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A quantum theory of intense-field pump-probe experiments proposed by us recently �F. H. M. Faisal et al.,
Phys. Rev. Lett. 98, 143001 �2007� and F. H. M. Faisal and A. Abdurrouf, Phys. Rev. Lett. 100, 123005
�2008�� is derived here fully and applied to investigate the phenomena of dynamic alignment and high-order
harmonic generation �HHG� from coherently rotating linear molecules. The theory is developed from the basic
quantum transition amplitude for the HHG and used to relate the Fourier transform �FT� of the expectation
value of the dipole operator to the rate of emission of the HHG photons. It permits us to give analytical
expressions for the HHG signals and their simultaneous dependence on the two externally available control
parameters—the delay-time, td, between the pump and the probe pulse, and the relative angle, �, between their
polarizations. A relation between the basic “one-molecule” and the macroscopic “many-molecule” HHG sig-
nals is obtained from the phase-matching condition for HHG in an ideal medium. The requirement for the
coherent HHG signal and the “elastic” molecular transition, in contrast to the “inelastic” transitions and the
“hyper-Raman” emission, is discussed. The effect of the “delayed” probe pulse on the dynamic alignment
induced by the pump-pulse, the mean rotational energy of the molecule during the period between the pump
and the probe pulse, as well as a method of estimating the effective temperature of the molecules are analyzed.
A “revival theorem” on the number of fractional “revivals,” equal to the lowest power of the “cosine operator”
in the Hamiltonian of the system, times the maximum powers of the “cosine-moments” present in the signal,
is derived and used to interpret the observed fractional revivals and their relative phases. A “magic” polariza-
tion angle �c=arctan �2�55°, at which the signals for all td approach each other closely, is identified as a
generic signature of a �g symmetry of the active orbital. Similarly, the presence of a “crossing neighborhood”
near �c is shown to be a generic signature of an active �g orbital. At an operational angle �c�55° in the
laboratory, a steady emission of high-order harmonic radiation from coherently rotating molecules with �g

orbital symmetry �e.g., N2� can be obtained. Finally, explicit numerical calculations are performed at specific
experimental parameter values in the time domain as well as in the frequency domain. The results well
reproduce all the salient features of the experimental observations for N2 and O2, and provide a unified
theoretical interpretation of the same.
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I. INTRODUCTION

In recent years, there has been much interest and progress
in understanding the interaction of atoms and molecules with
intense laser fields �e.g., �1,2��. Among the phenomena ob-
served, high-order harmonic generation �HHG� is of particu-
lar interest, no less because of its potential applications as a
source of coherent ultraviolet light and/or for generation of
ultrashort attosecond laser pulses. In contrast to atoms, mol-
ecules have extra degrees of freedom such as vibration and
rotation of the molecular frame, and have additional symme-
try properties that give rise to richer physical phenomena
when they interact with intense laser pulses. Among them is
the phenomenon of alignment of linear molecules by strong
and long laser pulses, which has been investigated in the past
�3–6�. Much interest has recently been generated by the ob-
servation of recurrent dynamic alignments of linear mol-
ecules such as N2 and O2 �7,8� interacting with intense ul-
trashort laser pulses. They are monitored, for example, by

nondestructive high-order harmonic generation signals from
pump-probe experiments with delayed pairs of intense ul-
trashort pulses �9–13�. The dynamic HHG signals have led to
suggestions of a “tomographic reconstruction” of the active
molecular orbital �14–16�, and to investigations of proton
motions �17� or molecular dynamics �18�.

In this paper, we derive fully a recently proposed �19,20�
quantum theory of intense-field dynamic alignment and high-
order harmonic generation from linear molecules, and we
apply it to analyze the observed dynamical HHG signals for
N2 and O2 molecules. Theoretical expressions for the signals
are given analytically as a simultaneous function of the two
external operational parameters—the delay time td and the
relative polarization angle � between the pump and the probe
pulse �9–13�.

Before proceeding further, we briefly discuss the main
experimental characteristics of dynamic alignment and the
HHG signals as observed for N2 and O2. We recall at the
outset that the quantum measure of dynamical alignment of a
rotating molecule is the expectation value of the “alignment
operator” cos2 �: A�td��Š�cos2 �	‹�td�, where � is the angle
between the molecular axis and the pump polarization direc-
tion; the double angular brackets stand for the expectation
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value with respect to the wave-packet states �inner brackets�
and the statistical average with respect to the Boltzmann dis-
tribution �outer brackets� of the initially occupied rotational
states. It was observed experimentally �9–13� that the dy-
namic �or delay-time-dependent� HHG signal for N2 mim-
icked the “alignment measure” A�td�. It exhibited the phe-
nomenon of rotational revivals �3,6,21� including the “full-
revival” with a period Tr= 1

2Bc , where B is the rotational
constant �22�, as well as a 1

2 -revival and a 1
4-revival. They are

consistent with the time dependence of A�td� defined above,
since the operator cos2 � can couple the rotational states with
�J= �2 �Raman allowed transitions� within the rotational
states of the induced wave packets, and thus can give rise to
the fractional revival periods associated with the correspond-
ing beat frequencies. In the case of O2, unexpectedly, an
additional 1

8 -revival appeared in the HHG signal �11–13�.
The latter is impossible for the alignment measure A�td� to
account for, since it cannot couple the rotational states with
�J= �4, which is necessary to give rise to a beat period 1

8Tr.
Thus, to fit their data of O2, Itatani et al. �11� proposed,
empirically, to consider the expectation value of the operator
B�td��Š�sin2 2�	‹�td�. Subsequently, some of the early theo-
retical models of the HHG signal �e.g., �23–25�� gave a simi-
lar result for O2 and thus appeared to justify the empirical fit.
Such a model also suggested that the maximum HHG signal
for N2 can occur when the field polarization and the molecu-
lar axis were parallel, whereas the maximum signal of O2
would occur when they are “diagonal” �i.e., make an angle
�=45°�. However, these models could not consistently ac-
count for other effects that are discussed below. Unlike the
time-dependent signals, their Fourier transforms �FT�, which
give rise to sharply defined individual spectral lines and se-
ries, can provide an alternative �and more precise� means of
studying the dynamic alignment phenomenon. More recent
experimental observations of the dynamic HHG signals for
N2 and O2 and their FT have revealed surprising character-
istics that cannot be fully understood in terms of the earlier
considerations. Thus, we mention the following:

�a� Kanai et al. �12� found that their experimental HHG
signals for N2 and O2 could not be well fitted, respectively,
by the expectation values of the operators cos2 � and sin2 2�
alone. Thus, they were led to consider empirically additional
operators involving higher powers of cos2 �, or Legendre
polynomials, for data-fitting purposes.

�b� Miyazaki et al. �13� measured the dynamical HHG
signals of N2 and O2 and Fourier transformed their signals
and found not only spectral series containing strong Raman
allowed but also weak Raman forbidden and anomalous
lines, for both N2 and O2.

�c� Itatani et al. �14� observed that the HHG signal from
dynamically aligned N2 was enhanced when the pump polar-
ization was taken parallel to the probe polarization, and was
suppressed when the polarizations were taken to be perpen-
dicular.

�d� Kanai et al. �12� and Miyazaki et al. �13,26� measured
the HHG signal for the diatomic N2, O2, and the triatomic
CO2, for different relative angles � between the pump and
probe polarizations, and they observed that the HHG signal
modulations are not only smaller in the perpendicular case,

compared to the parallel case, but also are of opposite phase
in the two geometries.

�e� Kanai et al. �12� proposed a planar emission model of
HHG, which produced an opposite phase relation, as ob-
served, but it did not yield the unequal modulation ampli-
tudes observed in the two geometries.

�f� The present theory predicted �cf. �20� and below� a
“magic” polarization angle, �c�55°, at which the harmonic
emission from coherently rotating molecules with �g orbital
symmetry �e.g., N2� becomes equal for all delay times td.
Most recent observations by Yoshii et al. �27� appear to con-
firm the same.

In this paper, we present an ab initio development of the
above-mentioned theory �19,20� that is shown to provide a
unified theoretical account of all the phenomena noted above
and other related characteristics of dynamic alignments and
HHG signals, as well as their Fourier spectra. We begin with
a short schematic description of a typical intense-field pump-
probe experiment on dynamic alignments and the molecular
HHG signals. They are investigated as a function of �a� the
time delay td and �b� the relative polarization angle � be-
tween the pump and probe pulse. In Secs. II–IV, we system-
atically derive the S-matrix theory of molecular alignment
and dynamic HHG signal from an ensemble of freely rotat-
ing linear molecules, discuss the connection between the
“one”- and the “many”-molecule signals, and derive the re-
lation between the quantum amplitude for the emission of a
HHG photon and the expectation value of the transition di-
pole moment. In Sec. V, we apply the theory to N2 and O2
molecules and give the analytic formulas for the “HHG op-
erators” and the HHG signals that are valid for any polariza-
tion angles, �, and any delay times, td. In Sec. VI, we use the
formulas for N2 and O2 to calculate the HHG signals for
specific experimental parameters, both in the time and fre-
quency domain, and we discuss the results with reference to
the experimental observations. In Sec. VII, we investigate a
number of problems of general interest, including the influ-
ence of the probe pulse on the dynamic alignment, the effect
of the initial temperature on the HHG signal, and the mean
energy of the rotating molecule after interaction with the
pump pulse. Next, we consider two other definitions used
earlier for the HHG signal and point out their differences
with respect to the present theory and observations. Finally,
we investigate the case of “adiabatic alignment” of linear
molecules simply by using the present theory in the limit of
a long pulse duration. We conclude with a summary in Sec.
VIII.

In Fig. 1, we show a schematic of a typical intense-field
pump-probe experiment. A laser beam is first split into two
parts, L1 and L2, by a beam splitter �BS� with a desired ratio
of the beam intensities. The probe-pulse L2 is delayed by
passing through a delay line system �D�, by a finite amount
td, with respect to the pump-pulse L1, and both are sent
through a beam mixer �BM�, coparallel, to the target gas
molecules from a gas jet. The high-order harmonic signal
produced by the probe pulse is recorded by the detector sys-
tem for each selected value of td. In addition, a polarizer P
can be inserted to rotate the angle of polarization of the
probe pulse with respect to the polarization direction of the
pump pulse at any desired angle �. The pulses are generally
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assumed to be effectively nonoverlapping �td�0� and they
are shorter than the period of the rotational degrees of free-
dom of interest. Note that both td and � provide controllable
parameters on the high-order harmonic emission process
from the outside.

II. A QUANTUM THEORY OF INTENSE-FIELD PUMP-
PROBE EXPERIMENTS AND MOLECULAR

HIGH-ORDER HARMONIC GENERATION SIGNALS

A. Total Hamiltonian and equations of motions of
the dynamical system

Within the adiabatic Born-Oppenheimer approximation of
the target molecule, the total Hamiltonian of the system can
be written �19� �in a.u.: e=�=m=�c=1� as

Htot�t� = HN + VN-L1
�t� + He + Ve-L2

�t − td� , �1�

where HN is the nuclear Hamiltonian, VN-L1
�t� is the interac-

tion due to the pump pulse with the nuclear motion at a time
t, He is the electronic Hamiltonian, and Ve-L2

�t− td� is the
interaction of the probe pulse with the active electron at a
delay td. We describe the two laser pulses �in the long-
wavelength dipole-approximation� F(� j�t�)� f�t�cos�� j�t��
and the corresponding vector potentials by A(� j�t�)=
− c

	 f�t�sin�� j�t��, where f�t� is the envelope of the electric
field �28�.

The phase � j�t� of the field at the position of the active
electron of the molecule is given by � j�t�= �	t−k	 ·X j�,
where the center of mass �C.M.� of the molecule is assumed
to be located at a position “X j”; 	 and k	 are the laser of
frequency and the wave number, respectively. For the sake of
simplicity of writing, we may suppress the X j and/or the
index j and t dependence of the phase factor � j�t�, unless
otherwise needed explicitly. It will be shown below that the
coherent signal appears for the “elastic” scattering �the final
state of the molecule is the same as the initial state�, and �for
an ideal gas medium� along the forward direction of the in-
cident field �cf. ��2� Sec. 4�, and references cited in that
section�.

Thus, we write the laser-molecule interaction Hamilto-
nians appearing above as

VN-L1
�t� = − 
F1�t� −

1

2

ij

F1i„��t�…�ijF1j„��t�… , �2�

where 
 is the permanent dipole moment �if nonzero� and �
with Cartesian components �ij; �i , j�= �1,2 ,3� is the polariz-
ability tensor of the molecule �always nonzero�; and

Ve-L2
�t − td� = − d̂e · F���t − td�� , �3�

where d̂e stands for the electronic dipole operator.

