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A theory of high-order harmonic generation by diatomic molecules is introduced. Various versions �with or
without the dressing of the initial and/or final molecular state� of the molecular strong-field approximation are
investigated. Using examples of homonuclear diatomic molecules such as H2, N2, and O2, it is shown that clear
two-center interference minima in the harmonic spectra as a function of the molecular orientation appear only
if the final molecular state is undressed. For H2 the positions of these minima are in agreement with the ab
initio numerical results. Physically, the returned electron wave packet recombines into a molecular orbital,
which is a linear combination of the atomic orbitals having different parities. The interference minima in the
harmonic spectrum are caused by the destructive interference of the corresponding partial recombination
amplitudes. In accordance with this, we have derived an interference minima condition which is valid for
arbitrary homonuclear diatomic molecules.
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I. INTRODUCTION

High-order harmonic generation �HHG� is a process in
which high-order harmonics of the fundamental laser fre-
quency are coherently radiated when an intense laser pulse is
focused into an atomic or molecular gas. This process, dis-
covered in 1987, is usually described by the semiclassical
three-step model �1–3�: �i� ionization by the strong laser
field, �ii� acceleration of the ionized electron in the laser
field, and �iii� recombination of the ionized electron with the
parent ion accompanied by the emission of a high-energy
photon. More recently, HHG has attracted a lot of attention
as a source of coherent radiation in the extreme-ultraviolet
and soft-x-ray regions of the spectrum, which can have im-
portant applications in attoscience �see, for example, recent
reviews �4–7��.

The purpose of the first investigations of HHG by mo-
lecular gases in the 1990s was to optimize HHG emission.
The main breakthrough in molecular HHG was the discovery
of a double-slit-type interference effect in HHG spectra �8�.
Theoretically, this was first observed for the simplest di-
atomic molecules H2

+ and H2 �8–11�, while experimentally
this was first achieved for aligned CO2 molecules �12,13�.
The next major step forward was the so-called tomographic
reconstruction of molecular orbitals by Itatani et al. �14�,
where, from the measured spectra at various orientations of
the molecular axis, the highest occupied molecular orbital
�HOMO� of N2 was reconstructed. More details and refer-
ences about molecular imaging can be found in the recent
review article by Lein �15�. Its importance for attosecond
science and technology was emphasized, for example, in
�16,17�. See also the recent Ref. �18� where, using two-
dimensional model calculations, the influence of orbital sym-
metry on HHG and quantum tomography was considered.

The double-slit-type or two-point emitter interference in
HHG manifests as minima and maxima in the harmonic yield
for particular values of the angle �L between the internuclear
axis and the laser polarization axis which are accompanied
by a jump of the harmonic phase by �. In fact, these two-

center interference minima and maxima, respectively, are ex-
pected for

R cos �L = �2n + 1�
�k

2
, R cos �L = n�k, n = 0,1,2, . . . ,

�1�

where R is the internuclear distance and �k=2� /k is the de
Broglie wavelength of the electron having kinetic energy
k2 / �2m� equal to the emitted high-harmonic photon energy.
This simple model was supported by numerical results for
H2

+ and H2 �8,9,11,19,20� �see also �21� for a more detailed
analysis and �22� for the modification of the interference
condition due to the Coulomb effects�. However, for more
complex diatomic molecules, like N2 or O2, this simple
physical picture breaks down �23�. The reason is that the
HOMO of such molecules can have substantial contributions
from atomic orbitals that have different symmetry properties
�such as s and p orbitals for N2�. A particularly interesting
example is the CO2 molecule since it has longer internuclear
distance, so that the conditions for experimental observation
of the interference effect are favorable �we will not consider
this triatomic molecule in the present paper; for a review see
�15��. More recent measurements of HHG from aligned N2,
O2, and CO2 molecules �24� are in contradiction with some
of the predictions of the present theoretical models, which
motivates further theoretical investigations.

Since ab initio HHG calculations for complex molecules
thus far have not been possible in any detail, it is clear that
sophisticated models and theories have to be developed. The
most popular such theories are based on the strong-field ap-
proximation �SFA�, according to which the electron, between
the ionization and recombination, is described by the Volkov
states so that its interaction with the laser field is treated
exactly, while the influence of the atomic or molecular bind-
ing potential is neglected �for example, the Lewenstein
model of atomic HHG �3� is such a theory�. Generalization
of the SFA from atoms to molecules is not so straightforward
as one might expect. The main problems are the choice of
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gauge and the laser dressing of the bound states. The lack of
gauge invariance is much more serious for molecules than
for atoms. The problem is common both for HHG and
above-threshold ionization �25,26�, especially for molecules
with large internuclear distances �27�. The length-gauge ver-
sion of molecular SFA �MSFA� theory of HHG was consid-
ered in �28� and references therein, while the velocity-gauge
version was studied in �29�. The length-gauge version of
MSFA with dressing of both the initial and final bound states
was suggested in �30�. The undressed and dressed versions of
the SFA were contrasted in the context of HHG during mo-
lecular dissociation in �31�. The choice of gauge and the role
of dressing in MSFA were also considered in �32,33� and
references therein. However, a general consensus has not
been reached and it is not clear yet which version of gauge
and dressing should be used. In the present paper we will
analyze various possibilities.

Some attempts to improve the SFA theories of molecular
HHG should be mentioned. The replacement of the plane
wave, which appears in the Volkov wave, by the spherical
wave in the recombination matrix element was suggested in
�34�. Various forms of the recombination and ionization ma-
trix elements can be considered: with dipole operator �this
corresponds to length gauge�, dipole momentum operator
�velocity gauge�, and dipole acceleration operator �see �15��.
A more general approach which treats a molecule as a mul-
tielectron system was developed �35,36� and it was shown
that the HOMO should be replaced by the so-called Dyson
orbital and that the exchange terms in the dipole matrix ele-
ment should be included. The Dyson orbital agrees with the
Hartree-Fock HOMO up to the second-order many-body per-
turbation theory �15�. In our paper we will not consider such
generalizations of the SFA theory.

