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Molecular quantum wave-packet splitting and revivals in shared phase space
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The evolution of a molecular wave packet created by an ultrashort laser pulse in a system of two coupled
bound states is investigated by quantum dynamics calculations and semiclassical theory. Under suitable dy-
namical quantum interference conditions, the wave packet may be split into two separable fractions that move
in different but partially overlapping regions of the energetically available phase space. Each wave-packet part
can be individually addressed in the divided parts of the molecular phase space, and they are shown to go
through separate long-term collapse-revival cycles analogous to those of wave packets moving in single
anharmonic potentials. In a pump-probe scheme, the dynamics of the system would look very different de-
pending on what internuclear distances are probed. The regular dynamics observable in the separated parts of
the phase space takes on a quite irregular appearance in the regions that are shared by the wave-packet
components. The wave-packet regularity is shown to depend sensitively on the pump pulse wavelength, which
is a reflection of the energy range over which the quantum interference conditions are maintained. These
conditions, as well as the wave-packet fraction revival times, are well reproduced by semiclassical theory.
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I. INTRODUCTION

Interference of matter waves is a genuine quantum effect
without correspondence in our classical-appearing world of
everyday life. With the recent realization of macroscopic co-
herent ensembles of atoms, however, the avenue to practical
applications like quantum computers has been laid open,
with immense potential implications for society. This has led
to a rapidly increasing interest in searching and exploring
schemes for quantum manipulation of matter like molecules
[1,2].

Quantum interference effects on matter dynamics is a
concept as old as quantum mechanics itself [3]. In the mo-
lecular physics framework of the present article, it was
shown in early work by Stiickelberg [4] that interference at
an intersection of two electronic potential energy curves
could cause the electronic excitation probability in atomic
collisions to oscillate with collision energy. Later on, such
interference was invoked to explain unexpectedly long-lived
rovibronic states in predissocative systems [5]. The quantum
wave-packet viewpoint, however, laid dormant more or less
until the advent and implementation of femtosecond lasers
some 20 years ago. The analysis of the first experiment on a
predissociative molecular system [6] made clear that quan-
tum wave-packet interference played a decisive role in the
molecular break up [7-9].

Interference is most pronounced in systems with strong
coupling—that is, where the dynamics comprises maximally
mixed diabatic and adiabatic evolution. Recent experiments
on predissociative molecular systems in this coupling range
[10], indeed, bear strong traits of quantum interference
[11,12]. In the same vein, we showed [13-15] that also sys-
tems consisting of two strongly coupled bound molecular
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states exhibit quantum interference effects of the same kind.
In that case, however, the dynamics is richer. The single
combination of interfering hybrid diabatic-adiabatic wave-
packet paths in unbound systems is in bound systems re-
placed with four principle combinations of two kinds—
mesobatic bistable and mesobatic astable [13,14] (see the
following section for definitions)—depending on the initial
conditions. There is no fundamental reason why these phe-
nomena should be restricted to molecular systems and, in-
deed, we recently showed that they appear also in models of
standing-wave laser-driven harmonically trapped ions [16].

The interesting idea to enhance the quantum interference
effect by adjustment of the involved potential energy curves
was shown by Dietz and Engel [17] to be very potent on the
time scale of molecular vibrations. We used the same ap-
proach to show that interference has profound implications
also on the normally much longer time scale of molecular
wave-packet revivals [18]. In fact, under optimized condi-
tions wave packets that are moving in maximally coupled
systems undergo collapse-revival cycles with fractional and
full revivals exactly analogous to those of a wave packet
moving in a single anharmonic potential. The revival time,
however, is modified to be intermediate to those of the active
diabatic and adiabatic pathways, respectively, in proportion
to the wave-packet splitting at the crossing of the potential
curves [18].

In the present article we extend the previous work on
two-state systems to a three-state model based on the lowest
electronic states of Rb, (see Fig. 1), including a wave-packet
preparation stage by ultrafast laser excitation from the
ground state. The system parameters are varied in order to
identify optimal conditions for quantum interference in the
coupled excited states. The characteristic dynamical features
of the optimized system are analyzed within a semiclassical
framework, and the potential of using the laser wavelength to
tune the wave-packet conditions is examined. Under optimal
wave-packet conditions, the ensuing dynamics is shown to
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FIG. 1. Model molecular system. Electronic states are labeled
numerically, and lines are the corresponding (diabatic) potential en-
ergy curves as a function of internuclear separation r. The states |1)
and |2) are coupled by a Gaussian function of r, and an ultrashort
laser pulse couples the initial wave packet in |0) to |1) (vertical
arrow). See Sec. III for specifications.

comprise the formation of two wave-packet fractions with
independent long-term collapse-revival dynamics. The signa-
ture of this state of motion, moreover, is shown to be
strongly dependent on the choice of probe point. From a
coherent control perspective, we here present a scheme for
persistent splitting of a wave packet moving in a system of
two strongly coupled bound states.