B. Total wave function in intense-field S-matrix theory

We first consider a systematic solution of the time-
dependent Schrödinger equation of the system

i
�

�t
��t� = Htot�t���t� �4�

using the general technique of intense-field many-body
S-matrix theory �IMST� �2�. In this approach, the total wave
function of the system satisfying a given initial �final� con-
dition can be written as a series expansion in such a way that
the dominant virtual states, when present, can appear already
in the leading terms of the series. To this end, we introduce
three partitions of the same total Hamiltonian “reference”
Hamiltonians and the corresponding interactions in the ini-
tial, “i,” final, “f ,” and intermediate �virtual� states, “0,”

Htot�t� = Hi + Vi�t� = Hf�t� + Vf�t� = H0�t� + V0�t� . �5�

It is also useful to define the reference Green’s functions
associated with the reference Hamiltonians, Hs�t�; s� i , f ,0,

�i
�

�t
− Hs�t��Gs�t,t�� = ��t − t�� . �6�

In general, the Green functions can be obtained from the
complete set of the fundamental solutions, 

 j

�s��t�	, of the
Schrödinger equations governed by the reference Hamilto-
nians Hs�t�; s= i , f ,0,

Gs�t,t�� = − i��t − t��

all j



 j
�s��t�	�
 j

�s��t��
 . �7�

The validity of the solutions Eq. �6� can be readily estab-
lished by operating on the left-hand side of Eq. �7� with
�i �

�t −Hs�t��, and using Eq. �6�, the completeness of the fun-
damental solutions, 
 j

 j

�s��t�	�
 j
�s��t�
=1 and the equation

�
�t��t− t��=��t− t��, to obtain a �-function integration on the
right-hand side, followed by the obvious simplification.
Thus, we can express the total wave function of the interact-
ing system, evolving from an arbitrary initial state, 
�i�t�	, as
a series,


��t�	 = 

j=0

�


�i
�j��t�	 , �8�

with


�i
�0��t�	 = 
�i�t�	 , �9�

�
�
�
�
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FIG. 1. A scheme of a typical pump-probe experiment. See text
for further explanation.
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�i
�1��t�	 = �

ti

tf

dt1Gf
0�t,t1�Vi�t1�
�i�t1�	 , �10�


�i
�2��t�	 = �

ti

tf �
ti

tf

dt2dt1Gf
0�t,t2�Vf�t2�G0�t2,t1�

�Vi�t1�
�i�t1�	 ¯ , �11�

and


�i
�n��t�	 = �

ti

tf

¯ �
ti

tf �
ti

tf

dtn ¯ dt2dt1Gf
0�t,tn�

�Vf�tn� ¯ G0�t3,t2�Vf�t2�G0�t2,t1�

�Vi�t1�
�i�t1�	 . �12�

III. MANY-MOLECULE VERSUS ONE-MOLECULE
SIGNALS

A. Transition amplitudes for high-order harmonic generation

Emission of a harmonic photon of frequency �=n	 and
wave vector K�, from its vacuum state 
0�	 �zero occupation
number in Fock space�, into a singly occupied number state,

1�	, is fundamentally a quantum electrodynamical process,
i.e., due to the interaction of the active electron with the
vacuum field albeit in the presence of the intense external
laser field. Its theoretical formulation, therefore, clearly re-
quires one to consider at least the combined state of the
system, consisting of the direct product of the ordinary space
of the laser field �semiclassical� plus molecule and the occu-
pation number space of the vacuum and the emitted photon
�cf., e.g., ��2�, Sec. 4.5��. Nevertheless, exactly the same re-
sult for the single-photon HHG emission amplitude can also
be obtained using the ordinary quantum mechanics, simply
by taking the quantum electrodynamically normalized inter-
action V*�t� for the emission of a photon into the initially
unoccupied vacuum mode of frequency � and wave vector
K� �cf. ��29,30�, Lecture 2��,

V*�t� = N�ei�j�t��� · d̂e. �13�

In the above, N���2���

L3 , L3 is the quantization volume, ��

is the polarization vector of the emitted photon, and de is the
usual electronic transition dipole operator; the phase � j�t�
= ��t−k	 ·X j�. As usual in the present dipole approximation,
we have neglected the retardation factor, e−iK�·r�1; we may
note explicitly that the exact position of the electron with
respect to an arbitrary coordinate origin is given by X j +r,
where as before X j is the C.M. of the jth molecule and r is
the position of the electron with respect to the C.M. of the
molecule.

The HHG amplitude for the emission of a harmonic fre-
quency � from the jth molecule is given �cf. ��2�, Sec. 4�� by
the sum of two “Feynman-like” diagrams, �a� and �b�, shown
in Fig. 2. The diagram �a� corresponds to the so-called “di-
rect” amplitude �associated with the retarded Green’s func-
tion�, whereas the diagram �b� corresponds with the “time-
reversed” amplitude �associated with the advanced Green’s

function�. The amplitude for the harmonic emission process
can be written down analytically from diagram �a� by read-
ing in the forward �upward� direction of time: First, the mol-
ecule is prepared by the “pump” laser pulse in the state i
�
�i�t�	. Next, the molecule interacts with the probe laser
field �short horizontal line with a cross�, then it propagates
through G0=G0

�+� �vertical line�. Next it interacts with the
vacuum field by V�*� �horizontal line ending in ��, and emits
the harmonic photon of frequency �, and finally returns to
the same state i�
�i�t�	 as before. A similar interpretation
holds for the time reversed diagram �b� except that here the
system evolves backward in time through G0=G�−�. The
quantum amplitude Aj���, for the emission of the HHG pho-
ton of frequency �, and wave number K�, from the molecule
located at X j, is given by the sum of the two diagrams,

Aj��� = diag�a� + diag�b� . �14�

Mathematically, we have

diag�a� = − i�
−�

�

dt�
−�

�

dt���i�t�
V*�t�

�G0
�+��t,t��Ve-L2

�t� − td�
�i�t��	 �15�

and

diag�b� = − i�
−�

�

dt�
−�

�

dt���i�t��
Ve-L2
�t� − td�

�G0
�−��t�,t�V*�t�
�i�t�	 . �16�

B. A relation between HHG amplitude and FT of the dipole
expectation value

1. Recasting the quantum HHG amplitude

Before proceeding further, we consider the relation be-
tween the quantum HHG amplitude, Eq. �14�, and the expec-

tation value of the electric dipole operator, d̂e, that is popu-
larly used for calculations of HHG signals. To this end, we
first rewrite the quantum amplitude Eq. �15� by introducing
the first-order wave function ��1� �cf. Eq. �10�� that arises
from the initial state 
�i�t�	 due to the interaction with the
probe pulse,

i

i

G0

(b)

{k}

(a)

G0

i

i

{k} +
Ω

Ω

FIG. 2. Quantum amplitude for coherent emission of a high-
order harmonic photon �frequency �� is the sum of a direct �a� and
a time-reversed �b� diagram.
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��1��t�	 = �
−�

�

dt�G0
�+��t,t�� � Ve-L2

�t� − td�
�i�t��	 .

�17�

We may first rewrite Eq. �15� as

diag�a� = − i�
−�

�

dt��i�t�
V*�t�
��1��t�	

= − i�
−�

�

dtei��t−K�·Xj� � ��i�t�
N��� · d̂e
��1��t�	 ,

�18�

where we have used the explicit form of the interaction
V*�t�. Next we rewrite Eq. �16� using a standard relation
satisfied by the advanced and the retarded Green functions
�e.g., �30��,

G0
�−��t�,t� = �G0

�+��t,t���*. �19�

We also note that the laser-molecule interaction is real �Her-
mitian�, i.e.,

Ve-L2
�t� = �Ve-L2

�t��*. �20�

Thus, the integral over dt� in Eq. �16� can be rewritten as

diag�b� = − i�
−�

�

dt�
−�

�

dt���i�t��
Ve-L2
�t� − td�

�G0
�−��t�,t�V*�t�
�i�t�	

= − i�
−�

�

dt�
−�

�

dt� � �G0
�+��t,t��Ve-L2

�t� − td�
�i�t��	�*

� V*�t�
�i�t�	

= − i�
−�

�

dt���1��t�
V*�t�
�i�t�	

= − i�
−�

�

dtei��t−K�·Xj� � ���1��t�
N��� · d̂e
�i�t�	 .

�21�

Hence, adding Eqs. �18� and �21�, we get the quantum HHG
amplitude in the suggestive form

Aj��� = − iN��� · �
−�

�

dtei��t−K�·Xj� � ���i�t�
d̂e
��1��t�	

+ ���1��t�
d̂e
�i�t�	�

= − iN��� · �
−�

�

dtei��t−K�·Xj� � ���i�t�
d̂e
��1��t�	

+ c.c.� , �22�

where “c.c.” stands for the complex conjugate.

2. Dipole expectation value

The expectation value of the dipole operator, Di,i�t�, can
be calculated using the lowest-order KFR approximation

�31–33� of the system wave function as follows:

Di,i�t� = ���t�
d̂e
��t�	 = ��i�t�
d̂e
�i�t�	 + ���i�t�
d̂e
��1��t�	

+ ���1��t�
d̂e
�i�t�	� + ¯

= ���i�t�
d̂e
��1��t�	 + c.c.� + ¯ . �23�

Note that the zeroth-order term in the first line above van-
ishes for centrosymmetric systems; we have also neglected
the quadratic powers of the first-order KFR correction �and
the higher-order terms�.

Combining Eq. �23� with Eq. �22�, the quantum HHG
amplitude can be expressed in the form

Aj��� = − ie−iK�·XjN��� · �
−�

�

dtei�tDi,i�t� . �24�

Thus, the quantum HHG amplitude is clearly proportional to
the Fourier transform �FT� of the expectation value of the
transition dipole operator, Eq. �23�. We may recall that the
proportionality constant N� above is of quantum electrody-
namical origin and cannot be derived from the classical elec-
trodynamics alone �34�.

In practice, the FT of interest can be conveniently ob-
tained by fast Fourier transform �or FFT� numerically �35�.
Alternatively, for “slowly varying” pulse envelopes �com-
pared to the high-order harmonic frequency� one may ex-
press the FT of Di,i�t� as a Fourier series �28�,

Di,i�t� = 

n

e−in�	t−k	·Xj�D̃�n	� , �25�

where D̃�n	� is the FT evaluated at the nth harmonic fre-
quency �=n	. Thus, in terms of the FT components, the
HHG amplitude Aj��� becomes

Aj��� = 

n

− 2�i��� − n	�e−i�K�−nk	�·Xj � N��� · D̃i,i�n	� ,

�26�

where we have carried out the time integration over dt, using
the Dirac � function.

C. Coherent sum of HHG amplitudes: Many-molecule versus
one-molecule signal

It is interesting also to consider the total amplitude
Atot��� of HHG emission from all the molecules interacting
with the �probe laser� field. This is given by the coherent
sum of the individual amplitudes emitted by the molecules at
the positions X j for all j=1,2 ,3 , . . . ,N, where N is the num-
ber of molecules in the interaction volume, or

Atot��� � 

j=1

N

Aj��� = 

n
�


j=1

N

e−i�K�−nk	�·Xj�
1

��− 2�i

n

��� − n	�Ti,i����
2

�27�

where we may identify the basic HHG transition matrix ele-
ment for the emission of the nth harmonic per molecule as
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Ti,i��� = N��� · D̃i,i��� . �28�

It can be seen from Eq. �27� that the nth harmonic emission
amplitude in fact factorizes into two parts: the first factor
corresponds to the sum of the macroscopic space-dependent
phases associated with the random positions X j of the C.M.’s
of the molecules in the interaction volume, and the second
factor corresponds to the fundamental “one-molecule” emis-
sion amplitude, independent of the position of the C.M.’s of
the molecules. The macroscopic phase factor is explicitly
given by

�¯�1 � � 

j=1,N

e−i�K�−nk	�·Xj�
1

. �29�

For a large number of molecules in the interaction volume,
N�1, the phase factor oscillates greatly and thus tends to
average out to zero, except when the condition

�K� − nk	� = 0 �30�

is fulfilled; in that case, it yields the phase sum �¯�1=N. It
is readily understood that the condition �30� corresponds ex-
actly to the momentum conservation between the final mo-
mentum of the emitted harmonic photon, �K�, and the sum
of the momenta of n laser photons, n�k	. This is the phase-
matching condition in the forward direction �37�.

The probability of emission of the harmonics is given as
usual by the absolute square of the total amplitude Eq. �27�.
Under the phase-matching condition, the latter is therefore
coherently amplified by a �generally large� factor of N2. This
is also the origin of the quadratic pressure dependence of the
high-order harmonic signals, as well as their unusual
strengths, that had been found in the very first experimental
observations �e.g., �38,39��.

The second factor �¯�2 gives the fundamental “one-
molecule” quantum emission amplitude. We also note that if
the absolute probability of the harmonic emission is needed,
then the proportionality factor N�=�2��	

L3 becomes essential,
and that for a given polarization direction of the emitted
photon, ��, the projection of the dipole expectation value
must be taken in that direction.

D. Continuous medium and the phase-matching function

If one assumes that the gas molecules are distributed ef-
fectively continuously with a distribution function
N��R�d3R, where ��R� is the so-called “density function per
molecule,” then one may replace the sum over j in Eq. �29�
by the integration over the interaction volume. Clearly, in
this case the square of the macroscopic phase factor, 
�¯�1
2,
takes the form


�¯�1
2 = N2F�K� − nk	� , �31�

where

F�K� − nk	� = �� d3X��X�ei�K�−nk	�·X�2

, �32�

which is the so-called phase-matching function. It peaks for
its argument near zero �near the forward direction�, but falls
off rapidly away from it.

E. Coherent elastic versus incoherent inelastic transitions

Equations �30� and �27� show, respectively, that both the
phase-matching condition �momentum conservation� and the
frequency-matching condition �energy conservation� in the
process ought to be fulfilled simultaneously in order for the
macroscopic signal to be coherently amplified in space and
time. As already noted, the former condition leads to the
directional coherence �forward propagation� of the HHG
emission, while the latter implies the elastic nature of the
accompanying molecular transitions for which the final �“re-
combination”� state f of the molecular system is the same as
the initial state i, with Ei=Ef. In contrast, for an inelastic
transition, i→ f , when Ei�Ef, there would be in general only
“hyper-Raman” emissions, with frequencies �if� = �n	− 
Ei
−Ef
�, that are generally incommensurate with the incident
laser frequency or its multiple, or the HHG frequency, �
=n	. Thus the nonvanishing relative phase difference ��
��
Ei−Ef
−n	�t would fail to stimulate the hyper-Raman
transitions by the incident field, unlike the stimulated spon-
taneous nature of the associated HHG. Also the nonvanishing
momentum difference between hyper-Raman radiation and
the harmonic photon, K�if

−nk	�0, makes the former mac-
roscopically and directionally incoherent.

Finally, we note that the probability of the electronically
inelastic processes associated with the transitions into the
continuum �e.g., ionization� or between continua �e.g., in-
verse bremsstrahlung �40�� that are commensurate with the
emission of the nth harmonic at the “one-molecule” level
will be incoherent spatially, and therefore would enhance
only proportional to the total number of molecules, N, in the
interaction volume. This is in stark contrast to the coherent
amplification of the HHG emission at the nth harmonic,
which is proportional to N2.