It was shown in �37�, by direct comparison with the ab
initio results obtained solving the time-dependent
Schrödinger equation, that in the atomic case the length-
gauge version of the SFA should be used. The length-gauge
version of the molecular SFA is beset by the problem for
large internuclear distances which is cured by dressing the
initial bound state �27�. Our conclusion is that for the ioniza-
tion step of the molecular HHG, at least for large internu-
clear distances, the dressed length gauge should be used. It is
known that the recombination matrix element is responsible
for the two-center interference, observed in the experiment
�15�. We will show that the interference picture depends
drastically on the dressing of the final bound state and that
only the undressed length-gauge version of the recombina-
tion matrix element leads to the appearance of the interfer-
ence minima at the same positions as in the ab initio numeri-
cal results for H2 �8,9� and for the laser intensities used in the
experiments with more complex diatomic molecules like N2
and O2. We will present an analytical expression for the in-
terference minima condition and this will be the main result
of our paper. In Sec. II we present our MSFA theory of HHG,
while in Sec. III we will show our numerical results. Our
conclusions are given in Sec. IV. The details that are neces-
sary for understanding of our interference condition are rel-
egated to the Appendixes.

II. THEORY OF MOLECULAR HHG

We will describe a diatomic molecule in a laser field using
the approach developed in Ref. �25�. The dynamics of our
system, which consists of two atomic �ionic� centers A and B
and an electron, after the separation of the center-of-mass
coordinate Rc.m., reduces to the relative electron coordinate r
and the relative nuclear coordinate R. The corresponding
Hamiltonian is

H�t� =
P2

2�
+

p2

2m
+ V�r,R� + VF�r,R,t� , �2�

where p and P are the conjugate momenta that correspond to
the Jacobi coordinates r and R, respectively, V�r ,R� is the
potential energy of our system in the absence of the laser
field, and

VF�r,R,t� = − �err + eRR� · E�t� , �3�

is the interaction with the laser field in the dipole approxi-
mation and the length gauge. The reduces masses � and m
and the relative charges er and eR are defined in �25�.

According to the results of Refs. �38,39�, the S-matrix
element for emission of a harmonic photon having the fre-
quency �K, wave vector K, and the polarization êK, is

Sfi �� dt ei��Kt−K·Rc.m.�êK
* · dfi�t� , �4�

where dfi�t� is the time-dependent dipole matrix element be-
tween the initial and final molecular states in the laser field.
For calculation of the harmonic emission rate one has to take
into account all possibilities of the initial and final molecular
orbitals j� and j, which, in principle, may be different �40�,
i.e., Sfi→� j,j�Sjj�. However, in most cases we expect that the
contribution of the highest occupied molecular orbital is
dominant, i.e., j= j�=HOMO. More recently, it has been pro-
posed that the contribution of HOMO-1, HOMO-2, etc.,
should be taken into account �41� �in our notation this means
Sfi→� jSjj�.

A. Time-dependent dipole

The main contribution to the time-dependent dipole dfi�t�
in Eq. �4� comes from the matrix element

dfi
qq��t� = ��f

q�t���− err − eRR� � dt�G�+��t,t��VF�r,R,t��

���i
q��t��	 , �5�

where the retarded Green’s operator G�+� corresponds to the
Hamiltonian H�t�, and � j

q�t�, j=i , f, are the field-free �q=u,
undressed� or laser-dressed �q=d, dressed� initial and final
molecular bound states. As in �25�, we present these states
within the Born-Oppenheimer approximation as a product of
the electronic state 	ej

q �r , t ;R� and the nuclear wave func-
tion:

� j
q�r,R,t� = 	ej

q �r,t;R�
AB�j
�R�exp�− iEAB�j

t� . �6�

For HHG it is not clear yet whether or not the initial and/or
final states should be dressed �for different approaches to this
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problem see, for example, Refs. �27–33��. One of the aims of
the present paper is to explore various possibilities �there are
four combinations qq� in Eq. �5��. The undressed electronic
state we present by the linear combination of atomic orbitals
�LCAO�

	ej
u �r,t;R� = e−iEej�R�t �

J=A,B
�

a

cJa�a
u�rJ� , �7�

so that the total energy of the state � j
u�r ,R , t� is Ej�R�

=EAB�j
+Eej�R�.

In Eq. �7� the sum over a denotes the sum over atomic
orbitals, while the sum over J denotes the sum over the mo-
lecular centers A and B. Similarly as in �25�, the functions
�a

u�rJ�=�a
�0��rJ� and the real coefficients cJa we will represent

by the linear combination of the Slater-type orbitals, which
are obtained using the Hartree-Fock-Roothan method. For
the laser-dressed electronic bound state the atomic orbitals
�a

u�rJ� in �7� have to be multiplied by a factor that comes
from the potential energy that electron has in the molecular
LCAO theory at the position rJ with respect to the electron
position r in the atomic theory. This potential energy is
er
tdt�
rJ

r dr ·E�t��, so that, denoting the vector potential of
the laser field by A�t�=−
tE�t��dt�, we have

�a
d�rJ� = �a

u�rJ�exp�− ier�r − rJ� · A�t��, �a
u�rJ� = �a

�0��rJ� .