II. REGULAR HYBRID WAVE-PACKET MOTION
AND SEMICLASSICAL THEORY

The regular hybrid diabatic-adiabatic wave-packet motion
that results from fulfilment of the requirements for complete
quantum interference can be understood in good detail from
semiclassical arguments [13,14,18]. In this section we illus-
trate the basic types of regular hybrid dynamics that appears
and introduce some simplifying nomenclature [13,14]. Semi-
classical interference conditions for each hybrid motion type
are reviewed as well as the corresponding revival times [18].
In Sec. IV we will find use of these results to interpret the
more involved wave-packet dynamics in the present system.

A. Types of regular hybrid motion

The system of two strongly coupled excited states in Fig.
1 can support two basic types of regular hybrid diabatic-
adiabatic wave-packet motion. To reduce cluttering of the
language, we will in the following use the more concise
phrase mesobatic motion to denote generically these two
kinds of regular wave-packet motion.

In the first type of mesobatic motion, which also occurs in
predissociative systems and there gives rise to long-lived
resonances, the wave-packet |\P;t) starts out in one diabatic
state, splits at the potential curve crossing, and after turning
around recombines at the crossing to the same diabatic state
as the initial one. This behavior is visualized through the
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FIG. 2. Time-dependent populations N;(1)=(¥;t|i)}{i|¥;t) of
the two diabatic states i=1 (solid lines) and 2 (dashed line) under
mesobatic interference conditions. In both panels the normalized
wave packet, N(¢)+N,(¢)=1, starts out being well localized at a
turning point in |1). T, is the average classical vibrational period of
the initial diabatic state. Cases: (a) bistable (b) astable.

time-dependent populations of the diabatic states, N,(¢)
=(W;t|i)(i| W), in Fig. 2(a). There is a companion state of
motion which differs to the previous one only in that it starts
out in the other diabatic state on the same side of the poten-
tial curve crossing. These two states of motions we call
bistable in analogy with an electronic flip-flop switch that
can be set to and remain in either one of two states. Notably,
this type of motion can occur for any value of the wave-
packet splitting ratio at the first encounter of the potential
curve crossing.

The other kind of basic mesobatic wave-packet motion,
similarly illustrated in Fig. 2(b), may appear with a slight
shift in wave-packet energy or system parameters from the
bistable situation. In this astable state the wave packet al-
ways recombines to the diabatic state opposite to the one it
came from before splitting at the potential curve crossing.
Thus, the recombined wave packet will undergo a kind of
regular oscillation in appearance at the outer turning points
of the diabatic states, similar to an electronic switch that can
be set to oscillate between its two states. The astable state for
obvious reasons cannot occur in predissociative systems.
Moreover, to be effective it requires very nearly 50:50 wave-
packet splitting at the first passage of the potential energy
curve crossing, vide infra.

B. Mesobatic interference conditions

The interference conditions for the two basic types of me-
sobatic wave-packet motion are readily obtained in the
framework of semiclassical wave-packet dynamics [7,14,17].
For this we presume that the in- and outward curve crossing
events for a well-localized wave packet are described by the
matrices [19]

o | V1= fe'X \/?
T = N e b (1)
-\f Nl=fe™X
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and the inner and outer parts of the wave-packet propagation
including turnaround are described by [19]

(2)

) €2i(a+—ﬂ'/4) 0
ph= 0 plila—m4) | 3)
2i(B,—m/4)
pu | 0 @
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In these matrices, f is the nonadiabatic transfer probability
and y is the relative phase arising from the crossing process,
both of which are here calculated within the Landau-Zener
approximation [19-21]. The «. and B. are accumulated
phases due to propagation along parts of the adiabatic poten-
tial curves V,(r) (upper) and V_(r) (lower) of the corre-
sponding coupled diabatic states |1) and |2). These phases are
calculated in the WKB approximation as [19,22-24]

2% OTP
Ay = J ki(r)dr, B+= f k. (r)dr. (5)
T r

TP %

ITP and OTP denote the pertinent inner and outer classical
turning points, ry is the crossing point of the two diabatic
potential curves, and #k.(r)=V2u[E—V.(r)] is the momen-
tum of the reduced molecular mass w at the total energy E.
The overall matrix governing the evolution over a classical
vibrational period for a wave packet that intially moves in-
wards then can be expressed as

M= Pout7(>)<lltpin7"i>lz
6210—*'[(1 _ eZié)f_ 1] eZi((r+—)(/2)(eZi($_ l)f
PR _ g 2F A (1 B - 1]

(6)

where f=\f(1-f), o~ =a.+ B+ * x is the total accumulated
phase along a particular adiabatic path, and é=a_—a,—y is
the accumulated phase difference for propagation in the inner
parts of the two adiabatic potentials including the curve
crossing.