F. Differential rate of coherent high-order harmonic
generation

To derive the explicit expression for the probability of
HHG per unit time, i.e., the rate of generation of coherent
high-order harmonics, we take the absolute square of the
total HHG amplitude, Eq. �27�, and divide by the long ob-
servation time T, use a useful representation of the square of
the � function ��2�, p. R12�,

�2�� − n	� = lim
T→�

T

2�
��� − n	� , �33�

and sum over the emitted photon modes �with 
K�

�L3�dK̂��dK�K�
2 � and get

W��� = lim
T→�



K


Atot���
2

T

= N2

n
� dK̂�F�K� − nk	� �� dW�n	� , �34�

where
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dW�n	� = 2���� − n	�L3 � 
N��� · D̃i,i�n	�
2K�
2 dK�

�35�

is the differential rate of HHG per molecule. Noting that the
main contribution arises from the phase-matching condition
along the forward direction, we may carry out the mode in-
tegrations to get

W�n	� = 2�
Ti,i
�n�
2

�n	�2

c3 , �36�

where we have used K�� �

c , K��K�K̂�, and the fundamen-
tal transition matrix element for the emission of the nth har-
monic, Ti,i

�n�, is given in terms of the FT of the dipole expec-

tation value D̃i,i�n	� by

Ti,i
�n� = �2��n	��� · D̃i,i�n	� �37�

for L3
N�
2=2��n	�.

IV. EVALUATION OF “ONE-MOLECULE” HHG
AMPLITUDE

Clearly the dynamical properties of the HHG signal are
given by the rate of HHG emission per molecule, Eq. �36�,
while the total signal is the same to within a proportionality
constant given by the square of the number of molecules in
the interaction volume, N2, and the phase-matching constant

�dK̂�F�K�−nk	� that peaks in the forward direction. We
therefore proceed to evaluate the dynamical signal per mol-
ecule �in a relative scale� as follows: �i� solve the
Schrödinger equation for the nuclear and the electronic mo-
tions of the interacting laser-molecule system, �ii� construct a
complete set of orthonormal reference states, 
i	�
�i�t�	, of
the molecule, created by the pump pulse, �iii� determine their
statistical weights according to the one-to-one correspon-
dence with the thermally occupied rotational eigenstates of
the ensemble, �iv� calculate the “one molecule” probability
amplitude for HHG for each member of the ensemble of
linearly independent reference states 
i	, using Eq. �36�, and
finally, �v� obtain the �scaled� signal “per molecule” by ther-
mally averaging the probabilities of HHG emission from
each member of the ensemble of the reference states, using
the distribution of their statistical weights.

In the Born-Oppenheimer approximation and nonoverlap-
ping pump and probe pulse condition, we may consider the
evolution of the wave functions of the nuclear and the elec-
tronic parts separately and combine them together to obtain
the wave function of the interacting system to evaluate the
transition matrix elements of interest.

A. Pump-pulse interaction and rotational wave packets as
reference states

The nuclear rotational motion under the action of the
pump pulse is determined by the Schrödinger equation gov-
erned by the partial Hamiltonian,

HN�t� + VN-L1�t� , �38�

i.e.,

i
�

�t

�JM�t�	 = �HN + VN-L1

�t��
�JM�t�	 . �39�

We first construct the fundamental set of linearly indepen-
dent solutions of Eq. �39�, each evolving independently from
each of the occupied rotational eigenstates �
J0M0	�. We ex-
pand it on the basis of the eigenstates �
JM	� as


�J0M0
�t�	 = 


JM

CJM
�J0M0��t�
JM	e−iEJMt. �40�

The coefficients CJM
�J0M0��t� satisfy the system of coupled lin-

ear differential equations

i
�

�t
CJM

�J0M0��t� = 

J�M�

�JM
VN-L1
�t�
J�M�	

�ei�EJM−EJ�M��tCJ�M�
�J0M0��t� . �41�

This set of equations can be easily obtained �e.g., �41�� by
projecting on a given eigenstate from the left. In practice, we
obtain the fundamental set of solutions 
�J0M0

�t�	 by numeri-
cal integration, using the well-known Runge-Kutta method
�35�, starting with the following independent initial condi-
tions:

CJM
�J0M0��ti� = �J,J0

�M,M0
. �42�

We may note explicitly here that �a� each independent wave-
packet state 
�J0M0

�t�	 evolves in one-to-one correspondence
with the initially occupied rotational eigenstate 
J0M0	.
Taken together, they form a complete set of orthonormal ro-
tational wave-packet states �linear superposition of rotational
eigenstates�,



J0M0


�J0M0
�t�	��J0M0

�t�
 = 1 . �43�

In general, a gas jet of molecules in a pump-probe experi-
ment at a finite temperature T is not in a pure quantum state
but rather is in a state of thermal mixture of the rotational
eigenstates, �
J0M0	�. We therefore introduce the quantum
statistical mechanical device of a hypothetical ensemble of
mutually independent and identical reference molecules,
each of which occupies the electronic ground state and the
rotational eigenstates �
J0M0	�, the latter with statistical
weights ��J0M0�, given by the Boltzmann distribution,

��e,J0M0� = �1�eZPe−EJ0M0
/kT, �44�

where

ZP = 

J0

�2J0 + 1�e−EJ0
/kT �45�

is the rotational partition function; EJ0M0
=J0�J0+1�hBc, for

all M0; B stands for the rotational constant. We shall assume
for the present purpose that the pump pulse is not too strong
so that the change in the occupation probability of the
ground electronic state after the pump pulse interaction is
negligible and hence the ground electronic state at a time t
before the interaction with the probe pulse evolves simply to

�e�t�	=e−iEet
�e�0�	, where Ee is the ground-state energy.
�We may assume that electronically only the ground elec-
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tronic state 
�e�0�	 is occupied initially.� Thus, the linearly
independent reference states of the molecule, after the inter-
action of the pump pulse and immediately before the inter-
action with the probe pulse, can be written as the direct prod-
uct of the nuclear rotational wave-packet states and the
electronic ground state,


�i�t�	 � 
�J0M0
�t�	
�e�t�	, i � �e,J0M0� . �46�

The reference density matrix describing the molecular en-
semble prepared by the pump pulse takes the form

�mol�e,J0M0� = 

i


�i�t�	��e,J0M0���i�t�


= 
�e�t�	
�J0M0
�t�	��j0M0� � ��J0M0

�t�
��e�t�
 ,

�47�

where i��e ,J0M0�. The above ensemble of states describes
the effective “initial” condition of the system after the pump
pulse when the probe pulse arrives at the molecule at X j. To
avoid any possible confusion regarding the presence of the
ensemble of “mixed states,” and the “rotational coherence,”
we may already point out explicitly that while the ensemble
at a given point in space is characterized by the statistical
occurrence of the reference states �
�i=e,J0M0

�t�	�, each one of
the reference states carries the information of the rotational
coherence �induced by the pump pulse� and coded in the
rotational wave packets �
�J0M0

�t�	� of the reference states.
Thus, the thermal average of the HHG emission signal that
must be taken with respect to the probability of emission
from each member of the ensemble �as required by quantum
statistical mechanics� cannot, and will not, wash out the ro-
tational coherence encoded in each of the reference states
individually.

B. Interaction with probe-pulse and evolution of the electronic
state

To proceed further, we next consider the time evolution of
the electronic state, governed by the partial Hamiltonian

He + Ve-L2
�t − td� . �48�

It is obtained conveniently from the knowledge of the elec-
tronic Green’s function Ge�t , t�� �20� associated with the
above Hamiltonian, and defined by the inhomogeneous equa-
tion

�i
�

�t
− �He + Ve-L2

�t − td���Ge�t,t�� = ��t − t��1 . �49�

A solution of the above equation can be written �in the
strong-field KFR-approximation� as

Ge�t,t�� = − i��t − t��

j,p


� j
�+�	e−iEj

+t
p�t − td�	

� e−�i/2��
t�−td

t−td p2�u�du � �p�t� − td�
eiEj
+t��� j

�+�
 ,
�50�

where j runs over all the intermediate ionic electronic states


� j
�+�	, with eigenvalues Ej

+; p is the free momentum of the
continuum electron, and p�t� stands for the instantaneous
momentum in the presence of the field, p�t���p+ A�t�

c �. The
validity of Eq. �50� can be verified by substituting it in Eq.
�49� and using the completeness relation



p

�r
�p�t�	��p�t�
r	 = 1 �51�

of the Volkov wave functions defined by

�r
�p�t�	 = eip�t�·re−�i/2���t�p2�u��du� �52�

as well as the completeness relation of the molecular ionic
states



j


� j
�+�	�� j

�+�
 = 1. �53�

We should note that the ionic states are generally much more
tightly bound than the active electron in the highest occupied
molecular orbital �HOMO�. Thus in deriving Ge above, we
have further neglected the change in the ionic states due the
interaction with the probe pulse, which we may refer to as a
“bare-ion” approximation.

Finally, using Eqs. �43� and �50� we obtain the total
Green’s function G0�t , t�� of the interacting system,

G0�t,t�� = − i��t − t�� 

jpJM


� j
�+�	
�p�t − td�	

� 
�JM�t�	e−iEj
+�t−t����JM�t��
 � ��p�t� − td�
�� j

�+�
 .
�54�

The above Green’s function �54� therefore holds under �a�
the adiabatic Born-Oppenheimer, �b� the strong-field KFR,
and �c� the “bare-ion” approximations.

C. The total wave function in the strong-field molecular KFR
approximation

Combining Eqs. �17� and �46�, we obtain the intense-field
molecular wave function,


�i�t�	 = 
�i�t�	 + �
−�

�

dt� � G0�t,t��Ve-L2
�t� − td�
�i�t��	 ,

�55�

where


�i�t�	 = 
�e�t�	
�J0M0
�t�	 �56�

is a member of the ensemble of reference states of interest.

D. Evaluation of the dipole expectation value

In the above, we have obtained the necessary ingredients
for evaluating the expectation of the dipole operator, Eq.
�23�, explicitly. Substituting Eqs. �54� and �55� in Eq. �23�,
we get
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Di,i�t� = ��i�t�
d̂e
�i
�1��t�	 + c.c. = �− i�

−�

t

dt���e�t�


���J0M0
�t�
d̂e � 


jpJM


� j
�+�	
�p�t − td�	

� 
�JM�t�	e−iEj
+�t−t����JM�t��
 � ��p�t� − td�
�� j

�+�


� Ve-L2
�t� − td�
�J0M0

�t��	
�e�t��	� + c.c. �57�

To simplify it further, �i� we change the variables t�→ t�
+ td and t→ t+ td; �ii� we note that the free evolution of a
rotational wave packet after the interaction with the pump
pulse at �t+ td� is �J0M0

�t+ td�=e−iHNt�J0M0
�td�, and, simi-

larly, at �t�+ td�, it is �J0M0
�t�+ td�=e−iHNt��J0M0

�td�; and �iii�
we note that the time dependence of the upper-turbed initial
electronic state at �e�t+ td�= 
�e	e−iEi�t+td�, and similarly for

the ionic states, � j
�+��t+ td�= 
� j

�+�	e−iEj
+�t−td�; �iv� we introduce

the overlaps �or “Dyson orbitals”�,


�e
�j�	 = �� j

�+��1,2, . . . ,Ne − 1�
�e�1,2, . . . ,N − 1,N�	;
�58�

and �v� we retain only the �dominant� contribution from the
lowest-lying intermediate ionic state �j=0�, to obtain

Di,i�t� = − i 

jJM,p

��J0M0
�t�
��e

�0�
d̂e
 � 
p�t − td�	
� j
+	
�JM�t�	

� �
−�

t

dt�e−i�Ej
+−E0��t−t�� � e−i�

t�−td

t−td �p�u�2/2�du

� ��JM�t��
�� j
+
�p�t� − td�
 � 
Ve-L2

�t� − td�
�e
�0�	

�
�J0M0
�t��	 + c.c. �59�

Or

Di,i�t� = ��J0M0
�t�
De�t�
�J0M0

�t�	 , �60�

with the electronic part of the expectation value

De�t� = �− i

p

��e
�0�
d̂e
p�t�	 � �

−�

td+t

dt�e−i�
t�
t �p�u�2/2+EB�du

� �p�t��
− F�t�� · d̂e
�e
�0�	� + c.c., �61�

where F�t� is the probe field. Finally, by using the rate of
emission of the nth harmonic as given by Eq. �36�, we obtain
the dynamic HHG signal, for a pump-probe delay time td,

S�n��td,�� = 2� 

J0M0

��J0�
��J0M0
�td�
Te

�n���,�;��


� 
�J0M0
�td�	
2

�n	�2

c3 , �62�

where �� ,��� R̂N is the direction of the molecular axis in
space, and Te

�n��� ,� ;�� is the electronic part of the HHG
transition operator for a given orientation of the molecular
axis and a relative polarization angle �.

E. Derivation of the HHG operator T(n)(� ,� ;�)

We shall now proceed to derive an explicit expression of
the HHG transition operator Te

�n��� ,� ;�� or equivalently �to
within a constant� the transition dipole expectation value
De�td�. To this end, we first consider the most common ex-
perimental geometry in which the pump and probe polariza-
tions are chosen to be parallel.