�8�

Let us now return to the time-dependent dipole �5�. We
will use the strong-field approximation and replace the total
Green’s operator G�+� by the molecular Volkov Green’s op-
erator

GF
�+��t,t�� = − i��t − t���

�
� d3k�	k�

F �t�	�	k�
F �t��� , �9�

where the functions 	k�
F �t� satisfy the time-dependent

Schrödinger equation with the Hamiltonian HF�t�:

HF�t� = he
F�t� + HAB

F �t�, he
F�t� =

p2

2m
− err · E�t� ,

HAB
F �t� =

P2

2�
− eRR · E�t� + VAB�R� . �10�

Since the nuclear and electronic coordinates are separated,
the function �k�

F can be written as �25�

�k�
F �r,R,t� = 	ek�r,t�
AB��R�exp�− iEAB�t� , �11�

where

	ek�r,t� = �2��−3/2 exp�i�k − erA�t�� · r − iSk�t�� , �12�

with Sk�t�=
−

t d��k−erA����2 / �2m�, is the electronic Volkov

state in the length gauge. The summation in Eq. �9� is over
all vibrational degrees of freedom and the integration is over
the electron momenta k.

Finally, we fix the internuclear coordinate R=R0 in all
terms that contain the electronic dependence �this is the so
called fixed-nuclei approximation �42��. Then, in our matrix
elements, the following overlap integrals between the two

vibrational states �we do not consider the rotational dynam-
ics �43��:

S�� =� d3R 

AB�
* �R�
AB��R� �13�

will appear. Taking now into account Eqs. �5�–�13�, we ob-
tain the following final approximate result for the time-
dependent dipole:

dfi
qq��t� = − ieiEAB�f

t�
�

S�f�
S��i

e−iEAB�t�
−


t

dt�eiEAB�t�−iEAB�i
t�

�� d3k ei�Sk�t��−Sk�t���	ef
q �t���− err − eRR0�

��k − erA�t�	�k − erA�t���VF�t���	ei
q��t��	 . �14�

B. Harmonic-emission rate for a periodic laser field

For a �T=2� /��-periodic laser field the rate of emission
of a harmonic photon having the frequency �K=n�
+Ei�R0�−Ef�R0�, wave vector K, and polarization êK, into a
solid angle d�K̂, is given by �in atomic units �a.u.�� �38,39�

wn
qq� =

1

2�

n�

c
�3

�Tn
qq��2, �15�

where the T-matrix element Tn
qq� is

Tn
qq� = �

�

S�f�
S��i

Tn�
qq�, �16�

with

Tn�
qq� = �

0

T dt

T
ein�têK

* · d�
qq��t� �17�

and

d�
qq��t� = − i�

−


t

dt�ei�Ei�R0�−EAB���t−t�� � d3k ei�Sk�t��−Sk�t��

� �
Ja

cJa��a
q�rJ���− err − eRR0��k − erA�t�	

� �
J�a�

cJ�a��k − erA�t���VF�t����a�
q��rJ��	 . �18�

C. HHG of neutral homonuclear diatomic molecules

For neutral homonuclear diatomic molecules such as H2,
N2, or O2, we have rJ=r+sR0 /2�rs, with s= +1 for J=A
and s=−1 for J=B. If the ionization is from the center J�
=A �J�=B� we have eRA

=− 1
2 �eRB

= + 1
2 � so that VF�t��= �r

+s�R0 /2� ·E�t�� with s�= +1 for J�=A and s�=−1 for J�=B.
Analogously, the recombination at the center J is governed
by the interaction operator −err−eRJ

R0=rJ=r+sR0 /2.
Using the above-mentioned expressions for �a

q, Eq. �8�,
and introducing the notation
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�s
q�k,t� = �e−is�k+A�t��·R0/2, q = u,

e−isk·R0/2, q = d,
� �19�

and

ma�k,t� = ��a
�0��r�k + A�t�	 , �20�

for Tn�
qq�, Eq. �17�, we obtain

Tn�
qq� = − i�

0

T dt

T
�

−


t

dt�� d3k ei�S��k;t,t��+n�t�

��
sa

csa�s
q�k,t�êK

* · ma�k,t�

��
s�a�

cs�a��s�
q�*�k,t��m

a�
* �k,t�� · E�t�� , �21�

where the action S��k ; t , t�� is given by

S��k;t,t�� = Sk�t�� − Sk�t� + �Ei�R0� − EAB���t − t�� .

�22�

For numerical calculations we introduce the new variable �
= t− t� and solve the integral over k using the saddle-point
method �38,39�, which gives 
d3k→ �2� / �i���3/2 and k
→kst=−
t−�

t A�t��dt� /� �44�. We neglect the ground-state
depletion effect �45�.

We will now suppose that the electric field vector changes
sign upon a translation in time by T /2, i.e.,

E�t + T/2� = − E�t� . �23�

This is valid, for example, for a monochromatic linearly po-
larized laser field having the frequency �, amplitude E0, and
the unit polarization vector êL: E�t�=E0êL sin �t. The vector
potential A�t�=−
−


t E�t��dt� obeys the same symmetry:
A�t+T /2�=−A�t� �for the mentioned example, which we
will use in our numerical calculations, we have A�t�
=A0êL cos �t, A0=E0 /��. For HHG from atoms it is well
known that the above symmetry is responsible for the emis-
sion of only odd harmonics, since the atomic time-dependent
dipole satisfies the relation d�t+T /2�=−d�t�. In Appendix B
we have checked that the same is valid in the molecular case.
For odd harmonics n, the T-matrix element is given by Eqs.
�B1�, �B3�, and �B4�.

III. NUMERICAL RESULTS

We present harmonic spectra for the H2, N2, and O2 mol-
ecules. The corresponding equilibrium internuclear dis-
tances, ionization energies, and the parameters which deter-

mine the initial HOMOs are presented in Table I. For the H2
and N2 molecules, 12 atomic orbitals with ma=0 are taken
into account. For s and d states we have sa�= +1, while for p
and f states it is sa�=−1. The 1�g HOMO of the O2 molecule
is described by the LCAO of five atomic orbitals having
ma=1. In this case, for p and f states we have sa�=−1, while
for d state it is sa�= +1.