Now, bistable motion requires M to be diagonal with con-
served norm for the ingoing wave function. The only non-
trivial condition for this to occur is e2%=1, which is equiva-
lent to

S=mm, integer m. (7)
Then
_ eZiO'+ 0
Myisiable = 0 _ Qo | (8)

Under the bistable interference condition, thus, the initial
wave packet is retained irrespective of its initial electronic
state and the splitting ratio at the curve crossing. In other
words, there are two coexisting basic bistable motions de-
pending on the initial wave-packet state.
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Astable mesobatic dynamics, on the other hand, results
provided M is antidiagonal with preserved norm. From in-
spection of (6) we see that this requires that

1
o= (m + 5)77, integer m,
)

N | =

f=
which gives

0 _ eZi((r+—X/2)
; (10)

Myoe=|
astable _621(0'_+)(/2) 0

in accordance with the requirements. Again there are two
coexisting motions depending on the initial electronic state.
Different to the bistable case, however, the astable state of
motion depends critically on the wave packet splitting into
equally large fractions at the potential energy curve crossing.

C. Revival of bistable wave packets

A wave packet in a bistable state of motion undergoes
long-term collapse-revival cycles fully analogous to those
occurring for motion in single anharmonic potentials [18]. As
such, the revival structures are signatures of quite regularly
spaced energy levels in the coupled system and the revival
period can be obtained by employing the same semiclassical
formalism as the one used to deduce the mesobatic interfer-
ence conditions (7) and (9) [18].

In the time-dependent semiclassical formulation of Chap-
man and Child [8], a predissociating wave packet comprises
a superposition of eigenstates of the coupled system with
complex eigenenergies and real amplitudes. A bistable state
of wave-packet motion requires the whole range of eigen-
states to be long lived, which may occur when a vibrational
level vy in the diabatic state is nearly degenerate with an
adiabatic one v, [5]—that is, when E4(d4) - E,(d,) =0. Then,
assuming that the quantum-state population is centered
around the resonant pair 04 and 0,, the energy levels of the
coupled system may be written in terms of a common quan-
tum number v=v;-0; as

_ Eq(v) + x(0) E,(v)
1+x(v)

where x(v)=fy(v)/(1-f) with y(v)=wy(v)/ w,(v) and w;(v)

denoting the local vibrational angular frequency in state i.

Implicitly, also the nonadiabatic transfer probability f de-
pends on v. Now, provided ;> Av>1, where Av is the

E®v) (11)

population distribution spread in v, E(v) can be expressed as
a MacLaurin expansion in v from which the full revival pe-
riod for the coupled system can be identified as [25]

Ti=—". (12)

Bistable motion requires the vibrational periods of the in-
volved adabatic and diabatic states to be equal; i.e., we have
necessarily y(v)=1. Then, in the limit of exact resonance,
Ey(v)-E,(v) =0,
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Ey(v) + x(v)E; ()

E'v)= 1+x(v)

; (13)

given that all derivatives Eg’}g with n=3 can be ignored. By
substitution of the v;’s by Dunham expansions [26], finally,
the full revival time of the coupled system can be expressed
in terms of those of the diabatic and adiabatic states:

1 S a=9n

— = . 14
RN "
Equation (14) gives an excellent account of the observed
revival times in full quantum dynamics calculations in both
bound and predissociative systems [18]. From the semiclas-
sical picture it follows that a general condition for the exis-
tence of bistable wave-packet motion is that there is a range
of near-resonant diabatic and adiabatic vibrational levels.
This requirement is, in principle, independent of the coupling
and can be fulfilled for any coupling strength.

III. MODEL SYSTEM AND CALCULATIONS

The process of quantum wave-packet preparation and its
subsequent evolution was here modeled within the frame-
work of the system in Fig. 1. The three molecular electronic
states have potential energy curves that are slightly shifted
replicas of the three lowest states in the Rb, molecule. An
ultrafast laser pulse couples the initially only populated
ground state |0) to the excited state |1). The two excited
states, in turn, are coupled to each other by some intramo-
lecular mechanism, which in Rb, would be electronic spin-
orbit interactions, mainly.

The quantum dynamics of the system was calculated by
solving the time-dependent Schrodinger equation for the
time-dependent total wave function W (r,1)=(r|V;1),

ihdW(r,t)=H(r,0)¥(r,1), (15)

via the split-operator method [27]. The three-state Hamil-
tonian was represented as

T+ Voo(r) V(1) 0
H(r)=| Vi)  T+Vy(r) Vi) |, (16)
0 Vo (r) T+ Vy(r)

where T=—(2u)"'%24” is the kinetic energy operator.