1. HHG operator: Parallel polarization �=0

We recall that for a linearly polarized probe pulse F2�t�
= �̂�F�t�cos 	t, the corresponding vector potential is

A�t� = − �̂�� cF�t�
	

�sin 	t . �63�

It is convenient in this case to take the space fixed polar axis
�z axis� along the common direction of the polarizations
�1��2�ẑ. To evaluate the triple-integral over the intermediate
momenta p in Eq. �61�, we employ the stationary phase
method �42�, with the stationary values

pst�t,t�� =
1

t − t�
�

t�

t

A�t��dt�, �64�

for which the derivative of the action S�t , t�� with respect to
t�= t−� is equal to zero. The corresponding stationary value
of the action is

Sst�t,t�� = �
t�

t �1

2
�pst�t,t�� −

1

c
A�t���2

+ EB�dt�, �65�

where p�t�=pst�t , t��− 1
c A�t� and p�t��=pst�t , t��− 1

c A�t��.
Thus, projecting the resulting value of De�t� on to the polar-
ization direction �� of the emitted harmonic, we get

De�t� = �i�
0

t

dt�� �

� + i�t − t��/2
�3/2

���e
�0�
�� . r
p�t�	e−iSst�t,t��

��p�t��
F�t�� . r
�e
�0�	� + c.c. �66�

We may note that the first matrix element in this expression
�reading from the right to the left� corresponds to the “ion-
ization” transition at time t�, dion�t����p�t��
F�t�� ·r
�e

�0�	,
whereas the last matrix element corresponds to a “recombi-
nation” transition of the electron to the same initial state at a
time t, or drec�t����e

�0�
�� ·r
p�t�	. The interval �t− t�� corre-
sponds to the intermediate time that the electron spends in
the continuum Volkov states, between the absorption of n
photons from the probe pulse and the emission of the har-
monic photon of frequency �=n	. We have assumed that
the depletion of the ground-state population during the pro-
cess is negligible. However, if needed, a weak depletion due
to ionization could be accounted for without difficulty by
introducing in the above expression an exponential decay
factor: e−��/2��t+t��, where � is the total ionization rate.
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2. The “ionization” and “recombination” matrix elements

To evaluate the matrix elements of “ionization” and “re-
combination” in Eq. �66�, we assume that the wave function
of the active electron may be given by the highest occupied
molecular orbital. �If needed, other occupied orbitals can be
considered analogously.� It can be written either in the mul-
ticenter LCAO-MO form, or we may transform it into an
equivalent single-center MO �e.g., �43,44��. It is useful also
to note that in the latter form, it often suffices for problems
of interaction of molecules with long-wavelength laser fields
�preferably in conjunction with the “length gauge”� to retain
only the asymptotic form of the orbitals at distances away
from the molecular center. Let the unperturbed MO of the
active electron of a linear molecule be given in the body
fixed frame by the single-center expansion,

�e
�0��r� = 


l

Cl
�m�Rl�r�Ylm�r̂� , �67�

where Cl
�m� are the expansion coefficients, Rl�r� are the radial

waves of angular momentum l, Ylm�r̂� are the spherical har-
monics, and m is the conserved projection quantum number
of the angular momentum, l, of the active electron, along the
molecular axis.

Next, we transform the molecular orbitals, Eq. �67�, from
the body fixed frame to the space fixed frame, using the
Wigner transformation D,

�e
�0��r� = D̂�e

�0��r� = 

l

Cl
�m�Rl�r� � 





D
m
l ��,�,��Yl
�r̂� .

�68�

Above, D
m
l �� ,� ,��=e−i
�d
m

l ���e−im� is the Wigner rota-
tion matrix where �� ,� ,�� are Euler’s angles, which define
the orientation of the molecular axis to the space fixed coor-
dinate frame �e.g., �45��. The middle term of the Wigner
matrix, d
m

l ���, has been tabulated, e.g., in Refs. �45,46�. The
matrix element of the dipole along the direction of the probe
pulse, appearing in Eq. �66�, then reads

dion�t�� = F�t��

l

Cl
�m�





D
m
l ��,�,��

� �eipt�·r
�	 · r
Rl�r�Yl
�r̂�	 . �69�

Further, we expand e−ipt�·r in spherical harmonics,

e−ipt�·r =
�2��3/2

�pt�r


l�m�

�− i�l�Jl�+1/2�pt�r� � Yl�m��p̂t��Yl�m�
* �r̂� ,

�70�

and note that in this system of axes we have

�	 · r = r�4�

3
Y10�r̂� . �71�

We note also that the stationary instantaneous momentum pt�
can be either parallel or antiparallel with respect to the di-
rection of the field so that �pt

=0, � and �pt
=0. Therefore,

the spherical harmonics with the argument p̂t� can be simpli-

fied to Yl�m��p̂t��= ���l��2l�+1
4� �m�,0, with �=1 for �pt

=0 and
�=−1 for �pt

=�. Substituting Eqs. �70� and �71� in Eq. �69�,

we obtain �with l= li for the initial bound state in the “ion-
ization” matrix element�

dion�t�� = F�t��
�2��3/2

�3pt�



li,l�,


Cli
�m�D
m

li ��,�,��

��− i��l���2l� + 1��l�0
10
li
	Ili,l��t�� , �72�

where we have defined the radial integrals �m fixed� by

Ili,l��t�� = �
0

�

Jl�+�1/2��pt�r�Rli
�r�r−1/2rr2dr . �73�

The Clebsch-Gordan coefficient in Eq. �72� implies that only
the terms with 
=0 and l�= l�1 survive in the sums �e.g.,
�45,46��

�l�0
10
li
	 =� � 3

4�
�1/2� li + 1

��2li + 3��2li + 1�
��l�li+1�0


� 3

4�
�1/2� li

��2li + 1��2li − 1�
��l�li−1�0
.�

�74�

Thus, for the “ionization dipole,” we get

dion�t�� = F�t��

li

Cli
�m�D0m

�li���,�,���ion�li,m;t�� �75�

with

�ion�li,m;t�� =
2�

�2pt�

1
��2li + 1�

� ��− i��li+1�li + 1�Ili,li+1�t��

+ �− i��li−1liIli,li−1�t��� . �76�

Using the Slater-orbital representation of the single center
radial functions, Rl�r�=r�−1e−pBr, with ��Zc / pB, Zc is the
core charge, and pB=�2
EB
 with EB the binding energy, the
radial integrals �I’s� appearing in dion �Eq. �72�� can be evalu-
ated explicitly by using the formula �47�

�
0

�

e−�xJ���x�x
−1dx =
��

2
��

��� + 
�

���2 + �2��+
��� + 1�

� F�� + 


2
,
1 − 
 + �

2

,� + 1;
�2

�2 + �2� , �77�

where F�a ,b ,c ;x� is a hypergeometric function. Note that
since the argument x� �2

�2+�2 �1, the hypergeometric func-
tion is guaranteed to converge for all values of a, b, and c.
For the “ionization” step, the radial integration reads
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Ili,li+1�t�� =

� pt�

2
�l+3/2

��li + Zc/pB + 4�

��PB
2 + pt�

2 �li+Zc/pB+4��li +
5

2
�

� F� li + Zc/pB + 4

2
,
li − Zc/pB

2
,li +

5

2
;

pt�
2

pB
2 + pt�

2 � ,

Ili,li−1�t�� =

� pt�

2
�li−1/2

��li + Zc/pB + 2�

��pB
2 + pt�

2 �li+Zc/pB+2��li +
1

2
�

� F� li + Zc/pB + 2

2
,
li − Zc/pB − 2

2
,

li +
1

2
;

pt�
2

pB
2 + pt�

2 � . �78�

We may assume that the emitted harmonic is observed
with its polarization along the same direction as the probe
pulse polarization. �There is no difficulty, except lengthier
algebra, to obtain the expression for the polarization direc-
tion orthogonal to it, but the former would give the dominant
contribution under phase-matching condition.� Following an
analogous calculation as above, we get the “recombination”
matrix element as �with l= lr for the final bound state in the
“recombination” matrix element�

drec�t� = 

lr

C
lr

�m�*D0m

lr*��,�,���rec�lr,m;t�� �79�

with

�rec�lr,m;t� =
2�

�2pt

1
��2lr + 1�

���i��lr+1�lr + 1�Ilr,lr+1�t� + �i��lr−1lrIlr,lr−1�t�� .

�80�

The radial integrals in Eq. �80� can be evaluated by using Eq.
�78�, except that li is changed to lr, and t� to t, throughout.
Substituting Eqs. �75�, �76�, �79�, and �80� in Eq. �66�, we
obtain

De�t� = 

li,lr

d0m
lr ���d0m

li ��� � �C
lr

�m�*Cli
�m�Me

�lr,li��t� + c.c.� ,

�81�

where we have used the relation

D0m

lr*��,�,��D0m
li ��,�,�� = d0m

lr ���d0m
li ��� �82�

and defined the radial integral

Me
�lr,li��t� = i�

td

td+t

dt�� �

�� + i�t − t��/2��
3/2

� �rec�lr,m;t�e−iSst�t,t�� � F�t���ion�li,m;t�� .

�83�

Next, by integrating over t�, taking the Fourier transform
with respect to t, we obtain �cf. Eq. �28�� the HHG operator
Te

�n��� ,� ;0� for the nth harmonic generation,

Te
�n���,�;0� = �2��n	�D̃e�n	�

= �2��n	�

li,lr

d0,m
lr ���d0,m

li ��� � �̃zz
�n��lr,li;m� ,

�84�

where, �̃zz
�n��lr , li ;m� is given by the nth Fourier coefficient of

De�t�,

�̃zz
�n��lr,li;m� � F�C

lr

�m�*Cli
�m�Me

�lr,li��t� + c.c.�n, �85�

where script F is the Fourier transform. Next, by substituting
Eq. �84� in Eq. �62�, we obtain the rotational matrix ele-
ments,

��J0M0
�td�
d0m

lr ���d0m
li ���
�J0M0

�td�	 , �86�

which can be evaluated directly by using the tabulated values
of the d0m

l ��� given by elementary trigonometric functions
�see Table I�. Alternatively, we may first combine the product

d0m
lr ���d0m

li ��� =� 4�

2lr + 1
�− 1�mYlr,−m��,��

�� 4�

2li + 1
Yli,m

��,��

= 

L=
lr−li

lr+li

�− 1�m�lr,li,− m,m
L,0	

��lr,li,0,0
L,0	PL�cos �� �87�

and we obtain

Te
�n���,�;0� = 


li,lr,L
a�̃zz

�n��lr,li,L;m�PL�cos �� , �88�

where

TABLE I. Explicit form of d0m
l ��� required for evaluating Eq.

�84� �45,46�.

l N2 �m=0� O2 �m=1�

0 1

2 1

2
�3 cos2 �−1� �3

2
sin � cos �

4 1

8
�3−30 cos2 �+35 cos4 �� −

�5

4
sin � cos ��3−cos2 ��
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a�̃zz
�n��lr,li,L;m� = �2��n	��̃zz

�n��lr,li;m�

��− 1�m�lr,li,− m,m
L,0	 � �lr,li,0,0
L,0	 .

�89�

Thus, the expectation value of the transition operator with
respect to the rotational wave packet can be obtained more
elegantly in terms of the Legendre polynomials moments,

�PL	J0M0
�td� � ��J0M0

�td�
PL���
�J0M0
�td�	 . �90�

Finally, by substituting the above relations �Eq. �88�� in Eq.
�62�, and taking the statistical average over the ensemble of
the emission probabilities from the ensemble of rotational
wave packets, we obtain the HHG signal �i.e., the rate per
unit time of generation of the nth harmonic per molecule� in
the special case of parallel polarizations �cf. �19��,

S�n��td;0� = 2� 

J0M0

��J0�� 

L,lr,li

a�̃zz
�n��lr,li,L;m�

� �PL	J0M0
�td��2 �n	�2

c3 . �91�

F. General polarization geometry: Arbitrary �

So far we have assumed that the pump and the probe
polarizations are parallel and that they point along the space
fixed polar axis ẑ. In the general case, we may define, with-
out loss of generality, the relative angle between the polar-
izations, �, to lie in the �z ,z� ,x� plane �cf. Fig. 3�. From the
figure, it can be seen that we simply need to re-express the
direction of the molecular axis, �� ,��, given with respect to
the pump polarization �1 � ẑ, in terms of the direction ��� ,���
with respect to the probe polarization direction �2 � ẑ. This is
readily achieved by simply replacing cos �→cos ��, and us-
ing the well known relation

cos �� = cos � cos � + sin � sin � cos � �92�

or the vector addition coefficients and the addition theorem

PL�cos ��� =
4�

2L + 1
YL,M��,��Y

L,M
* ��,0� . �93�

Thus, we obtain the general expression of the HHG operator
for any � �20�,

Te
�n����,��;�� = �2��n	�


li,lr

d0,m
lr ����d0,m

li ���� � ãzz
�n��lr,li;m� .

�94�

Or,

Te
�n����,��;�� = 


lr,li,L,M
ãzz�

�n��lr,li,L;m�PL�cos ���

= 

LM



lr,li

ãzz�
�n��lr,li,L;m�

�
4�

2L + 1
YL,M��,��Y

L,M
* ��,0� , �95�

where ãzz�
�n��lr , li ,L ;m� is given by Eq. �89�.

It should be noted that, in general, if the molecular orbital
coefficients were assumed to be complex,

Cl
�m� � 
Cl

�m�
ei�l, �96�

then we should rewrite the dynamic parameters �̃zz
�n��lr , li ;m�

�Eq. �85�� as

�̃zz
�n��lr,li;m� = F�C

lr

�m�*Cli
�m�Me

�lr,li��t� + c.c.�n = 2
Clr
�m�

Cli

�m�


��cos��lilr
�ũlr,li,m

�n� − sin��lilr
�ṽlr,li,m

�n� � , �97�

where

�lilr
� ��li

− �lr
� . �98�

Me
�lr,li��t� is given by Eq. �83�, and we have defined

ũlr,li,m
�n� = F�Re�Me

�lr,li��t���n, �99�

ṽlr,li,m
�n� = F�Im�Me

�lr,li��t���n. �100�

Thus, finally, we can express the general transition matrix
element for the nth-order harmonic as an expansion in Leg-
endre polynomials in cos �, and the corresponding Legendre
moments of the time-dependent axis distribution of the mol-
ecule,

T�n��td,�� = ��J0M0
�td�
T�n���,�;��
�J0M0

�td�	

= 

L,lr,li

�2��n	��cos��li,lr
�ũli,lr,m

�n�

− sin��lilr
�ṽli,lr,m

�n� �2
Clr
�m�

Cli

�m�


��− 1�m�lr,li,− m,m;L,0	 � �lr,li,0,0;L,0	

��PL	J0M0
�td�PL�cos �� , �101�

where we have taken the expectation value of the HHG op-
erator with respect to the rotational wave packet 
��td�	, to
obtain

4�

2L + 1
��J0M0

�td�
YLM��,��
�J0M0
�td�	

= �PL	J0M0
�td�PL�cos ���M,0. �102�

This follows from the observation that the magnetic quantum
numbers of all the rotational eigenstates in the individual

´

e

1

2

´

y

r

R

x

z

z

ε

ε
θ

θ
α

φ
φ

eθ

FIG. 3. A schematic diagram defining molecular axis R, electron
position r, pump polarization �1, and probe polarization �2; � is the
operational laboratory angle.
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wave packets have the same value M0. It holds when the
interaction operator Ve-L2

�t� does not depend on the azimuth
angle of the molecular axis in the body fixed frame. In the
above expression, we have also used the relation
� 4�

2L+1YL0�� ,��= PL�cos ��, and an analogous relation with
respect to the angle �, to simplify.