A. Harmonic spectra of H2 and the interference minima
condition

As in the atomic case, we expect that our results for the
harmonic spectra obtained using the SFA and the saddle-
point method are valid for the plateau and cutoff harmonics
�see Appendix C�. We want to check which of the four pos-
sible combinations of the dressed �undressed� initial �final�
states give the satisfactory harmonic spectra. For this pur-
pose, in Fig. 1 we present the harmonic spectra of H2 for
�L=0° and for the laser intensity 5�1014 W /cm2 and the
wavelength 780 nm. For these parameters, in Refs. �8,9� nu-
merical results are obtained by solving the time-dependent
Schrödinger equation for a two-dimensional model of H2.
Figure 2�a� from �8� and Fig. 2�d� from �9� are for the same
molecular and laser parameters as our Fig. 1. The harmonic
yields, defined as S�n��=n�wn, where the rates wn are given
by Eq. �15�, are presented as functions of the harmonic order
n. The cutoff of the spectrum is at nc=71. For the undressed
final state �curves du and uu� the harmonic yield decreases
with the decrease of the harmonic order from nc=71 toward
a clear minimum at nmin=45 and then increases �46�. Our
results for the du and uu cases are very close to the result
presented in �8,9�. However, our results for the dressed final
states �ud and dd� are different, which suggests that one
should use the MSFA with the undressed final state.

Let us now analyze the interference minima in more de-
tail. In Appendix D it was shown that the saddle-point
method leads to the following connection between the har-
monic order n and the electron velocity kst+A�t� at the res-
cattering time t: n�= IP+ �kst+A�t��2 /2 �see the last para-
graph of Appendix D for details�. The returning electron
wave packet recombines into the molecular orbital 1�g
which is a linear combination of even and odd atomic orbit-
als. The corresponding partial recombination amplitudes in-
terfere destructively for the emitted harmonic order, which is
the solution of the nonlinear equation

n� = IP +
2�j� − arctan z�2

R0
2 cos2 �L

, z = i

�
a+

c1a+
ma+

�
a−

c1a−
ma−

, �24�

where j is an integer, z��L ,n� is real, and ma�
��L ,n� is the

component along the laser polarization direction of the di-

TABLE I. Equilibrium internuclear distances R0, ionization energies IP, initial HOMOs, magnetic quan-
tum number ma, and atomic orbitals of the used homonuclear diatomic molecules �see Appendix A�.

Molecule R0 �a.u.� IP �eV� HOMO ma Atomic orbitals

H2 1.4 16.18 1�g 0 1s, 1s�, 2s, 2s�, 3s, 2p, 2p�, 2p�, 3p, 3d, 3d�, 4f

N2 2.068 15.58 3�g 0 1s, 1s�, 2s, 2s�, 3s, 2p, 2p�, 2p�, 3d, 3d�, 3d�, 4f

O2 2.282 12.03 1�g 1 2p, 2p�, 2p�, 3d, 4f
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pole matrix element �20�, ma�
�kst , t��ma�

��L ,n�êL, for the
orbitals having sa�= �1. We have solved Eq. �24� over n
=nmin�R0 ,�L� for the mentioned H2 example with the un-
dressed final state for fixed R0=1.4 a.u. and for different val-
ues of the molecular orientation angle �L. In order to com-
pare our results with the results shown in Fig. 3 in �9�, in Fig.
2 we present R0 cos �L as a function of �=2� /�2nmin� �47�.
The interference minima curve so obtained �red curve with
the circles� follows the line R0 cos �L=� /2. This result is
very close to the analogous result obtained in Ref. �9� �open
squares in Fig. 3�, which confirms our theory.

C. Harmonic spectra for N2

In Fig. 3 we present in false color the harmonic emission
rate in the plane ��L ,n� defined by the angle �L between the
internuclear axis and the laser polarization axis and by the
harmonic order n. The results are presented for all four pos-
sible combinations of the dressed �undressed� initial �final�
states. Clear two-center interference minima appear only in
the case when the final state is undressed. These minima
form a curve in the ��L ,n� plane. It is shown in Appendix D
that this curve corresponds to the solutions of the nonlinear
equation �24�. The curve nmin

�u� =nmin
�u� ��L� obtained solving this

equation is presented in Figs. 3�b� and 3�d� by a white line. It
is evident that it fits very well the false color minima which
appear in the numerical results.

In order to show that the relative contribution of even and
odd atomic orbitals strongly influences the interference ef-
fects in harmonic spectra, in Fig. 4 we present an analog of
Fig. 3�b� for the N2 molecule modeled by either only the s
orbitals �left panel� or only the p orbitals �right panel�. The
interference picture is completely different and is in accor-
dance with Eq. �D2� for j=0 �s orbitals, Fig. 4�a�� and Eq.
�D3� for j=1 �p orbitals, Fig. 4�b��. These equations are spe-
cial cases of Eq. �24�, as shown in Appendix D.

B. Harmonic spectra for O2

Since the main contribution to the 1�g HOMO of the O2
molecule comes from the p atomic orbitals, we expect that
the interference minima will appear for higher harmonic or-
ders, i.e., higher laser intensities are needed to observe these
minima �see the right-hand panel of Fig. 4�. Therefore, in
Fig. 5 we present harmonic spectra for the laser intensity 6
�1014 W /cm2, which is higher than that used in Figs. 3 and
4. We again see that only the combinations with the un-
dressed final state lead to clear interference minima. Further-
more, these interference minima are very well described by
the solution of the nonlinear Eq. �24� for j=−1. These solu-
tions are presented by white lines in Figs. 5�b� and 5�d�.

