajectory of the Bloch vector is a
piecewise spiral, similar to that shown in Fig. 3.

IV. NUMERICAL STUDIES

Figure 4 shows the population transferred into the target
manifold, and the projection of the final state onto the target
wave packet comprised of vibrational eigenstates of Na2 in
the A 1�u

+ electronic state as a function of the chirp �� and
the field strength �0 of the original 55-fs pulse used in the
computations presented in Fig. 1. The plots reveal several
interesting features. First, for both positive and negative
chirps exceeding in magnitude ����200 000 fs2, the trans-
fer is almost complete and quite robust with respect to
changing �� and �0. For a large range of pulse parameters
the transfer probability is 95%, and the projection of the
final state onto the target is 0.85–0.9.

The transfer probability landscape at small values of ��

corresponds to the piecewise Rabi oscillations between the
initial state and the excited wave packet. A close look at the
population dynamics in this region of parameter space shows
that the first few pulses in the train manage to completely
empty state �0�, while the following pulses repopulate it. At
stronger fields, state �0� is depopulated and repopulated sev-
eral times during the pulse sequence. Populations of the
nearby vibrational eigenstates of the X 1�g

+ manifold remain
negligible at all times, with the ratios of populations of dif-
ferent A 1�u

+ states remaining close to the target values.
We also note that though the parameter-space region

where robust population transfer occurs includes pulse areas
of �, the optimal pulses have areas larger than �. The
pulse area cannot be increased beyond a certain value be-
cause when individual pulses within the pulse train are able

FIG. 3. �Color online� A calculated sample trajectory of the
Bloch vector �thick gray arrow� during the piecewise AP process
implemented with a train of 20 ultrashort pulses �38�.
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FIG. 4. �Color online� Population transferred into the target
manifold �a�, and the projection on the target wave packet �b� as a
function of the chirp �� and field strength �0.
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to drive a significant population transfer, condition �i� above
breaks down, and the overall fidelity decreases.

The fidelity profile of Fig. 4 is quite robust with respect to
changes in the spectral width �� in the vicinity of each reso-
nance frequency �n

res. However, when �� approaches half of
the distance between the neighboring resonance frequencies,
the transfer fidelity exhibits ripples as a function of ��, even-
tually becoming unstable. Indeed, for the Gaussian amplitude
modulation of the spectrum �Eqs. �12� and �13��, and assum-
ing that the chirp is strong so that ����

2 �1, one has

�t = ����, �t = 1/��, �20�

and the instantaneous frequency of the nth component of the
field at the end of the pulse train becomes

�n�t = t0 + 2�t��n
res + 2�t�t � �n

res + 2�w. �21�

If ��� ��n+1
res −�n

res� /2 then the instantaneous frequency of
the nth field component at the end of the pulse train coin-
cides with the adjacent resonance. In this case the dynamics
cannot be viewed as a set of independent parallel adiabatic
passages into different target states.

V. SUMMARY AND DISCUSSION

In this paper we have developed a method for executing
robust and selective transfer of population from a single en-
ergy eigenstate to a preselected superposition of energy
eigenstates. Viewed in the frequency domain, the method
constitutes simultaneous transfer of population to all the en-
ergy eigenstates which make up the superposition state by a
set of parallel adiabatic passages. Viewed from the time do-
main, the method amounts to using a train of pulses to accu-
mulate wavelets which make up the target wave packet as it
revisits the Franck-Condon region �18,37,38�.

We have tested the method numerically by simulating
transitions between a single vibrational eigenstate and a su-
perposition of vibrational energy eigenstates of Na2 in the
A 1�u

+ state. The simulations confirmed the high selectivity
and robustness of the method.

Topics to be investigated further include an accurate de-
scription of the transfer dynamics for a general anharmonic
spectrum and in particular the description of the short-time
dynamics of the transfer. This may be achieved using Floquet
states �32,33� dressed by a multimode driving field. Also,
although the present theory is quite accurate in predicting the
ratio of populations transferred into the target wave packet,
the reasons for the phase errors, resulting in less than perfect
overlap with the target state, need to be investigated.
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APPENDIX: PROOF THAT THE DARK STATES REMAIN
UNPOPULATED

This proof follows Ref. �22�, where similar arguments
were made in the context of STIRAP-based CCAP. These
arguments were based on the standard treatment of adiabatic
transfer �13,23,24�.

It follows from Eq. �6� that each dark state is described at
a given time by the vector of amplitudes bdark
= �0,b1� , . . . ,bN��T which is orthogonal to both bi
= �1,0 , . . . ,0�T and b f = �0,
1 /
eff , . . . ,
N /
eff�T. Since
the mutual ratio of different Rabi frequencies 
n
does not change in time, we can choose for the
dark states an N−1-dimensional time-independent basis
�0,e1�

�n� , . . . ,eN�
�n� �T , n=1, . . . ,N−1. Introducing the vector a

of amplitudes of instantaneous eigenstates,

b�t� = U�t�a�t� , �A1�

where the columns of U are given by the normalized eigen-
vectors of H, and using the relation U†U=1, we have that

iȧ = U†HUa − iU+U̇a . �A2�

The first term on the right-hand side of Eq. �A2� governs the
adiabatic evolution. The second term governs nonadiabatic
transitions between the instantaneous eigenstates. Let us
choose the order of adiabatic eigenvalues such that the adia-
batic Hamiltonian U†HU has on its main diagonal
��+ ,�− ,� , . . .��, with N−1 terms equal to �, and all the
off-diagonal elements equal to zero. Then, using Eq. �10�, we
obtain

U =	
cos + sin + 0 ¯ 0

sin +
1/
eff − cos +
1/
eff e1�
�1�

¯ e1�
�N−1�

] ] ] � ]

sin +
N/
eff − cos +
N/
eff eN�
�1�

¯ eN�
�N−1�.


�A3�

As a result of the above structure of U, the nonadiabatic
matrix is given as

U†U̇ = 	 0 ̇

− ̇ 0
0

0 0

 . �A4�

We see that this matrix does not couple the bright and
dark states. Hence the N−1 dark states remain unpopulated
at all times.
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