It is useful to note also that, if the orbital expansion co-
efficients are real, as is often the case, then �li,lr

= �0,�� and
therefore the quantity in the square brackets in Eq. �101�
simplifies to �¯�= �cos��li,lr

�ũlr,li,m
�n� � only.

G. A general formula for the HHG signal

Thus, finally, we substitute Eq. �101� in Eq. �91� and ob-
tain the desired general expression �cf. �20�� for the nth har-
monic signal from a linear molecule, for any value of td and
�,

S�n��td,�� = 2� 

J0M0

�J0M0� 

L,lr,li

�2��n	�

��cos��li,lr
�ũlr,li,m

�n� − sin��lilr
�ṽlr,li,m

�n� �

�2
Clr
�m�

Cli

�m�
�− 1�m

��lr,li,− m,m;L,0	�lr,li,0,0;L,0	

��PL	J0M0
�td�PL�cos ���2 �n	�2

c3 . �103�

We may conclude the section by noting that for the spe-
cial case of parallel polarizations, �=0, PL�cos 0�= PL�1�
=1, Eq. �103� correctly goes over to the signal obtained for
that special case, Eq. �91� �cf. �19��.

V. APPLICATIONS TO DIATOMIC MOLECULES N2 AND
O2

A. Parallel geometry, �=0: Elementary expression of Te
(n)(� ,�

=0) for N2

N2 has �g symmetry, and we approximate its MO by the
asymptotic approximation �Eq. �67�� with m=0 and l
=0,2 ,4 �48,49�. We evaluate Eq. �84� for m=0 and li , lr
=0,2 ,4 to get the HHG operator for N2

Te
�n���� = �2��n	� 


li,lr=0,2,4
d00

lr ���ãzz
n �lr,li;0�d00

li ��� .

�104�

Using the expressions for the reduced rotation matrices from
Table I and simplifying, we may rewrite the HHG operator
as a sum of powers of cos2 � only,

Te
�n���� = �2��n	��b0

�n� + b1
�n� cos2 � + b2

�n� cos4 � + b3
�n� cos6 �

+ b4
�n� cos8 �� , �105�

where the coefficients bj
�n�’s are

b0
�n� = ãzz

�n��0,0;0� −
1

2
ãzz

�n��2,2;0� +
3

8
ãzz

�n��4,4;0� −
1

2
�ãzz

�n��0,2;0� + ãzz
�n��2,0;0�� +

3

8
�ãzz

�n��0,4;0� + ãzz
�n��4,0;0��

−
3

16
�ãzz

�n��2,4;0� + ãzz
�n��4,2;0�� ,

b1
�n� = −

3

2
ãzz

�n��2,2;0� +
3

2
�ãzz

�n��0,2;0� + ãzz
�n��2,0;0�� −

15

4
�ãzz

�n��0,4;0� + ãzz
�n��4,0;0�� −

21

16
�ãzz

�n��2,4;0� + ãzz
�n��4,2;0�� ,

b2
�n� =

35

8
�ãzz

�n��0,4;0� + ãzz
�n��4,0;0�� −

125

16
�ãzz

�n��2,4;0� + ãzz
�n��4,2;0�� ,

b3
�n� =

105

16
�ãzz

�n��2,4;0� + ãzz
�n��4,2;0�� ,

b4
�n� =

1225

16
ãzz

�n��4,4;0� . �106�
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Thus, using Eq. �62�, we get the nth harmonic signal for N2,

S�n��td� = C

j=0

4



j��j

4

cjj�
�n�
Š�cos2j �	�cos2j� �	‹

= C�c00
�n� + c01

�n�
Š�cos2 �	‹�td� + c11

�n�
Š�cos2 �	2

‹�td�

+ c02
�n�
Š�cos4 �	‹�td� + ¯ + c44

�n�
Š�cos8 �	2

‹�td�� ,

�107�

where C= ��2�n	�22�
�n	�2

c3 = �2��2� n	
c �3. The coefficients cjj�

�n�

are related to bj
�n� as follows:

cj,j�
�n� =� 
bj

�n�
2 for j = j�

2 Re�bj
�n�b

j�

�n�*� for j � j�.� �108�

The leading two terms of the signal for N2, Eq. �107�,
consist of a constant term proportional to c00

�n�, which arises
from the lowest angular momentum term l=0 of the active
molecular orbital of N2, and a term proportional to the sec-
ond moment Š�cos2 �	‹�td� that corresponds to the usual “de-
gree of alignment” A�td�. We may note in passing that the
above result does not support a recent model calculation
�53,54� that emphasizes that the leading contribution for the
HHG signal from N2 arises from the fourth moment �cos4 �	;
that would require, for example, dropping the basic contri-
bution of the l=0 term, i.e., b0

�n� in Eq. �105� of the HHG
operator for N2—which of course could not be justified due
to the �-symmetry of its active orbital.

B. Parallel geometry, �=0: Elementary expression of Te
(n)(� ;�

=0) for O2

O2 has �g symmetry, and thus we approximate its MO by
the asymptotic approximation with m=1 and l=2,4 �48,49�.
The HHG operator �Eq. �84�� for O2 reads

Te
�n���� = �2��n	� � 


li,lr=2,4
d01

lr ���ãzz
�n��lr,li;1�d01

li ��� .

�109�

By using the expressions for the reduced rotation matrices
from Tabel �1� and simplifying, we may rewrite the HHG
operator for O2 as a sum of powers of sin2 � cos2n� only,

Te
�n���� = �2��n	��b1

�n� sin2 � cos2 � + b2
�n� sin2 � cos4 �

+ b3
�n� sin2 � cos6 �� , �110�

where bj
�n� coefficients are given by

b1
�n� =

3

2
ãzz

�n��2,2;1� +
45

16
ãzz

�n��4,4;1�

−
3

4
�15

2
�ãzz

�n��2,4;1� + ã�n��4,2;1�� ,

b2
�n� = −

105

8
ãzz

�n��4,4;1� +
7

4
�15

2
�ãzz

�n��2,4;1� + ãzz
�n��4,2;1�� ,

b3
�n� =

245

16
ãzz

�n��4,4;1� . �111�

Finally, substituting operator expression �Eq. �110�� in Eq.
�62�, we obtain the nth signal of O2

S�n��td� = C

j=1

3



j��j

3

cjj�
�n�

� Š�sin2 � cos2j �	�sin2 � cos2 j��	‹

= C�c11
�n�
Š�sin2 � cos2 �	2

‹�td� + c12
�n�
Š�sin2 � cos2 �	

��sin2 � cos4 �‹	�td� + ¯

+ c33
�n�
Š�sin2 � cos6 �	2

‹�td�� . �112�

In the above, the coefficients cjj�
�n� are related to the bj

�n� coef-
ficients of Eq. �111� through Eq. �108�. We add parentheti-
cally that, unlike in the case of N2 considered above, now
there is no constant leading term in the signal for O2, Eq.
�112�. This is a consequence of the � symmetry of the active
orbital for O2, which does not permit the lowest l=0 angular
momentum component for its active orbital.

C. Arbitrary relative polarization angle �: HHG signal

We now consider the signals for N2 and O2 in the general
case in which the probe and the pump polarizations make an
arbitrary angle � between them, as shown in Fig. 3. Unlike
the axis orientation angle �, the pump-probe polarization
angle � can be controlled directly in the laboratory and thus
can provide a possible control over the HHG signal. To ex-
press the signals in terms of the moments of elementary
trigonometric functions, also in the general case, we refer to
Fig. 3. The direction of the molecular axis is now denoted by
��� ,���. The same expression for the signal as in the case of
parallel polarization now holds in terms of the primed
angles. The HHG signals Eq. �107� for N2 and Eq. �112� for
O2 for an arbitrary angle � now can be written for N2 as

S�n��td;�� = C�c00
�n� + c01

�n�
Š�cos2 ��	‹�td� + c11

�n�
Š�cos2 ��	2

‹�td�

+ ¯ + c44
�n�
Š�cos8 ��	2

‹�td�� �113�

and for O2 as

S�n��td;�� = C�c11
�n�
Š�sin2 �� cos2 ��	2

‹�td�

+ c12
�n�
Š�sin2 �� cos2 ��	�sin2 �� cos4 ��	‹�td�

+ ¯ + c33
�n�
Š�sin2 �� cos6 ��	2

‹�td�� . �114�

Above, we have used the notation Š�f����	‹�td�
=
J0M0

��J0���J0M0
�td ,��
f����
�J0M0

�td ,��	 for the expecta-
tion value of a function f���� given in the probe frame, but
evaluated with respect to the rotational wave packets defined
in the pump frame. Before evaluating the above integral, it is
convenient, therefore, to transform the HHG operators from
the variables ��� ,��� to the angles �� ,�� in the pump-frame
�i.e., with the z along the pump polarization�. This can be
done by the simple transformation Eq. �92�, where � is the
angle between the plane containing the molecular axis and
the pump polarization and the plane containing the pump and
the probe polarization directions. Thus, for example, the el-
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ementary expression for the expectation value of the align-
ment operator A�td ;��= �cos2 ��	 in the case of any � reads

A�td;�� = �cos2 ��	 = �cos2 � −
1

2
sin2 ���cos2 �	 +

1

2
sin2 �

+
1

4
sin2 ���sin2 �e2i�	 + c.c.�

+
1

2
sin 2���sin � cos �ei�	 + c.c.� , �115�

where �sin � cos �e�i�	 couples the J� states with �J
=0, �2 and �M = �1, whereas �sin2 �e�2i�	 couples the J�
states with �J=0, �2 and �M = �2. We note that for the
linearly polarized pump pulse of the present interest, the in-
teraction Hamiltonian is proportional to cos2 �, which is in-
dependent of M in the space fixed pump-frame. Thus the
M-quantum number of the rotational wave packet remains
constant, or M =M0, throughout the evolution. Hence, the
expectation values of �sin � cos �e�i�	 and �sin2 �e�2i�	 van-
ish and we get

�cos2 ��	 =
1

2
�3 cos2 � − 1��cos2 �	 +

1

2
sin2 � . �116�

In a similar way, we obtain the expectation value for the
higher-order moment

�cos4 ��	 =
1

8
�35 cos4 � − 30 cos2 � + 3��cos4 �	

+
3

8
�− 10 cos4 � + 12 cos2 � − 2��cos2 �	

+
3

8
sin4 � . �117�

We note in passing that for �=0, �cos2 ��	 in Eq. �116� and
�cos4 ��	 in Eq. �117� reduce to �cos2 �	 and �cos4 �	, respec-
tively.

Thermal averaging Eq. �116� gives us the “degree of
alignment” or the alignment moment,

A�td,�� =
1

2
�3 cos2 � − 1�Š�cos2 �	‹�td� +

1

2
sin2 � ,

�118�

which also appears in the second leading term of the signal
for N2, for arbitrary angle � �see Eq. �113��. Squaring and
taking the thermal average of Eq. �116� gives us Š�cos2 ��	2

‹,
which is the third term of the HHG signal of N2. The thermal
average of Eq. �117� gives us Š�cos4 ��	‹, which appears in
the fourth term of the HHG signal of N2. The difference of
Eqs. �116� and �117� gives us

�sin2 �� cos2 ��	 =
1

8
�− 35 cos4 � + 30 cos2 � − 3��cos4 �	

+
1

8
�30 cos4 � − 24 cos2 � + 2��cos2 �	

+
1

8
�− 3 sin4 � + 4 sin2 �� . �119�

Squaring and then thermally averaging Eq. �119� yields the
leading term of the HHG signal of O2, given by Eq. �114�. In
a similar way, we can explicitly exhibit the � dependence of
the higher-order terms in the signal for O2, Eq. �114�, as
well.

VI. RESULTS AND DISCUSSIONS

A. Signals in the time domain

We now apply the theory to analyze the observed HHG
signals from the diatomic molecules, N2 and O2. In typical
recent experiments �e.g., �11–13��, an ensemble of N2 or O2
molecules is first set into free rotation by a femtosecond
pump pulse. The HHG signals were detected by monitoring
the emission due to a second more intense femtosecond
probe pulse, that was delayed with respect to the first by
successively increasing the time intervals, td, in the picosec-
ond domain, between them.

In the experiments for N2, for example �13�, a peak pump
intensity I1=0.8�1014 W /cm2 and a peak probe intensity
I2=1.7�1014 W /cm2 were used; the central wavelength �
=800 nm and the pulse duration �=40 fs were kept the same
for both the pulses. For the experiment with O2, the har-
monic signal was measured in a similar fashion for I1=0.5
�1014 W /cm2 and I2=1.2�1014 W /cm2; the other param-
eters were kept the same as in the case of N2. For the purpose
of a direct comparison, our calculations were performed for
the same parameter values as in these experiments �13�. In
Fig. 4, we show the calculated HHG signals as a function of
td for N2 and O2, obtained for the 19th- and 21st-order har-
monic, calculated by using the same parameters as those in
the above experiments. The effective ensemble temperature
was taken to be T=200 K in panels �a� and �c�, which was
estimated from the matching of the peak position of the spec-
tral distribution with that of the Boltzmann distribution as
suggested first in �19�. It can be seen from Fig. 4 �panels �a�
and �b�� that the calculated data for N2 show the “revival”
phenomenon with a full revival period Trev=8.4 ps �which is
consistent with the rotational constant of N2 �cf. Table II�� as
well as a 1

2 and a 1
4 fractional-revival. The calculated signal

for O2 �panels �c� and �d�� shows, in addition to the full
revival �period for O2 is Trev=11.6 ps� and two fractional
revivals similar to the two seen for N2, an additional 1

8 re-
vival. The calculated signals can be seen to follow the same
sequence of the full and the three fractional revivals as seen
in the experimental signal �13�. We note that these observa-
tions for N2 and O2 are also consistent with the data of Ita-
tani et al. �11� and Kanai et al. �12�.