In Fig. 5 one can also notice the minima for parallel ��L
=0° � and perpendicular ��L= �90° � orientations. These
minima are connected with the 1�g symmetry of the HOMO
of the O2 molecule and are clearly visible for all harmonic
orders and for all combinations of the dressed �undressed�
initial �final� states.

IV. CONCLUSION

We have presented a theory of high-order harmonic gen-
eration of a diatomic molecule which is considered as a sys-
tem of two atomic �ionic� centers and one electron. The dy-
namics of this system is described by the relative electron
coordinate and the relative nuclear coordinate. The electronic
state is presented by the linear combination of atomic orbit-
als. The theory is formulated in such a way that the strong-
field approximation with the laser-field dressed or undressed
initial and final states can be treated on the same footing.
This enables us to compare different versions of the molecu-
lar SFA. We have shown that clear two-center interference
minima, in agreement with the ab initio numerical results,
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FIG. 1. �Color online� Comparison of the high-order harmonic
yields of the H2 molecule obtained using the four possible combi-
nations of the dressed �undressed� initial �final� molecular bound
states. The corresponding results are denoted by the letters dd, du,
ud, and uu, where the first letter denotes whether the initial state is
dressed �d� or undressed �u�, while the second letter characterizes
the final state. The laser field intensity is 5�1014 W /cm2 and the
wavelength 780 nm. The molecular axis is parallel to the polariza-
tion axis of the linearly polarized laser field ��L=0° �. The yield for
the uu case is divided by 10. All results are obtained using the
saddle-point method with the first four saddle-point solutions.
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FIG. 2. �Color online� Projected internuclear separation vs ef-
fective electron wavelength for HHG by the H2 molecule. Orienta-
tion angle �L changes from 0 to 90°, while the other molecular and
laser parameters are as in Fig. 1. The results presented by the curve
with red circles are obtained by solving Eq. �24� over nmin for fixed
R0 and �L and presenting R0 cos �L as a function of �
=2� /�2nmin�. The dashed line represent the destructive interfer-
ence condition R0 cos �L= �2m+1�� /2 for m=0.
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appear only if the final state is undressed. Therefore, in the
final �recombination� step the molecular state should be
treated as undressed. As concerns the initial state, we suggest

that, at least for large internuclear distances, it should be
dressed. This is supported by the following findings. First,
for the atomic p ground state, by comparison with the ab

(b)(a)

(c) (d)

FIG. 3. �Color online� High-order harmonic spectra of the N2 molecule obtained using a linearly polarized laser field having the intensity
4�1014 W /cm2 and photon energy �=1.55 eV. �a�–�d� illustrate HHG spectra for the four possible combinations where the initial �final�
molecular bound states are dressed �undressed�. The angle between the laser field polarization axis and the molecular axis is plotted along
the horizontal axis, while the harmonic order is along the vertical axis. The curves nmin

�u� =nmin
�u� ��L�, which express the interference minima

condition as the solution of the nonlinear equation defined by Eq. �D10� for j=0, are presented by white lines in �b� and �d�.

(b)(a)

FIG. 4. �Color online� As in Fig. 3 but taking into account only the s orbitals �left panel� and only the p orbitals �right panel�. Only the
combination with the dressed initial state and the undressed final state is presented. The curve given by Eq. �D2� �Eq. �D3�� is depicted in
the left �right� panel by a white line.

S. ODŽAK AND D. B. MILOŠEVIĆ PHYSICAL REVIEW A 79, 023414 �2009�

023414-6



initio results, it was shown that only the SFA in its length-
gauge version gives the correct results �37�. Second, in Ref.
�27� it was shown that if one uses the length gauge in con-
sideration of the ionization process and if the internuclear
distance is large, then the molecular ground state should be
dressed.

We mentioned in the Introduction that for more complex
diatomic molecules the simple physical picture based on the
two-center interference formula �1� breaks down. Since our
theory is general it can be applied to arbitrary diatomic mol-
ecules. We have derived a general two-center interference
formula �24� �see also Eq. �D10�� which is a nonlinear equa-
tion for the harmonic order as a function of the internuclear
distance and the molecular orientation angle. This formula
contains the ratio of the sum of the dipole matrix elements
with even and odd atomic orbitals whose linear combination
forms the molecular orbital from which the high harmonics
are emitted. Our numerical results for the H2 �Fig. 1�, N2
�Figs. 3 and 4�, and O2 �Fig. 5� molecules are in excellent
agreement with this interference minima condition. The
physical explanation of the results obtained is the following:
in the third step of the three-step model of HHG the returned
electron wave packet recombines into the HOMO which is a
linear combination of even and odd atomic orbitals. The de-
structive interference of even �A+� and odd �A−� partial re-
combination amplitudes �see Eqs. �D8� and �D9�� is respon-

sible for the observed minima. The positions of these minima
depend on the ratio of the summed dipole matrix element,
determined by the real parameter z= iA+ /A−, Eqs. �D9� and
�D10�.
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APPENDIX A: DIPOLE MATRIX ELEMENTS FOR THE
MOLECULAR ORBITAL WAVE FUNCTIONS

For the ground-state electronic wave functions of the neu-
tral homonuclear diatomic molecules we use the Hartree-
Fock-Roothaan wave functions �25�

	ej�r;R� = �
s=�1

�
a

csa�a�r + sR/2� , �A1�

with �a�r� the Slater-type orbitals

�a�r� =
�2�a�na+1/2

��2na�!
rna−1e−�arYlama

��,
� = 
na
�r�Ylama

��,
� .