Employing the electric dipole and semiclassical approxi-
mations for the light-molecule interaction [28], we have
Vor1(0)=V,0(t) =—u10E (1), with u,o being the transition dipole
moment and E(z) the classical electric field of the laser pulse.
We took u,o to be constant and E(f) to have a Gaussian
temporal profile E(t)=E,exp[—t*/A%]cos[wyt] with w,oE,
=1X10"* a.u. and A=3511.28 a.u. These laser pulse values
correspond to a 100-fs-long pulse with intensity and popula-
tion transfer in the perturbative range.

The molecular potential energy curves were represented
by Morse functions V;(r)=D{1-exp[—a;(r—r;)]}*+T;, with
parameter values as specified in Table I. The intramolecular
coupling between the two excited electronic states in the
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TABLE 1. Parameter values (in atomic units) for the Morse po-
tential energy curves V(r)=D{l—exp[—a;(r—r)]}?+T; of the
model system.

li) T; D; a; ri

|0> 0.00000 0.01749 0.39397 6.7690
|1> 0.04853 0.02644 0.25727 8.8600
|2> 0.04311 0.03206 0.33763 7.6881

calculations was V,(r)=V,,(r)=A exp[-B(r-ry)?] with
A=4.945454 55 a.u., B=0.5 a.u,, and r=9.3187 a.u.

The intitial wave function W(r,t— —)
=(0,r|¥;t— —x) was taken to be that of the vibrational
ground state of |0) and was calculated by the Fourier grid
Hamiltonan method [29]. The split-operator propagation was
done on a grid of 4096 points covering the r range
4.0-24.0 a.u. During the laser pulse action, a propagation
step of 0.41341 a.u. (0.01 fs) was used and after that the
propagation step was set to 41.341 a.u. For consistency with
the choice of molecular potentials, the reduced molecular
mass u was chosen to be that of the rubidium molecule in
natural isotope abundance, 77 899.1 a.u. (42.7339 amu).

The Morse potential energy curves correspond to the three
lowest electronic states in Rb,, X 'S* A 'S* and b °TI , and
were obtained by fits to those calculated by Park et al. [30],
V,(r), a=X,A,b. For the present calculations, the curves
were shifted in r position as Vio(r)=Vyg(r—0.9946 a.u.),
Vi (r)=V,(r=0.1172 a.u.), and V,,(r)=V,(r). These shifts
can be thought of as mimicking the experimentally acces-
sible processes of wavelength selection of the wave-packet
launch position (ground-state shift) and rotational-state se-
lection (excited-state relative shift) in a thermally excited
molecular system. The relative excited state potential shift
and other parameter adjustments were done such that a wave
packet with a total energy of Ep,=0.062 096 a.u. starting at
either one of the outer classical turning points of the excited
states would undergo simple bistable mesobatic motion with
full long-term revivals, similarly to what was first demon-
strated in [18]. To obtain maximally mixed motion, more-
over, the wave-packet splitting ratio at the potential curve
crossing was arranged to be 50:50.

The laser pulse duration and Rabi cycling time were cho-
sen to be significantly shorter than the characteristic vibra-
tional period of the excited states. The main action of the
pulse, thus, was to create a wave packet in the excited state
[1), and in the following we will ignore all subsequent dy-
namics in |0) and renormalize the excited-state wave packet
accordingly. Likewise, all expectation values, etc., are taken
to refer to the subspace of the two excited electronic states
only. To facilitate characterization of the (sub)system dynam-
ics, we introduce the correlation functions

SIE) = (W W), (17)

where |W;;1)=(i|W;r). 77" refers to the time of the first
occurrence of the wave packet at, respectively, the inner and
outer turning points of V;(r). That is, £*'~(T)/2 and £"
~(T,), where (T is the average classical vibrational period
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of the adiabatic states, which is about 1 ps. In the case of t}n,
the reference wave function was obtained after removal of
the wave-packet fraction in 1) at r=¢"". The full set of
S}"/ °U(7), hence, measures the similarity of the wave packet to
its more or less nascent form at the turning points of the
potential curve of each electronic state. Their amplitudes are
bounded by the instantaneous population in the respective
states.

IV. RESULTS

The model system was designed such that the bistable
interference condition (7) would be fulfilled for a wave
packet starting at either outer turning point with a total en-
ergy of E,, and that the initial wave-packet splitting ratio
would be 50:50. Such a wave packet would exhibit exceed-
ingly regular motion with collapse-revival dynamics with the
full revival time 7}}} given by (14) [18]. Moreover, the wave
packet would be locked into the initially prepared bistable
state of motion and never reach the outer turning point of the
complementary one.

The dynamics becomes considerably more involved when
the initial state instead is chosen to be one of the inner turn-
ing points. Such motion was found to be the origin of the
short-term vibration dynamics in the Rb,(A~b) system
[13-15], and our aim here is to gain further insight into the
basic characteristics of this type of motion and its prepara-
tion by pulsed laser excitation. For this purpose, we begin by
discussing the dynamics of a wave packet excited to the in-
ner turning point of |1), as indicated in Fig. 1, with a total
energy E,,. The wave-packet energy can be controlled by
variation of the laser wavelength, which is explored in the
second part of the section.