To understand the similarities and the differences between
the signals for N2 and O2, we use the analytical results of the
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present theory below. The properties of the HHG signal of
N2 are governed by Eq. �107�. The first term gives a constant
background. The second term Š�cos2 �	‹�td� is the dominant
dynamic term and causes the signal to mimic the “degree of
alignment” A�td��Š�cos2 �	‹�td�. The third term
Š�cos2 �	2

‹�td� give unequal maxima and minima, i.e., the
difference between the maximum signal and the average sig-
nal is greater than the difference between the average signal
and the minimum signal. Furthermore, we point out that at a
lower initial temperature, the valley of Š�cos2 �	2

‹�td� that
occurs, for higher temperatures, at the 1

4Trev revival, can split
into two valleys, due to this term, and thus the third term can
strongly affect the HHG spectrum, as can be seen in the
experiment by Itatani et al. �11,14�. Another earlier puzzle
regarding its dynamic signal observed was the failure of the

alignment measure A�td�=Š�cos2 �	�td� to account for the dy-
namic HHG signal for O2, observed by Itatani et al. �11�. In
fact, Itatani et al. found that their data behaved more closely
to the expectation value B�td��Š�sin2 2�	‹�td�. From Eq.
�112�, it can be seen that indeed the leading term of the
signal for O2 is given by Š�sin2 � cos2 �	2

‹�td�
= 1

16Š�sin2 2�	2
‹�td�, which is directly proportional to the ob-

served signal. Moreover, the present theory also predicts that
there ought to be modifications to this result due to the
higher-order terms in Eq. �112�. In fact, as mentioned earlier,
Kanai et al. �12� found empirically that their experimental
HHG signals for N2 and O2 demanded heuristic introduction
of operators involving higher orders of cos2 � functions, or
Legendre polynomials, as the dynamic signal could not be
well expressed in term of ��cos2 �		�td� only for N2, or
Š�sin2 2�	‹�td� only for O2. They can be, however, quantita-
tive contributions from the higher-order terms predicted by
the theory. In fact, the present theory provides an ab initio
derivation of the desired general expansion of the HHG sig-
nal in terms of the moments of the Legendre polynomials Eq.
�103� and/or of the powers of cos2 �, e.g., Eqs. �112� and
�107�.

A related characteristic of interest is the appearance of
extra series and lines �e.g., �13,19�� in the Fourier spectrum
of the dynamic HHG signal for both N2 and O2, which are
Raman forbidden. These extra lines cannot be attributed to
A�td�=Š�cos2 �	‹�td� for N2, or to B�td�=Š�sin2 2�	‹�td� for
O2. It will be seen below that the FT of the higher-orders
terms of Eq. �107� for N2 and of Eq. �112� for O2, given by
the present theory, can consistently account for their appear-
ance. Comparing the expressions for the signals for N2 and
O2 and directly calculating the cjj�

�n� coefficients in the respec-
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FIG. 4. The calculated dynamic 19th �solid lines� and 21st �dashed lines� HHG signals for N2 and O2, for two different initial
temperatures, 200 and 75 K. We use pump intensity I=0.8�1014 W /cm2 for N2 and I=0.5�1014 W /cm2 for O2, probe intensity I=1.7
�1014 W /cm2 for N2 and I=1.2�1014 W /cm2 for O2; duration 40 fs, and wavelength 800 nm.

TABLE II. Molecular properties used in this work: Ip is adia-
batic ionization potential, B is rotational constant of molecule, ��

and �� are parallel and perpendicular polarizability, and Cl
�m�’s are

angular coefficient of the electronic wave function.

N2 O2 Ref.

HOMO �g, m=0 �g, m=1 �22,50�
Ip �eV� 15.58 12.03 �48�
B �cm−1� 2.0 1.4377 �51�
�� �Å3� 2.38 2.35 �52�
�� �Å3� 1.45 1.21 �52�
C0

�m� 2.02 �48�
C2

�m� 0.78 0.62 �48�
C4

�m� 0.04 0.03 �48�
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tive signals, it is found that the signal for N2 is much stron-
ger than that for O2.

We may briefly discuss here the dependency of the HHG
signals on the initial temperature, an example of which is
shown in Fig. 4. It can be seen from the figure that the lower
initial temperature gives a greater amplitude of revival. This
may be understood as follows. A lower initial temperature
gives a lower value of the maximum of the statistically oc-
cupied J0 levels and hence also a lower value of the maxi-
mum initial value of M0 than at a higher temperature. As a
result of interaction with the linearly polarized pump pulse
�quantization axis along the polarization axis� at a given in-
tensity, each wave packet that evolves from a given initial

J0M0	 state can couple to the higher levels J� max�J0� but
cannot raise the initial maximum value of M0. Therefore, for
a given intensity, the ratio of J� to M0 is higher for a lower
temperature, and as a consequence the degree of alignment
A�td�=Š�cos2 �	‹ tends to be also higher, implying that the
molecule becomes more strongly aligned during a revival.

B. Rotational revivals: Periods and phases

If a linear molecule has a permanent dipole moment �e.g.,
heteronuclear diatomics�, then the interaction Hamiltonian of
the �pump� laser with the molecular frame depends on the
first power of cos �, where � is the angle of rotation of the
molecular axis with respect to the laser polarization axis. In
contrast, the interaction with the polarizability of the mol-
ecule �e.g., for homo- or heteronuclear diatomics� depends
on cos2 �. Thus in general the interaction may contain the
operators cosn � with n=1 and/or 2. Then in either case, the
rotational wave packets created by the latter can be written in
the form

�J0M0
�t� = 


j=0,1,2,3,. . .
CJ0+nj,M0

�t� � e−i/�EJ0+njt
J0 + nj,M0	 .

�120�

This can be obtained, for example, from a consideration
of the perturbative solution of Eq. �39� in successive power
of the interaction Hamiltonian, and noting that the rotational
eigenstates couple either by P2�cos �� �in the absence of a
permanent dipole moment� with a minimum �nonzero� n=2
or by P1�cos �� and P2�cos �� �in the presence of a perma-
nent dipole moment� with a minimum n=1. It can be readily
understood from the well known properties of the vector
addition coefficients that appear in the integration over the
product of three spherical harmonics �cf. the paragraph be-
low� that the expectation value of the Nth cosine-moment
with respect to a rotational wave packet at a time t= td takes
the form

�cosN�	J0M0
�td� = ��J0M0

�td�
cosN�
�J0M0
�td�	

= 

s

N



p=−s

s



j=0,1,2,3,. . .

� C
J0+nj+p,M0

J0M0* �td�

�CJ0+nj,M0

J0M0 �td�

� as�YJ0+nj+p,M0

Ys,0
YJ0+nj,M0

	

�exp�−
i

�
�EJ0+nj+p − EJ0+nj�td� ,

�121�

where the integers s and p have the same parity �even or
odd� as the parity of N. This follows from the fact that cosN �
can be expressed as a linear combination: cosN �
=
sasPs�cos �� for all s up to N, and since the matrix ele-
ments �YJ0+nj�,M0


Ys,0
YJ0+nj,M0
	=0, unless J0+nj�=J0+nj

+ �p−s��0 and J0+nj+ �p−s�+J0+nj+s=even. Thus, the
phase of each individual term of Eq. �121�, for any given
value of the integers J0 ,n ,N , j, is given by

��n,N
J0 �td� =

1

�
�EJ0+nj+p − EJ0+nj�td

�2�hBct��2pJ0 � 2npj + p2 � p�

= 2�
td�hBc�2

�
�J0 + nj +

p2 + p

2
� , �122�

where we have used EJ,M �J�J+1�hBc; B is the rotational
constant, Trev� 1

2Bc is the rotational period, and h=2��. We
note first that the quantity in the last set of parentheses above
is an integer, independent of the value of j and J0. We note
that the maximum value of s or p above is N. The phase
difference �Eq. �122��, therefore, equals an even or odd mul-
tiple of �, or an odd multiple of �

2 , depending on the parity
of the groups of rotational states. Therefore, the shortest time
period for which the phases of all terms or all terms within a
parity group become equal in Eq. �122�, and hence coher-
ently enhance the signal, is clearly

Tmin =
1

nN
Tr. �123�

For times between the successive coherent enhancements or
“revivals,” the individual phases in Eq. �122� disperse away
from one another and the revival peaks tend to be washed out
by destructive interference, and the HHG signal reduces to
the average or the background level.

We may summarize the above result as a “revival theo-
rem”: If the laser-molecule interaction Hamiltonian is char-
acterized by the lowest power n of cosn �, with n=1 or 2, �
is the rotation angle, and if the highest discernible �numeri-
cally significant� moment in the expression of the signal is
��J0M0

�t�
cosN �
�J0M0
�t�	, N�1, then the experimental sig-

nal would exhibit as many as n�N revivals within a full
period Tr= 1

2Bc , where B is the rotational constant. Inversely,
by counting the number of fractional revivals in the observed
HHG signal, one may determine the highest order, N, and
hence also the significant “cosine moments” �up to the order
N� that would be necessary to fit the observed signal. We
may note that the above theorem covers the well-known
cases of fractional revivals discussed earlier �55–58� as spe-
cial cases.

For homonuclear diatomic molecules with no permanent
dipole moment, the lowest order pump pulse interaction is
due to the polarizability tensor with n=2. Thus for the stan-
dard alignment moment, A�td��Š�cos2 �	‹�td� with N=2, we
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get the lowest fractional period T1/4= 1
4Tr, and the subsequent

two fractional revivals T1/2, T3/4 �defined analogously� and
the full revival at Tr, within a period. Thus the presence of
the highest significant fourth cosine-moment with N=4
would show the lowest 1

nN = 1
8 revival, plus the subsequent six

fractional revivals at � 1
4 , 3

8 , 1
2 , 5

8 , 3
4 , 7

8 � Tr, within a full period
Tr. An example containing the effect of the fourth cosine-
moment is B�td�=Š�sin2 2�	‹�td�, which is illustrated in Fig.
5. For a heteromolecular diatomic molecule with a perma-
nent dipole moment, the lowest-order interaction Hamil-
tonian is characterized by the first power of cos �, i.e., n=1.
Thus the alignment measure, a cosine moment with N=2,
will show n�N=2 revivals within the full period. Higher-
order revivals may occur since Eq. �123� in principle holds
for any combination �N ,n�. We may recall, however, that for
large N, the expectation value might be too weak for the
lowest fractional revivals to be measured with sufficient res-
olution in practice. This circumstance is illustrated in Fig. 6,
which shows the high-order fractional revivals for N=6 and
8 cosine moments, Š�cos6 �	‹�td� and Š�cos8 �	‹�td�, along
with their magnifications.

C. Phase relations of fractional revivals

Can one predict the relative phases of the fractional reviv-
als? We may answer this question positively. From the phase
difference �Eq. �122��, one finds

��2,2
J0+1�Trev� − ��2,2

J0 �Trev� = 4� ,

��2,2
J0+1�Trev/2� − ��2,2

J0 �Trev/2� = 2� ,
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��2,2
J0+1�Trev/4� − ��2,2

J0 �Trev/4� = � . �124�

Equation �124� predicts that at 1
4Tr the phase for Jeven is an

exact mirror image of the phase for Jodd, as in fact is the case
in Fig. 7, calculated for N2. From the above, we may further
predict that �a� O2, which possesses Jodd levels only, will
show a “peak” at Tr /4, �b� CO2, which possesses Jeven levels
only, will show a “valley” at Tr /4, and �c� N2, which pos-
sesses both the majority Jeven levels and the minority Jodd
levels in the ratio 2:1 �due to the nuclear statistics of the
molecule �22��, will show the revival at Tr /4 that would be a
“valley” like the one for the Jeven levels only, but with only
half its normal “depth,” due to the counter contribution from
the minority Jodd levels.

We note that one may also predict the nuclear statistics of
such molecules by comparing the revival shape at Trev /2 and
Trev /4. Let us first define a modulation amplitude at half-
revival to be equal to the difference between peak and the
base �or average� signal: �A1/2=S1/2

top −S1/2
av �. Similarly, a

modulation amplitude at quarter revival is equal to the dif-
ference between the top and the base �average� signal:
�A1/4=S1/4

top −S1/4
av �. The amplitude at half-revival is a sum of

even and odd J contributions, and therefore A1/2 is always
positive. In contrast, the amplitude at the quarter-revival
arises from their difference, and therefore A1/4 can be posi-
tive �if it makes a “top” alignment� or negative �if it makes
an “antitop” alignment�. Therefore, the existence of a “top”
signal at the quarter-revival is a sign that even J levels are
dominant. Similarly the presence of an “antitop” signal at the
quarter-revival signal is a sign of dominant odd J levels.
From this observation, one can deduce the nuclear statistics

from the ratio between the effective �finite� number of even
and odd J levels �Jeven and Jodd, respectively� excited,

Jeven

Jodd
=

A1/2 − A1/4

A1/2 + A1/4
. �125�

Thus, for example, the dynamic signal of O2 shows A1/2
=A1/4 indicating the absence of the even J levels. In contrast,
A1/2=−A1/4 for CO2, indicating the absence of odd J levels.
For N2, we have A1/4=− 1

3A1/2, and hence we have
Jeven:Jodd=2:1. This property might be used for detecting
the existence of isotopes of a molecular sample, as has been
suggested recently �59�.

D. Beat frequencies

From Eq. �121�, it is seen that the phase difference asso-
ciated with �cos2 �	 is �B /���4J+6�. For B in cm−1, the
phase difference reads

���J → J � 2� = 2�Bc�4J + 6� �126�

with c in cm/s. According to Eq. �126�, one can make a
Fourier transform of �cos2 �	 using Bc as basis frequency and
find a series of peaks at �4J+6�. Figure 8 shows the Fourier
transform of Š�cos2 �	‹ of N2, O2, and CO2. The spectrum of
O2 has peak series at �10,18,26, . . . �Bc= �4Jodd+6�Bc,
showing that O2 has odd J levels only. In contrast, the peak
series of CO2 are located at �6,14,22,30, . . . �Bc= �4Jeven
+6�, showing that CO2 has even J levels only. For N2, we
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obtain a series �6,14,22,30, . . . �Bc= �4Jeven+6� that is twice
as strong as the series �10,18,26, . . . �Bc= �4Jodd+6�Bc. It
implies that both even and odd J levels are present in N2, in
the ratio Jeven:Jodd=2:1. These conclusions are consistent
with the analysis based on the dynamic signals.