�A2�

The method of calculation of the functions �A1� is described
in �48,49� and the results for the coefficients �2c1a and the

(b)(a)

(c) (d)

FIG. 5. �Color online� As in Fig. 3 but for the O2 molecule and the laser intensity 6�1014 W /cm2. The interference minima curves
nmin

�u� =nmin
�u� ��L� in �b� and �d� are the solutions of Eq. �D10� for j=−1.
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orbital exponents �a are tabulated in �50,51�. The coefficients
at the center B are equal, up to a sign, to the coefficients at
the center A, i.e., c−1a=sa�c1a, where

sa� = �− 1�la−ma��− 1�m� for g symmetry,

�− 1�m�+1 for u symmetry.
� �A3�

Here ma is the magnetic quantum number of the atomic or-
bital a and m�= �ma� is the value of the projection of the
orbital angular momentum on the internuclear axis. For ex-
ample, for � states it is m�=0, and m�=1 for � states.

For calculation of the harmonic emission rate we need the
dipole matrix element, Eq. �20�,

m
a
*�k,t� = �p�r��a	 = i

�

�p
�̃a�p�, p = k + A�t� , �A4�

where the momentum-space Slater-type orbitals are defined
as the Fourier transform

�nalama
�p,�p,	p� � �̃a�p� = �2��−3/2� dr exp�− ip · r��a�r� .

�A5�

The analytical solution of this integral is

�nalama
�p� =

2na−la��2 + na + la�

��2na�!�
3

2
+ la� �a

−3/2−la�− ip�la

� 2F1
1

2
�2 + la + na�,

1

2
�3 + la + na�;

3

2

+ la;−
p2

�a
2�Ylama

��p,	p� , �A6�

where 2F1 are the hypergeometric functions. For the 1�g
HOMO of H2 and the 3�g HOMO of N2 we will use the
following orbitals:

�1s��p� � �100�p� =
2�2�1s

5/2

�

1

�p2 + �1s
2 �2 ,

�2s��p� � �200�p� = −
2�2�2s

5/2

�3�

�p2 − 3�2s
2 �

�p2 + �2s
2 �3 ,

�3s��p� � �300�p� =
16�3s

9/2

�5�

�− p2 + �3s
2 �

�p2 + �3s
2 �4 ,

�2p��p� � �210�p� = −
8i�2�2p

7/2

�

p cos �p

�p2 + �2p
2 �3 ,

�3p��p� � �310�p� =
16i�3p

7/2

�15�

p cos �p�p2 − 5�3p
2 �

�p2 + �3p
2 �4 ,

�3d��p� � �320�p� = −
16�3d

9/2

�

p2�3 cos2 �p − 1�
�p2 + �3d

2 �4 ,

�4f��p� � �430�p� =
64i�2�4f

11/2

�5�

p3 cos �p�5 cos2 �p − 3�
�p2 + �4f

2 �5 .

�A7�

The coordinate space wave functions �A1� and the corre-
sponding momentum space wave functions

	̃ej�p;R� = �
s=�1

�
a

csa exp
ip · s
R

2
��nalama

�p� , �A8�

obtained using these orbitals, are presented in Fig. 2 in �25�
for the N2 molecule.

The factor eim	 makes the spherical harmonics Ylm�� ,
�
complex, except for m=0. Instead of using the normalized
complex spherical harmonics

Ylm��,
� = �− 1�m�2l + 1

2

�l − m�!
�l + m�!

Plm�cos ��
eim


�2�
,

�A9�

where Plm�cos �� are the unnormalized associated Legendre
functions �48,49�, we will use the real spherical harmonics
defined by �see, for example, Appendix A in �52��

Sl�m���,
� = Pl�m��cos ��
1

��
cos��m�
� ,

Sl−�m���,
� = Pl�m��cos ��
1

��
sin��m�
� ,

Sl0��,
� =
1

�2�
Pl0�cos �� . �A10�

For example, in order to describe the wave function of the
O2 molecule, we will need the following real spherical
harmonics:

S11��,
� =� 3

4�
sin � cos 
 ,

S21��,
� =� 15

4�
sin � cos � cos 
 ,

S31��,
� =� 21

32�
�5 cos2 � − 1�sin � cos 
 . �A11�

The HOMO of the O2 molecule is 1�g and the corre-
sponding coordinate and momentum space wave functions
are presented in Fig. 3 in �25�. The coordinate wave func-
tions are given by 
na

�r�Slama
�� ,
�, ma=1, nala=2p, 3d, and

4f , while the momentum wave functions are

�2p��p� = −
29/2i�2p

7/2

�3�

p

�p2 + �2p
2 �3S11��p,	p� ,

�3d��p� = −
64�3d

9/2

�5�

p2

�p2 + �3d
2 �4S21��p,	p� ,
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�4f��p� =
217/2i�4f

11/2

�35�

p3

�p2 + �4f
2 �5S31��p,	p� . �A12�

Let us now return to the dipole matrix element �A4� with
�A5�. In our approach, the intermediate electron momentum
k=kst is along the polarization axis so that � /�p= êL� /�p.
Using the results �A7� and �A12� we easily obtain the dipole
matrix element that we need to model HHG from the
HOMOs of H2 and N2,

i
�

�p
�1s��p� = −

8i�2�1s
5/2

�

p

�p2 + �1s
2 �3 ,

i
�

�p
�2s��p� =

8i�2�2s
5/2

�3�

p�p2 − 5�2s
2 �

�p2 + �2s
2 �4 ,

i
�

�p
�3s��p� =

32i�3s
9/2

�5�

p�3p2 − 5�3s
2 �

�p2 + �3s
2 �5 ,

i
�

�p
�2p��p� =

8�2�2p
7/2

�

cos �p�− 5p2 + �2p
2 �

�p2 + �2p
2 �4 ,

i
�

�p
�3p��p� =

16�3p
7/2

�15�

cos �p�5p4 − 38p2�3p
2 + 5�3p

4 �
�p2 + �3p

2 �5 ,

i
�

�p
�3d��p� =

32i�3d
9/2

�

�3 cos2 �p − 1�p�3p2 − �3d
2 �

�p2 + �3d
2 �5 ,

i
�

�p
�4f��p� =

64�2�4f
11/2

�5�

p2 cos �p�5 cos2 �p − 3��7p2 − 3�4f
2 �

�p2 + �4f
2 �6 ,

�A13�

and O2,

i
�

�p
�2p��p� =

8�2�2p
7/2

�

�− 5p2 + �2p
2 �sin �p cos 	p

�p2 + �2p
2 �4 ,

i
�

�p
�3d��p� =

32i�3�3d
9/2

�

p�3p2 − �3d
2 �sin 2�p cos 	p

�p2 + �3d
2 �5 ,

i
�

�p
�4f��p�

=
32�3�4f

11/2

�5�

p2�7p2 − 3�4f
2 ��3 + 5 cos 2�p�sin �p cos 	p

�p2 + �4f
2 �6 .