A. Bistable interference conditions
1. Short-term dynamics

For a laser pulse with frequency w;=0.06196 a.u., the
excited wave-packet total energy (H)=E,,. This implies that
the bistable interference condition (7) is fulfilled and results
in the early dynamics reflected in the correlation functions
shown in Fig. 3. Expectedly, the preparation of the wave
packet in |1) is the first thing that happens. The low correla-
tion value for the initial peak, it should be noted, is a conse-
quence of our choice of reference function in (17). It does
not reflect directly the population in |1), which was renor-
malized right after the excitation pulse had ended such that
N, (t= §)= 1. At its first encounter of the curve crossing, the
wave packet splits in two fractions. These appear at the re-
spective outer turning points at about (T)/2 with equal
squared correlation amplitudes of 0.25. By definition, the
squared amplitude at this time corresponds to [N,(#"")]* and
thus shows that the wave packet has been split into halves.
The wave-packet part in |2) is the one that first returns to the
curve crossing and splits there into two quarter fractions of
the initial wave function. It is shortly followed by the re-
maining fraction, which splits similarly. Hence, there are two
closely spaced wave packets that copropagate towards each
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FIG. 3. Early-time dependence of the correlation function (17)
at the turning points: (a) |1) inner, (b) |2) inner, (c) |1) outer, and (d)
|2) outer.

inner turning point, as can be seen in the two upper panels of
Fig. 3.

The system has been set up to fulfill the bistable interfer-
ence conditions for a wave packet evolving from either of
the outer turning points. Consequently, the two wave-packet
fractions originating from the outer turning point in [2) arrive
simultaneously at the curve crossing and recombine such that
the resulting wave packet goes completely back into |2). This
is seen as the second peak in Fig. 3(d), which, accordingly,
has the same amplitude as the first one. Meanwhile, the
wave-packet fraction originating from the other outer turning
point recombines and follows the complementary bistable
motion back to the outer turning point of |1); see Fig. 3(c).

The difference in classical vibrational periods for the two
bistable states motion is readily seen in the two bottom traces
of Fig. 3. This difference leads to an increasingly complex
pattern of overlapping wave-packet fractions at the inner
turning points. The evolution of the correlation functions at
the other end points of the motion, however, remains very
regular and has in each case the appearance of simple
bistable motion. The decrease in amplitudes in that case is
caused by spreading of each wave-packet fraction.

2. Long-term dynamics

On a time scale exceeding a few vibrational periods, the
initially well-localized wave-packet parts spread and start to
overlap and, in general, the correlation functions become er-
ratically fluctuating. This is in Fig. 4 shown to be the case for
the correlation functions at the inner turning points. The cor-
responding measures at the outer turning points, however,
exhibit remarkable regularities. In fact, they look precisely
like fractional and full revival structures in autocorrelation
traces for wave packets moving in single anharmonic poten-
tials [25] or, as we recently showed [18], in a coupled system
under bistable mesobatic conditions similar to the present
case. The squared correlation amplitude of 0.25 at the outer
turning points at around t=200(T,) and 400(T,)) indicates
that the wave-packet fraction is identical to the nascent one,
bar a possible complex factor with unity absolute value. This
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FIG. 4. Long-term evolution of the correlation function (17) at
the turning points: (a) |1) inner, (b) [2) inner, (c) |1) outer, and (d) |2)
outer.

means that, apparently, the wave-packet fraction has been
revived. Consequently, the signal for this system will be very
different depending on where the dynamics is probed. If the
system is probed at the outer turning points of the excited
states, regular signals are obtained, for both short and long
time scales, whereas at the inner turning points they would
appear as quite irregular except for the very first few vibra-
tional periods.

To take the analysis one step further, we compare the
apparent revival times of the wave-packet fractions to the
predictions for bistable revival periods from application of
(14). As seen in Fig. 5, the predicted revival times match
exceedingly well those of the wave-packet fractions in the
present system—the relative error [18] is on the order of 1%.
This indicates that the full wave-packet dynamics in Fig. 4
actually may be viewed as being composed of two indepen-
dent wave packets undergoing separate bistable motion. This
conjecture is corroborated by the exceptional similarity of
the full wave-packet dynamics in Figs. 5(a) and 5(b) to those
of the respective unperturbed bistable wave packets in Figs.
5(c) and 5(d). Here, each individual bistable wave-packet
fraction was extracted from the full wave packet by quench-
ing the part in the other electronic state at the first encounter
of the outer turning points at = (T,)/2. It is clearly seen that
not only the revival times, but also the envelopes of the
correlation functions of the single bistable wave packets are
close to identical to the corresponding ones of the full wave
packet.