For Š�sin2 2�	‹, there are two kinds of difference or beat
frequency. The first one is related to the transitions with
�J= �2 and is expressed by Eq. �126�. The second one is
related to the transitions with �J= �4 and can be expressed
as

���J → J � 4� = 2�Bc�8J + 20� . �127�

As a result, in addition to the series of lines �4J+6�, the
Fourier transform of Š�sin2 2�	‹ also has another series of
lines at �8J+20�, with �J=4. Figure 9 shows the calculated
Fourier transform of Š�sin2 2�	‹ of O2. It is seen from Fig. 9
that the first series ��J= �2� reaches its maximum at Jmax
=11, while the second one ��J= �4� at Jmax=13. This dif-
ference comes from the fact that the �J=4 transition requires
�J=2 as an intermediate transition. As a result, a �J=4 tran-
sition can occur one step after the �J=2 transition; for O2
with only Jodd levels present, this implies a shift in J by 2,
from Jmax=11 to Jmax=13, as seen above. From Fig. 9, one
also finds that the intensity of the second transition is smaller
than that of the first one. This arises from the circumstance
that the allowed matrix element of the second transition with
the greater separation in J is weaker than the one with the
lesser separation.

E. Signals in the frequency domain

To further compare with experimental data, we Fourier
transform the calculated dynamic signals to get their spectra
in the frequency domain. They may then be compared with

the FT. of the experimental data. The results for the 19th
harmonic signal for N2 are shown in Fig. 10�a�. It can be
seen that the theoretical spectrum exhibits two prominent
series I: �6,14,22,30, . . . �Bc and II: �10 ,18 ,26 ,34 , . . . �Bc,
which are also present in the experimental spectrum �19�.
They can be easily understood to arise from the FT of the
Š�cos2 �	‹�td� term in Eq. �107�, which vanishes unless �J
=0, �2; this produces a sequence of lines �EJ+2−EJ� /2�
= �4J+6�Bc, and gives the series I and II for the even and the
odd J levels, respectively. The relative prominence of the
series I over the series II, from both experiment and theory,
seen in Fig. 10�a�, could be understood as the 2:1 ratio of the
J even over J odd levels, a well-known consequence of the
nuclear spin statistics of N2 �e.g., �8,22��.

The weakly resolved series III: �20 ,28 ,36 ,44 , . . . �Bc and
series IV: �4 ,8 ,12 ,16 , . . . �Bc in Fig. 10�a� are the unex-
pected series that could not be produced by the FT of the
leading term Š�cos2 �	‹�td�. To interpret their origin, we con-
sider the two higher-order terms involving Š�cos2 �	2

‹�td� and
��cos4 �		�td� in the signal for N2, Eq. �107�. Because of the
presence of the square of the second moment, the expected
beat frequencies from Š�cos2 �	2

‹�td� not only include the
frequencies �4J+6�Bc but also their sum and difference fre-
quencies, as indicated below,
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�a + b cos 	1t��a� + b� cos 	1�t� = aa� + a�b cos 	1t

+ ab� cos 	1�t + bb� cos 	1t cos 	1�t = aa� + a�b cos 	1t

+ ab� cos 	1�t +
bb�

2
cos�	1 + 	1��t +

bb�

2
cos�	1 − 	1��t .

�128�

Above, the term a arises from the transitions with �J=0
with 	0=0. The frequency 	1 arises from the transitions with
�J= �2. The sum frequency �	1+	1�� yields the �EJ+2
−EJ� /2���4�J+J��+12�Bc beats, whereas the difference
�	1−	1�� produces the beats �EJ+2−EJ� /2���4�J−J��Bc�
 0. For integer J and J� they yield the series IV:
�4 ,8 ,12 ,16 , . . . �Bc. The next term Š�cos4 �	‹�td� vanishes,
unless �J=0, �2 and �4, produces not only beats �EJ+2
−EJ� /2�= �4J+6�Bc but also �EJ+4−EJ� /2�= �8J+20�Bc
that generates the series III �20 ,28 ,36 ,44 , . . . �Bc. All the
possible series arising from these three leading terms of the
signal, and their grouping according to those observed ex-
perimentally, are shown in Table III. Note that series III is
identical, and overlaps with series IV: �4 ,8 ,12 ,16 , . . . �Bc
and adds to its signal strength. Moreover, the remaining lines
at �4 ,8 ,12 ,16 ,24 ,32 , . . . �Bc found in the experimental spec-

trum �13�, as well as in the theoretical spectrum in Fig. 10�a�,
confirm the existence of series IV, which only partially over-
laps with series III. The existence of series III and IV unam-
biguously shows that the dynamic signal of N2 cannot be
fully described in terms of Š�cos2 �	‹�td� only.

In Fig. 10�b�, we present the theoretical spectrum calcu-
lated from Eq. �112�, which agrees well with the experimen-
tal one �13�. Both the experimental �13� and the theoretical
spectra show the Raman-allowed series II:
�10 ,18 ,26 ,34 ,42 , . . . �Bc, but not the series I:
�6,14,22,30,38, . . . �Bc, seen for N2. The anomalous series
III: �20 ,28 ,36 ,44 , . . . �Bc, discussed in the case of N2 above,
however, appears for O2 as well. Finally, another anomalous
sequence V: �8 ,16 ,24 , . . . �Bc can be seen to be present in
the experimental data for O2 �13�, which, we point out, can-
not be generated by the FT of the Š�sin2 2�	‹ term. To inter-
pret the origin of the observed series in O2, we first consider
the leading term given by Eq. �109�, Š�sin2 � cos2 �	2

‹. The
matrix element �sin2 � cos2 �	 vanishes unless �J
=0, �2, �4 corresponds to frequency 	0, 	1, and 	2. Thus,
there appears the sum and difference frequencies due to the
presence of the squared moments in the signal expression, as
follows:

�a + b cos 	1t + c cos 	2t��a� + b� cos 	1�t + c� cos 	2�t� = aa� + ab� cos 	1�t + a�b cos 	1t + ac� cos 	2�t

+ a�c cos 	2t +
bb�

2
cos�	1 + 	1��t +

bb�

2
cos�	1 − 	1��t +

cc�

2
cos�	2 + 	2��t

+
cc�

2
cos�	2 − 	2��t +

bc�

2
cos�	1 + 	2��t +

bc�

2
cos�	1 − 	2��t +

b�c

2
cos�	2 + 	1��t +

b�c

2
cos�	2 − 	1��t , �129�

TABLE III. List of all the predicted series arising from the moments Š�cos2 �	‹, Š�cos2 �	2
‹, and Š�cos4 �	‹

that are present in the expression for the signal for N2 �for which both odd and even J ’s are allowed�.

No. Group freq. Weighting factor Formula Peak series �in units of Bc� Expt. series

��cos2 �		

1 a 0

2 	1 b 4J+6
10,18,26,… for odd J II

6,14,22,… for even J I

��cos2 �	2	

3 aa� 0

4 	1 and 	1� a�b and ab� 4J+6
10,18,26,… for odd J II

6,14,22,… for even J I

5 	1+	1�
bb�
2

4�J+J��+12 20,28,36,… III

6 	1−	1�
bb�
2

4�J−J�� 0 4,8,12,… IV

��cos4 �		

7 a 0

8 	1 b 4J+6
10,18,26,… for odd J II

6,14,22,… for even J I

9 	2 c 8J+20 28,44,60… III

THEORY OF INTENSE-FIELD DYNAMIC ALIGNMENT… PHYSICAL REVIEW A 79, 023405 �2009�

023405-21



where, in general, a b c. As also found earlier above, the
frequency 	1 generates the lines �4J+6� that, for odd J’s,
yield the series II: �10,18,26, . . . �Bc. The series I:
�6,14,22, . . . �Bc that would exist for even J’s is absent from
the O2 spectrum. This is easily understood as due to the
nuclear spin of O atoms, which is 0, that strictly forbids any
even J rotational levels for O2 �as dictated by the overall
symmetry of the total wave function for O2�. For odd J, the
frequency 	2 produces the lines �8J+20�Bc
= �28,44,60, . . . �Bc, whereas the sum frequency �	1+	1��
produces the lines �4�J+J��+12�Bc= �20,28,36, . . . �Bc;
taken together, they generate the series III:
�20 ,28 ,36 ,44 , . . . �Bc. Similarly, the difference frequency
	1−	2 gives rise to the series V: �8 ,16 ,24 , . . . �Bc, as shown
in Table IV. All the above predicted series are seen in the
Fourier spectrum for O2. It is shown in Table IV that the
frequency 	1+	2� and 	2+	1� produces the weak �strength of
order “bc”� series VI: �4�J+2J��+26�Bc
= �38,46,54, . . . �Bc. Despite its weakness, the existence of
this series is evidenced by the presence of the discrete line at
38 Bc. It is also worth noting that the series V and VI cannot
be generated from the moment Š�sin2 2�	‹ alone. The re-
maining higher-order terms in Eq. �112� contribute, generally
very weakly, either to the lines in the series discussed above
or to additional lines that can be seen to be present in Fig.
10�b�.

Figure 11 shows a calculated spectrum for initial tempera-
ture 75 K whose peaks are shifted from one of 200 K �Fig.
10�. Comparing those two figures, we may point out that the
relative strengths of the lines in a calculated spectrum were
found to depend sensitively on the assumed molecular tem-
perature, which is known to be difficult to determine experi-

mentally. This observed sensitivity suggests a useful means
to estimate the temperature of the molecular ensemble of
interest in the experiment, by requiring that the strongest
rotational line in the Fourier spectrum of the dynamic HHG
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FIG. 11. Calculated spectra for N2 �panel a� and O2 �panel b� at
a Boltzmann temperature 75 K, which are the Fourier transform of
Figs. 4�b� and 4�d�, respectively.

TABLE IV. All possible frequencies arising from Š�sin2 cos2 �	2
‹ for O2, whose only odd J’s are allowed.

The weak frequencies are indicated with *.

No. Group freq. Weighting factor Formula Peak series �in units of Bc� Expt. series

1 aa� 0

2 	1 and 	1� a�b and ab� 4J+6 10,18,26,… II

3 	2 and 	2� a�c and ac� 8J+20 28,44,60,… III

4 	1+	1� bb�
2

4�J+J��+12 20,28,36,… III

5 	1−	1� bb�
2

4�J−J�� 0 8,16,24,… V

6 	2+	2� cc�
2

8�J+J��+40 56,72,88,… I*

7 	2−	2� cc�
2

8�J−J�� 0 16,32,48,… V*

8 	1+	2� and 	2+	1� bc�
2

and
b�c

2
4�J+2J��+26 38,46,54,… VI*

9 	1−	2� bc�
2

4�J−2J��−14 0 6,14,22,… VI*

10 	2−	1� b�c

2
4�−J+2J��+14 0 2,10,18,… II*
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signal should correspond to the most highly occupied rota-
tional level in the thermally distributed initial rotational lev-
els. Hence the temperature of the initial Boltzmann distribu-
tion may be found by adjusting the temperature to make the
level at the peak of the Boltzmann distribution match with
the highest line of the Fourier spectrum of the HHG signal
observed. Moreover, the spectral information in the fre-
quency domain of the time-domain HHG signal is more suc-
cinct because of its discreteness and could be used, for ex-
ample, to distinguish between various theoretical models
�see Sec. VII D�.

F. Interplay of polarization geometry � and delay time td and
“magic” angle and neighborhood

So far we have limited the applications of our theory to
the HHG signal for parallel geometry of the pump and probe
polarizations. We now consider the more general case when
probe polarization is rotated by a given angle �. Figure 12
shows our computational results of the HHG signals as a
function of td, at various �, for N2 �left panel� and for O2
�right panel�. We note that the signal for �=90° changes its
phase by � with respect to the signal for �=0°, a phenom-
enon that is also observed recently �12,27�. In contrast, the
signal for �=45° is seen to remain rather flat with change of
�.

To see the essential � dependence of the HHG signal of
N2, we consider the leading term of Eq. �113�, which is given
by

S�n��td;�� = c00
�n� + c01

�n��1

2
sin2 � +

1

2
�3 cos2 � − 1�

� Š�cos2 �	‹�td�� + ¯ . �130�

Thus, for the parallel polarizations we have S�n��td ;0° �

�c00
�n�+c01

�n�
Š�cos2 �	‹ �td� and for the perpendicular polariza-

tions, S�n��td ;90° ��c00
�n�+

c01
�n�

2 �1−Š�cos2 �	‹�td��, which are
clearly of opposite phase as a function of td. These expres-
sions also show that the modulation depth for �=90° is
smaller than the one for �=0°, a fact that could not be ac-
counted for by a planar model �e.g., �12��. Equation �130�
also implies that the extrema of the signal would occur for
sin � cos �=0, which predicts that the maximum would oc-
cur at �=0° and the minimum at �=90°; this has been con-
firmed experimentally �12,26�. Equation �130� also predicts
that there is a “magic” angle �c given by �3 cos2 �c−1�=0,
i.e., �c=arctan �2�55°, where the time-dependent signals
become the same for all delay td times. This geometry, there-
fore, can be used to generate a steady-state HHG signal from
N2. The magic angle at �55° in fact is a generic signature
for the �g symmetry of the active molecular orbitals. Its pres-
ence in the data therefore can be helpful to identify the sym-
metry of the molecular orbital involved.

For O2, the leading term of the HHG signal �Eq. �114��
reads

S�n��td;�� =
c11

�n�

64
Š��− 35 cos4 � + 30 cos2 � − 3�

��cos4 �	�td� + �30 cos4 � − 24 cos2 � + 2�

��cos2 �	 + �− 3 sin4 � + 4 sin2 ���2
‹ + ¯ .

�131�

Thus, for the parallel polarizations we have S�n��td ;0° �
�c11

�n�
Š�−�cos4 �	+ �cos2 �	�2

‹=c11
�n�
Š�sin2 � cos2 �	2

‹ and for
the perpendicular polarizations, S�td ;90° �
�

c11
�n�

64 Š�−3�cos4 �	+2�cos2 �	+1�2
‹. It is clear that the sign of

�cos4 �	 does not change and hence the phase of the eighth
revival also remains constant, as has been observed experi-
mentally �12,27�. The above formula can be reexpressed as
S�td ;90° ��c11

�n�
Š� 3

8 �sin2 � cos2 �	− 1
8 �cos2 �	+ 1

8 �2
‹, which

clearly shows that the modulation depth for �=90° is
smaller than one for �=0°, a result that cannot be obtained
within a planar model �e.g., �12��.