�A14�

The internuclear axis is along the z axis so that we can
choose �p=�L, 	p=0, where �L is the angle between the
internuclear axis and the laser polarizaton axis.

APPENDIX B: PROOF THAT ONLY ODD HARMONICS
ARE EMITTED FOR THE FIELD (23)

For the electric field E�t� such that Eq. �23� is satisfied, it
is easy to show that the quantities that appear in the T-matrix

element �21� for �t→�t+� transform as kst→−kst,
�s

q�kst , t�→�s
q*�kst , t�=�−s

q �kst , t�, ein�t→ �−1�nein�t, S�→S�,
ma�kst , t�→ �−1�la+1ma�kst , t�, where la is the orbital quantum
number of the atomic orbital a. Using this, we obtain that Eq.
�21� reduces to

Tn�
qq� = − i
2�

i
�3/2�

0

T/2 dt

T
ein�t�

0


 d�

�3/2eiS��kst;t,t−��

� �
a,a�

ma�kst,t� · êK
* m

a�
* �kst,t − �� · E�t − ��

�fnaa�
qq� �kst;t,t − �� , �B1�

where

fnaa�
qq� �kst;t,t − �� = �

s,s�

csacs�a���s
q�kst,t��−s�

q� �kst,t − ��

− �− 1�n�− 1�la+la��−s
q �kst,t��s�

q��kst,t − ��� .

�B2�

In order to perform the summation over s and s� we will
use the fact that the coefficients csa of our molecular orbitals
satisfy the relation c−1a=sa�c1a �25,26� �see Eq. �A3�; m�

= �ma�= �ma���. Using this we calculate separately s=s� and
s�s� contributions to the sums in Eq. �B2�. For s=s� we
obtain

c1ac1a��1 − �− 1�n���1
q�kst,t��−1

q��kst,t − ��

+ �− 1�la+la��−1
q �kst,t��1

q��kst,t − ��� ,

while for the sum of two terms with s�s� we find

c1ac1a��1 − �− 1�n��sa���1
q�kst,t��1

q��kst,t − ��

+ sa��−1
q �kst,t��−1

q��kst,t − ��� .

Therefore, only odd harmonics n are emitted and the corre-
sponding T-matrix element is given by Eq. �B1� with

fnaa�
qq� �kst;t,t − �� = 2c1ac1a�Fsa�

q �kst,t�Fsa��

q�* �kst,t − �� ,

�B3�

where

Fsa�

q = �1
q + sa��−1

q . �B4�

For sa�= +1 the factor F+1
q reduces to 2 cos�Kq�kst , t� ·R0 /2�,

while for the sa�=−1 for F−1
q we obtain

−2i sin�Kq�kst , t� ·R0 /2�, with

Kq�kst,t� = �kst + A�t� , q = u,

kst, q = d.
� �B5�

APPENDIX C: SADDLE-POINT METHOD

Application of the saddle-point method to the T-matrix
element �21� leads to the condition that the partial derivatives

over k, t�, and t of the action Sn�
qq��k ; t , t��+n�t are equal to
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zero, which gives k=kst�−
t�
t A�t��dt� / �t− t�� and the fol-

lowing system of equations for the variables t� and t:

1

2
�kst + A�t���2 = Ei�R0� − EAB� = Eei�R0� + EAB�i

− EAB�,

�C1�

1

2
�kst + A�t��2 = n� + Ei�R0� − EAB�

= n� + Eei�R0� + EAB�i
− EAB�

= �K + Eef�R0� + EAB�f
− EAB�. �C2�

For simplicity, in our calculations we suppose that �=�i=�f
and Eei�R0�=Eef�R0�=−IP, with IP the ionization potential of
the considered HOMO. In this case, the system of equations
�C1� and �C2� has the same complex solutions ts� and ts as in
the atomic case and obeys the classifications by the indices
s����m� as in �53�. For large internuclear distances, the
R0-dependent terms in the exponents of �s

q in Eq. �19�
should be added to the action, so that kst and the system �C1�
and �C2� contain the R0-dependent terms. In this case, the
saddle-point solutions are characterized by the additional
classification numbers, similarly as in �54�.

In Fig. 6 we compare the saddle-point and the “exact”
harmonic spectra of the N2 molecule for the same laser pa-
rameters as in Fig. 3 and for two values of the angle between
the internuclear axis and the laser polarization axis: �L=0°
�upper curves� and 45° �lower curves�. For the results ob-
tained using the saddle-point method with the first four so-
lutions the harmonic order changes continuously, while for

the “exact” results, obtained by numerical integration in Eq.
�21�, only odd harmonics appear. The agreement is good ex-
cept for low harmonics and for the harmonic exactly at the
cutoff of the corresponding pair of quantum orbits where it is
known that the saddle-point method fails which manifests in
the form of a spike �this can be avoided using the uniform
approximation �53��. The above four-saddle-point approxi-
mation, which we use in our numerical calculations in Sec.
III, is further justified by the fact that the experimental con-
ditions favor only the solutions with short travel times �the
so-called short and long orbits of the Lewenstein model �3��.