The Wigner transform [31] can be used to bring further
insight of the quantum dynamics. For the wave function
gi(r)=(,r|¥;0), it is defined as

1
Wj(r7p) = ﬂ'ﬁj

—o0

©

ds eZip'Y/htﬂ;k(r+S)lﬁj(V—S), (18)

where p is the momentum. The corresponding phase-space
distribution at the instant of the full revival of the wave-
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FIG. 5. Long-term evolution of the correlation function (17) at
the outer turning points for the whole wave packet as well as for the
fraction remaining after depleting the wave-packet part in the
complementary state at 1=(T,)/2. (a) i=1, full wave packet. (b) i
=2, full wave packet. (c) i=1, wave-packet part in [2) depleted at
t=(Ty)/2. (d) i=2, wave-packet part in |1) depleted at 1=(T)/2.
The full revival times of the initial two wave-packet fractions in
unperturbed bistable mesobatic motion (14) are indicated by verti-
cal dashed lines.

packet fraction in |2) is shown in Fig. 6. The revived well-
localized wave-packet fraction is clearly seen in part (a) at
the outer turning point of [2), while the remaining wave-
packet part is spread out all over |1) and the inner part of |2).
About half a vibrational period later, we find that the wave-
packet fraction previously at the outer turning point of |2)
has split into two well-localized fractions of equal ampli-
tudes that are superimposed on the collapsed part of the
wave function. It is clear from the ensuing evolution of
S9"(¢) that the two localised wave-packet fractions recom-

p (au.)

p (au.)

7 10 13 7 10 13

r(a.u.) r(au.)

FIG. 6. Wigner transforms W;(r,p) of the system at times
around 400(T,p). In (a) and (c) at the peak value of S3"(r); (b) and
(d) about (T,)/2 later. The graphs (a) and (b) refer to state |2)
whereas (c) and (d) relate to |1). Only positive values of W,(r,p) are
shown.
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FIG. 7. Energy distribution of the wave packet in terms of
Franck-Condon factors for projection onto the vibrational eigen-
states of |1) (solid circles connected by the dashed line), M,
=|(1,v| Wt~ 7/2)|?, together with the semiclassical phase differ-
ence (&/ ) mod 1 (solid line), which should be close to either 0 or
1 for bistable interference conditions. Here, the value varies across
the energy distribution of the wave packet from 0.98 to 0.99 and
corresponds to m=19 in the bistable interference condition (7). The
two ordinate scales are the same.

bine and go completely into state |2) as they reencounter the
potential curve crossing. Thus, the motion for this wave-
packet fraction at its full revival time is analogous to that
during the very first few vibrational periods. The same ap-
plies for the other fraction at its time of revival.

Long-term stability of bistable mesobatic motion, as indi-
cated in Sec. II C, would in the semiclassical picture be ex-
pected to entail that the interference condition (7) is fulfilled
over the entire wave-packet energy range. The energy distri-
bution of the wave packet is in Fig. 7 represented by the
population projection of the wave packet onto the vibrational
eigenstates of the electronic state |1) right after the excitation
pulse has ended, M,=|(1,v|¥;t= 7/2)%. Indeed, the semi-
classical phase difference & also plotted in Fig. 7 is very
close to an integer multiple of 7 and it is so over the whole
energy range covered by the excited wave packet.

B. Excitation wavelength variation

A wave packet excited to a total energy FE
=0.062 096 a.u. under the present initial conditions splits in
two equally large parts that undergo individual regular
bistable motion. This was acheived by choosing the fre-
quency of the exciting laser pulse (wy=0.06196 a.u.) such
that the resulting excited part of the wave packet had an
energy Ey at which the semiclassical phase difference 6 was
equal to an integer times . In general, a small change in the
energy of the wave packet from E, breaks the interference
condition and causes for small deviations reduced regularity
in the long-term dynamics. Larger energy variations lead to
qualitatively different dynamics. The wave-packet energy
principally is governed by the carrier frequency w, of the
excitation pulse. This opens a route to selective preparation
of bistable motion, in general, and the above-observed
double bistable state of motion, in particular, by variation of
the exciting laser wavelength.
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FIG. 8. The same semiclassical phase difference (/) mod 1 as
in Fig. 7 over a wider energy range. The total wave-packet energies
selected for calculation of the long-term correlation functions in
Fig. 9 are indicated by arrows.