Before concluding this section, it is also worthwhile to
point out that the � dependence of the HHG signals for the
more complex triatomic molecule CO2, and the organic mol-
ecule acetylene, HC�CH, because of the � symmetry of
their active orbitals, as predicted �even without detailed cal-
culations� by the general structure of the HHG signal, given
by Eq. �103�, will exhibit a “crossover” neighborhood near
��55°; this is indeed the case, as has been recently ob-
served experimentally �62�. Clearly, the presence of the
“magic” angle and the crossover neighborhood provide a sig-
nature of the symmetry of the active molecular orbital, which
can be useful for the “inverse” problem of molecular imag-
ing, as suggested in �20�.

VII. ON SOME PROBLEMS OF GENERAL INTEREST
RELATED TO PUMP-PROBE SIGNALS FOR HHG

Before concluding this paper, we report on the results of
our investigations of a number of problems of general inter-

5.6 6

Delay time (ps)
3.6 4 4.4

H
H

G
si

gn
al

(a
rb

.u
ni

ts
)

0
o

10
o

20
o

30
o

40
o

50
o

55
o

60
o

70
o

80
o

90
o

α
N

2
O

2

FIG. 12. Calculated 19th harmonic dynamic signal for N2 �left
panel� and O2 �right panel� for various pump-probe polarization
angles. The laser parameters are similar to those in Fig. 4. The
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est in the present context of pump-probe experiments.

A. Effect of probe pulse on the alignment

In pump-probe experiments, it is generally assumed that
the dynamical alignment of the molecular axis is governed
by the ultrashort pump pulse, while the ultrashort probe
pulse, which leads to the HHG signal, does not affect the
alignment. To check the validity or otherwise of this assump-
tion, we directly compare here the dynamic alignment mo-
ment, A�td ;�=0�, calculated as usual assuming when only
the pump pulse and when both the pump and the delayed
probe pulse couple to the molecular polarizability �for the
case N2�. In the latter case, the total field consists of the
superposition of the two pulses with a displacement �t be-
tween them,

F�t� = F1 cos�	1t� + F2 cos�	2�t − �t��

= �10
�g1�t� cos�	1t� + �20

�g2�t − �t� cos�	2�t − �t��
�132�

and

�F2�t�	 =
1

2
�10

2 g1�t� +
1

2
�20

2 g2�t − �t� + 2�10�20g1�t�g2�t − �t�

� ��cos�	1t���cos�	2�t − �t���	 . �133�

In the above, the indices 1 and 2 stand for pump and probe
pulse, respectively. Suppose the data are recorded after the
probe pulse dies out, then the observing time is t=�t+�,
where � is the duration of the probe pulse.

In Fig. 13, we plot the alignment moment Š�cos2 �	‹��t
+�� and Š�sin22�	‹��t+�� for O2 as a function of the delay
�t for a fixed �=40 fs, as shown by the solid curve. The
result is compared with that obtained for the pump pulse
alone �dashed curve� that is recorded at the same time. The
comparison clearly shows that the probe pulse changes the
dynamic alignment Š�cos2 �	‹�td� in that the signal is shifted
upward by the presence of the probe pulse due to the en-

hanced effective intensity of the field. This relative up shift,
however, does not change the general characteristics of the
dynamical signals observed.

B. Effect of initial temperature

We assume that the rotational eigenstates 
J0M0	 of the
molecule are occupied thermally before the interaction with
the pump pulse. Unlike an upward transition �J0 ,M0�
→ �J0� ,M0� �in a linearly polarized field� to the states with an
arbitrarily high J0�, the downward transition toward J0��M0
would be more restricted, because of the conserved value of
M0. As a result, a wave-packet state created by the pump
pulse would consist of eigenstates with higher occupation of
J0��M0 states, implying that the vector of rotational angular
momentum would tend more to lie in a plane perpendicular
to the pump polarization direction. Since the rotational angu-
lar momentum itself is perpendicular to the internuclear axis
of a linear molecule, the above condition, J0��M0, means
also that the molecular axis would tend to align in the direc-
tion of the laser polarization. This is the physical reason why
the alignment angle of the molecular axis with respect to the
polarization direction after the laser interaction is generally
smaller after the interaction than before it, i.e., the degree of
alignment increases on interaction with the pump pulse.
Since at a lower initial temperature the lower M0 states,
rather than the higher, are relatively more occupied initially,
the “degree of alignment” A�Š�cos2 �	‹ would tend to be
relatively higher, allowing the molecules to be more effec-
tively aligned at a lower initial temperature �see Fig. 4 and
14�.

C. Mean energy of the molecule after the pump pulse

It is interesting also to examine the way the mean energy
of the molecule changes with increasing intensity of the
pump pulse. Figure 15 shows the calculated mean energy
�E	J0M0

�t� at a time t, before and after the arrival of the peak
of the pump pulse �of length tp�. As expected, the figure
shows that increasing the peak pulse intensity increases the
mean energy of the molecule or the “effective temperature”
Teff��E	J0M0

�t tp� /kB, where kB is the Boltzmann constant.
However, it should be remembered that after the pulse inter-
action, the molecular system is not in a state of thermal equi-
librium, rather it is in a state of dynamical equilibrium �or
steady state� that cannot be characterized thermodynami-
cally.

To estimate an effective “temperature” of the rotational
wave-packet states 
�J0M0

�t�	 in the steady-state regime after
the interaction with the pump pulse, we note �a� that the
rotational wave-packet states 
�J0M0

�t�	 form a linearly inde-
pendent complete set of states, like the set of rotational
eigenstates 
J0M0	 from which they evolve, �b� that the indi-
vidual rotational wave-packet states evolve in one-to-one
correspondence with the initially occupied rotational eigen-
states 
J0M0	, and �c� that the mean energy of each of the
rotational wave-packet states reaches a steady state in energy
from �E	J0M0

�t�−tp /2�→EJ0M0
+ �E	J0M0

�t tp /2�. If the
above change in the mean energy is independent of the indi-
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vidual wave-packet states �indices �J0M0��, then one may
ascribe the energy change to an effective “temperature”
change, �Teff, given by

�Teff =
��E	�t  tp/2�

kB
. �134�

We may note from the results shown in Fig. 15 that the said
change in the mean energy in the steady-state regime is in-
deed essentially independent of the states of the system.
Thus, the effective “temperature” of the system, at the end of
the interaction with the pump pulse, becomes

Teff = T0 + �Teff. �135�

Note that Teff is in general greater than the initial gas �jet�
temperature, T0, and it tends to increase with the increase of
the pump intensity.

D. Comparison with some other nonequivalent definitions of
the HHG signal

In this subsection, we briefly discuss two alternative defi-
nitions of HHG signals that have been employed earlier, and
compare them with the definition of the HHG signal of the
present theory �and experimental observations�. As discussed
in detail in the theory section, the present theory uses the
quantum transition amplitudes for the coherent harmonic
emission from and back to the linearly independent reference
wave-packet states 
�i�t�	, i��e ,J0M0� �consisting of the
product of the ground electronic and the coherent rotational
wave-packet states� to define the independent harmonic
emission probabilities corresponding to the initial occupation
of the rotational states. And in accordance with the quantum
statistical theory, it averages the independent probabilities to
define the observable HHG signal �cf., e.g., Eq. �62��,

S�n��td� = C 

J0M0

��J0����J0M0
�td,��
 � Te

�n����
�J0M0
�td,��	�2.

�136�

It is worth noting that the quantum amplitude calculation in
the present theory corresponds to the “adiabatic nuclei” ap-
proximation �60,61�, in which the matrix elements with re-
spect to the rotational wave-packet states are evaluated at the
level of the adiabatic amplitude-operator, T�n����, and not at
the level of the adiabatic probability operator, 
T�n����
2, that
occurs in the more drastic “frozen nuclei” approximation.
Also, in the present theory, as in the laboratory, the opera-
tional angle is the relative polarization angle �, and not the
angle between the polarization direction and the molecular
axis, �. In fact, the angle � is a rotational coordinate that, as
required for a quantum formulation, is integrated over to
obtain the quantum transition amplitudes �or the expectation
values of Hermitian operators�.

In the present notation, the two other definitions of the
HHG signal that have been used earlier �to be referred to
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below as A and B� are �i� definition A �cf. Eq. �22� of �25�
and Eq. �6� of �63��,

SA
�n��td� = C� 


J0M0

��J0���J0M0
�td,��
 � Te

�n����
�J0M0
�td,��	�2

,

�137�

and �ii� definition B �cf. Eq. �12� of �24� and Eq. �4� of �64��,

SB
�n��td� = C 


J0M0

��J0����J0M0
�td,��
 � 
Te

�n����
2
�J0M0
�td,��	� .

�138�

Clearly the HHG signals according to models A and B differ
from each other, and they differ from the present definition,
Eq. �136� above.

We note that model A, Eq. �137�, defines the statistically
averaged signal by weighting the individual amplitudes first,
and then taking the absolute square of the weighted sum.
This procedure runs counter to the quantum statistical theo-
retical method of averaging the probabilities, not amplitudes,
and/or the expectation values of Hermitian observables
themselves, and not their Fourier transforms �that are propor-
tional to the emission amplitudes�. Furthermore, the defini-
tion of model A �Eq. �137�� causes the signal to depend on
the mixed products of the statistical weights, which are in
principle independent.

The signal defined by model B, Eq. �138�, is seen to de-
pend on the weighted sum of the diagonal matrix elements
�between the rotational wave-packet states� of the “probabil-
ity operator” 
T�n����
2—this, of course, is not equal to the
weighted sum of the absolute squares of the diagonal matrix
elements of the transition operator T�n����. In model B, the
above circumstance is a consequence of the more drastic
“frozen nuclei” approximation and an effective inclusion of
all transitions, those between the same wave-packet states
�“elastic-like”� as well as those between the different wave-
packet states �“inelastic-like”�. However, unlike in model A
�Eq. �137��, in model B �Eq. �138�� the weighted statistical
sum is taken in accordance with the quantum statistical
theory, at the level of the probabilities.

In Fig. 16, we show the Fourier spectrum of the dynamic
signal ��=0� of the 19th harmonic, for the case of O2, from
the three test calculations, using �i� Eq. �136�, the present
theory �top panel�; �ii� Eq. �137�, model A �middle panel�;
and �iii� Eq. �138�, model B �bottom panel�, keeping every-
thing else the same. The field parameters are as follows:
pump I=0.5�1014 W /cm2, probe I=1.2�1014 W /cm2,
pulse durations 40 fs, wavelengths 800 nm, and temperature
200 K.

We point out that the calculated spectrum from the present
theory �upper panel� well reproduces the corresponding ex-
perimental data �cf. ��19�, Fig. 2�—thus, for example, it re-
produces all the spectral series observed experimentally for
N2 and O2 as well as the ratio of the strengths of the major
series observed. Model A also shows these series, however
the ratios of the strengths of the series are not supported by
the data. In the case of model B, on the other hand, the series
V �8 ,16 ,24 , . . . �Bc is simply missing, and the relative
strength of the major series is also not well supported by the

data. It may be noted that the present comparison clearly
illustrates the ability of the experimental data, at the level of
the discrete Fourier spectrum, to better distinguish between
the various theoretical models than may be practicable in the
time domain.
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FIG. 16. Theoretical Fourier spectrum of the dynamic 19th har-
monic signal for O2; pump intensity I=0.5�1014 W /cm2, probe
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and temperature 200 K. The calculations are done using the present
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perimental spectrum, please refer to �13,19�.
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E. Adiabatic alignment

Finally, we apply the present dynamic theory also to the
adiabatic case, in which we choose a long �300 ps� pump
pulse and a short �70 fs� probe pulse, as in an adiabatic
alignment experiment �65� used earlier. The results of our
calculations for N2, using Eqs. �113� for both �=0° �solid
curve� and �=90° �dash-dot curve�, are shown in Fig. 17.
For the sake of comparison, we also show the intensity pro-
file �dashed curve� of the pump pulse �right scale�. As can be
seen immediately from the figure, in the parallel case, the
HHG signal closely follows the evolution of the long pump
pulse itself �which might be expected for an adiabatic pro-
cess� and the maximum of the signal occurs at the maximum
of pulse, for �=0°. On the other hand, a minimum is pre-
dicted for the signal at the maximum intensity, in the perpen-
dicular case, for �=90°. These characteristics of the adia-
batic signals for N2 are consistent with the experimental
observations made some time ago �65–67�.

VIII. CONCLUSIONS

To conclude, we have presented an ab initio intense-field
S-matrix theory of dynamic alignment of linear molecules
and the characteristic HHG signals from them as detected in
intense-field femtosecond pump-probe experiments. Useful
analytical expressions for the molecular alignment and the
HHG signal as a function of both the delay time td and the
relative polarization angle � between the pump and probe
pulse are derived. We give the general HHG signal for linear
molecules, Eq. �103�, the signal for N2 �and generically, ac-
tive �g orbital symmetry�, Eq. �113�, and its leading term,
Eq. �130�, as well as the signal for O2 �and generically, active
�g orbital symmetry�, Eq. �114�, and its leading term, Eq.
�131�. They are used next to make a detailed analysis of the
molecular alignment and the HHG experiments from coher-
ently rotating N2 and O2 molecules. Results are obtained
both in the time domain and in the frequency domain. The
results show a remarkable agreement with all the salient
characteristics of the experimental observations in N2 and
O2. Additional predictions about the existence of critical
relative polarization angles, �c, and their relation to the sym-
metry of the active molecular orbitals and the form of the
dynamic signals are made. At a “magic” angle, �c�55°, the
dynamic HHG signals for all delay times td are predicted to
approach each other closely for a �g orbital symmetry, or
exhibit a “crossing neighborhood” in its vicinity, for the �g
orbital symmetry; specifically it is shown to produce a steady
emission of high-order harmonic radiation, as well as a re-
versal of the phase of the dynamic signal, at the magic angle.
Further, a number of theoretical questions and experimental
effects of general interest, in connection with the interpreta-
tion of the pump-probe HHG signals, are investigated. Fi-
nally, it is shown that the case of “adiabatic-alignment,” and
the resulting HHG signal, can be analyzed and understood
equally well within the present dynamical theory, using sim-
ply a long duration of the pump pulse.
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