APPENDIX D: INTERFERENCE CONDITIONS

Since the T-matrix element given by Eq. �B1� is propor-
tional to cos�Kq�kst , t� ·R0 /2� for sa�= +1 and
sin�Kq�kst , t� ·R0 /2� for sa�=−1 �see Appendix B�, it is
straightforward to deduce the following interference condi-
tions:

Kq�kst,t� · R0 = ��2j + 1�� for sa� = + 1,

2j� for sa� = − 1,
� �D1�

where Kq�kst , t� is given by Eq. �B5� and j is an integer.
From Eq. �D1� it follows that the interference condition for
the recombination step depends on the dressing of the final
state.

If the final molecular bound state is undressed �q=u� and
sa�= +1, using Eq. �B5� we obtain �kst+A�t��R0 cos �L= �2j
+1��, where �L is the angle between the internuclear axis
and the laser polarization axis. Using Eq. �C2� we finally
obtain the following condition for the interference minima
for q=u and sa�= +1:

nmin
�u,+1� =

IP

�
+

�2j + 1�2�2

2�R0
2 cos2 �L

, j = 0,1, . . . . �D2�

Analogously, for sa�=−1 we obtain the interference minima
condition

nmin
�u,−1� =

IP

�
+

2j2�2

�R0
2 cos2 �L

, j = 0,1, . . . . �D3�

If the final molecular bound state is dressed �q=d� and
sa�= +1, using Eqs. �B5� and �C2� we obtain kstR0 cos �L
= �2j+1��, so that

nmin
�d,+1� =

IP

�
+

�2j + 1�2�2

2�R0
2 cos2 �L

+
�2j + 1��

�R0 cos �L
A�t� +

A2�t�
2�

,

j = 0, � 1, . . . . �D4�

Analogously, for sa�=−1 the interference minima condition
has the form

nmin
�d,−1� =

IP

�
+

2j2�2

�R0
2 cos2 �L

+
2j�

�R0 cos �L
A�t� +

A2�t�
2�

,

j = 0, � 1, . . . . �D5�

Therefore, in the case when the final molecular bound state is
dressed the interference minima condition contains addi-
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FIG. 6. �Color online� Comparison of the high-order harmonic
spectra of the N2 molecule obtained using the saddle-point method
with the first four saddle-point solutions �circles and diamonds de-
noted by “SP4”� and the “exact” spectra obtained using numerical
integration �squares and triangles�. The laser field is linearly polar-
ized having the intensity 4�1014 W /cm2 and photon energy �
=1.55 eV. For the black curve with circles and red curve with
squares the angle between the internuclear axis and the laser polar-
ization axis is �L=0°, while for the green curve with diamonds and
blue curve with triangles it is �L=45°, and these curves are shifted
down by four orders of magnitude.
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tional terms which depend on A�t� and A2�t�, where t is the
recombination time. This precludes the observation of clear
minima. For some values of t the interference conditions
�D4� and �D5� are satisfied so that in the harmonic spectrum
we can observe sporadic minima, as can be seen in Figs. 3�a�
and 3�c�.

Let us now consider the general case of a molecular or-
bital consisting of atomic orbitals which can have sa�= +1 or
−1. We will use the notation a+�a�sa�= +1� and a−
�a�sa�=−1�. According to the results �B1�–�B5� and the
saddle-point equations �kst+A�t���2=−2IP and �kst+A�t��2

=2�n�− IP� �see Eqs. �C1� and �C2� with t�= t−�� we obtain
that, for a linearly polarized laser field and for the undressed
final state, the T-matrix element for emission of the nth har-
monic is proportional to

I�p,R0,�L� �
��m

�−3/2ei�n�t+S��kst;t,t���êL · êK
*

��
a�

c1a�ma�
* �kst,t�� · E�t��Fsa��

q�* �kst,t�� , �D6�

where the multi-index ��m denotes the classification of the
saddle-point solutions t� and t �53� and

p = kst + A�t� = �2�n� − IP�, n� � IP. �D7�

The interference term I�p ,R0 ,�L� is given by

I�p,R0,�L� = A+�p,�L�cos x − iA−�p,�L�sin x

= �A+
2 − A−

2 sin�x + arctan z� , �D8�

where

2x = pR0 cos �L, A��p,�L� = �
a�

c1a�
�

a�

�*�p,�L� ,

z = iA+/A−, �D9�

and �a��p ,�L����nalama
�p� /�p is given by Eqs. �A13� and

�A14� with �p=�L, 	p=0. Therefore, the interference
minima condition takes the form x+arctan z= j�, so that

nmin
�u� =

IP

�
+

2�j� − arctan z�2

�R0
2 cos2 �L

, j = 0, � 1, . . . .

�D10�

For �z��1 we have arctan z=z−z3 /3+¯, while for �z��1 it
is arctan z=� /2−1 /z+1 / �3z3�−¯. For orbitals having sa�

= +1 we obtain 1 /z=0 so that arctan z=� /2 and Eq. �10�
reduces to �D2�, while for sa�=−1 we have arctan z=0 so
that Eq. �D10� reduces to �D3�. According to Eqs. �A13� and
�A14�, for the s and d orbitals having sa�= +1 the function
�a��p ,�L� is real, while for the p and f orbitals �sa�=−1� it is
imaginary. Therefore, the function z�p ,�L�= iA+ /A− is always
real. Since z depends on the harmonic order n through the
electron velocity p immediately before the recombination,
Eq. �D7�, for a fixed angle �L Eq. �D10� is a nonlinear equa-
tion over n, whose solutions nmin

�u� ��L� form a curve in the
��L ,n� plane. These solutions fit well the interference
minima obtained numerically �see Figs. 3�b�, 3�d�, 5�b�, and
5�d��.
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