The semiclassical phase difference 6 for a wave packet
energy of Ey, in the present system is very nearly an integer
multiple of 7 over the whole energy range covered by the
wave packet. On a larger energy scale (see Fig. 8), § changes
significantly. Hence, we would expect the longterm regular-
ity of the bistable motion to deteriorate if w is varied. This
is also what is seen when we compare in Fig. 9 the evolution
of $9"(z) for the selected wave-packet energies marked in
Fig. 8. The middle panel of Fig. 9 is the same as Fig. 4(c)
and thus represents the bistable case discussed above. The
well-developed full revival structure under those conditions
is still visible, but severely distorted for the two energies
closest to Ey, whereas there is no sign of revivals for the two
energies farther away from E,,. Another observation is that
not only the magnitude of § is of importance. The two cor-
relation functions with the nonoptimal energies FE
=0.060 550 a.u. and E=0.063 520 a.u. have about the same
6, but nevertheless, one is more regular than the other. The

0.2 (a)i | I

0.0

0.2 ‘b)l ' |

0.0

0.21©

- me
02} @

" Dditasdends
02}®

ool el

0 200 400
t/(Tcl)

IS out(t)|2

FIG. 9. The long-term evolution of S5"(s) for wave packets
excited to the total energies indicated in Fig. 8. From the bottom up
E=0.057606, 0.060555, 0.062096 (E,), 0.063520, 0.066495 a.u.
The middle panel is the same as Fig. 4(c).
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slope of 6 versus E is quite different in the two cases, how-
ever. Thus, the difference in long-term stability for these two
energies in a sense illustrates the importance of the semiclas-
sical requirement that the interference condition should be
fulfilled over the whole wave-packet energy range.

V. DISCUSSION

The calculations presented above show that it in a suitable
molecular system would be feasible to prepare bistable me-
sobatic wave-packet states—strongly mixed hybrid diabatic-
adiabatic states of motion [13,14] with highly regular long-
term dynamics [18]—in accordance with the previous
interpretation of ultrafast pump-probe experiments on predis-
sociative [10-12] and bound [13-15] diatomic molecular
systems. Such motion in molecules represents a severe
breakdown of the Born-Oppenheimer approximation, and
neither a diababatic nor an adiabatic picture provides a con-
venient representation of the system dynamics. The present
model system was arranged such as to facilitate investigation
of principal properties of the preparation and evolution that
could be expected of such wave-packet states. Accordingly,
we will in this section discuss particular aspects of bistable-
state preparation and identification and the fundamental
coupled-system dynamics.

The preparation of a wave packet in a bistable state of
motion, obviously, requires that the coupled system feature
the appropriate interference condition (7) for some energy. If,
in addition, one of the corresponding electronic states is ac-
cessible from the electronic ground state at the required in-
ternuclear separation, then the whole matter of state prepara-
tion reduces to simple laser wavelength tuning, as shown in
Sec. IV B. The semiclassical analysis of the phase difference
6 might be used to identify suitable systems fulfilling these
conditions. Thermal excitation might be influential both by
modifiying the phase difference 6 by means of the rotational-
state dependence of the effective potential surfaces and cou-
plings and by widening of the accessible range of internu-
clear separation for the wave-packet launch by vibrational
excitation of the electronic ground state.

The wave-packet dynamics after launch into a bound sys-
tem under bistable interference conditions could involve
simple bistable motion only or, as shown here, initial wave-
packet splitting and subsequent independent bistable evolu-
tion of two complementary wave-packet fractions. The point
of wave-packet launch decides which will be the prevailing
situation. This, implicitly, is shown by Fig. 5, where each
reference wave packet (b) and (d) mimics a situation in
which the wave packet is launched at the outer turning point
of one electronic state. These wave packets undergo simple
bistable motion and never reach the outer turning point of the
opposite electronic states. A wave packet launched at an in-
ner turning point, on the other hand, first splits into two
fractions. As argued below, these two fractions then evolve
each in a bistable motion like the other fraction was absent.
A bound system featuring bistable interference conditions,
thus, supports two basic types of mesobatic wave-packet dy-
namics, simple bistable motion and a bistable twin state of
motion comprising independent bistable evolution of two
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FIG. 10. Power spectra versus frequency w, in terms of the
average vibrational frequency (w.)=(T)~!, of the long-term corre-
lation functions at the various turning points in Fig. 4: (a) |1) inner,
(b) [2) inner, (c) |1) outer, and (d) |2) outer. F{: -} denotes the Fou-
rier transform.

wave-packet fractions created by splitting of the launched
wave packet at its first passage of the potential curve cross-
ing. A predissociating system, in contrast, can only support
the simple type of bistable motion, as it does not provide
more than one simple bistable state of mesobatic motion.
The simple type of bistable mesobatic motion was ob-
served in experiments on predissociation of IBr molecules
[10,11], while the split bistable wave-packet motion was
seen to occur in bound-state dynamics in Rb, [13-15]. In
both experiments a pump-probe scheme was used, which is a
frequently employed work horse in ultrafast molecular spec-
troscopy. It is a conceptually very simple method in that a
dynamical process is initiated with an ultrashort pump pulse
and the ensuing system evolution is followed in time by a
variably delayed ultrashort probe pulse. Implicitly, however,
the outcome of such measurements depends critically on the
choice of probe transition and the present bound model sys-
tem provides a very clear illustration of this. Our correlation
functions S"°"!(¢), namely, resemble very much what would
be obtained by suitably tuned probe pulses. Thus, depending
on the choice of the side of the potential curve crossing to be
probed, the observed long-term wave-packet dynamics
would appear regular or irregular, similar to what can be seen
in Fig. 4. This is also evident in the corresponding frequency
spectra in Fig. 10. For the correlation functions at the outer
turning points, accordingly, the spectra are very simple and
only exhibit the vibrational frequency of the involved diaba-
tic state and overtones of that, whereas the spectra for the
inner turning points show no clear regularity at all. From
another viewpoint, probing at one of the outer turning
points—which may well be the only available option in an
experiment—the observed regular signal would very easily
be completely mistaken for simple vibrational motion in a
single diabatic or adiabatic potential. In fact, not even the
revival structures would give an obvious hint that the true
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state of motion is a fully mixed diabatic-adiabatic one. Even
if the latter circumstance would be clear, essential parts of
the system dynamics could be missing in the signal, as an-
other wave-packet fraction in the complementary bistable
state of motion effectively would be invisible.

We recently have shown by numerical quantum dynamics
calculations that wave packets in bistable states of mesobatic
motion may exhibit long-term collapse-revival dynamics
[18]. These states of simple motion come in complementary
pairs, in accordance with the semiclassical theory reviewed
in Sec. II B. Likewise, the semiclassical revival time (14) is
in excellent agreement with that obtained from full quantum
dynamics calculations [18]. The situation in the present sys-
tem is more involved as it is an instance of the bistable twin
state of motion. Accordingly, the early dynamics comprises
splitting of the laser-excited wave packet at the first passage
of the potential curve crossing. Each of the two wave-packet
fractions then for a few vibrational periods undergoes recog-
nizable bistable mesobatic motion that is rapidly obscured by
interference between the various wave-packet parts. From
Figs. 4-6, however, we see that each bistable wave-packet
fraction is revived at its outer turning point at the time ex-
pected for a simple bistable system. Moreover, the fractional
revival pattern in the correlation amplitudes S!"*"(¢) is simi-
lar to the autocorrelation patterns in the cases with single
bistable wave packets. We thus see that the two wave-packet
fractions that were split apart at the first curve crossing are
locked into individual bistable mesobatic motion and that the
subsequent dynamics of one fraction is not the least affected
by the presence of the other wave-packet part, despite the
fact that they share the same phase space and overlap in most
of it. Otherwise, the revival time of each twin in the com-
posite bistable wave-packet motion would not be that of the
corresponding simple bistable motion. Another manifestation
of this situation is that one of the bistable wave-packet frac-
tions can be depleted without noticable effect on the other
part, as demonstrated in Fig. 5.

The splitting into two independent bistable wave-packet
motions can be viewed as a direct consequence of the fun-
damental property of simple bistable wave-packet motion
that the available phase space is restricted and different for
the two bistable twin states. After the first traversal of the
curve crossing, namely, the wave packet has been split into
two orthogonal components: |[W;(T)/2)=c|¥,:(T,)/2)
+¢,|W,:(T,)/2), where the expansion coefficients obey
|c1|>+|c,|>=1. The orthogonality of these wave-packet frac-
tions follows from the fact that they are located entirely in
different parts of the phase space. The unitarity of the time
evolution operator U(t,,) then ensures that these compo-
nents remain orthogonal for all 7 and that ¢; and ¢, are
constants—that is,

|W;6) = ci|W:1) + ¢, | W51y, (19)

where |W;6)=U(t,(T)/2)|¥;(Ty)/2) and similarly for the
components. Clearly, the dynamics comprises two wave-
packet fractions that evolve without mixing. Each of these by
preparation is in a state of simple bistable motion, which
means that (W,;(T)/2|¥;;1)=0 for i # j. In other words, the
imposed dynamical quantum interference prevents the wave-
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packet fraction that starts out in one of the two initial states
from developing amplitude in the phase-space region defin-
ing the other state. The close similarity in Fig. 5 between the
correlation functions calculated at the outer turning points
for the full and reduced wave packets, for which one of the
initial components has been removed, thus is to be expected
under bistable interference conditions. If these conditions
would be relaxed, however, then there would be leakage of
amplitude into the phase space of the complentary initial
state and the result would be quite different, despite the fact
that there is still no mixing of the orthogonal components of
the full wave packet.

VI. CONCLUSION

We have seen here that a molecular wave packet created
by an ultrashort laser pulse in a system of two coupled bound
molecular states under suitable dynamical quantum interfer-
ence conditions is split into two separable fractions. The two
parts move in different but partially overlapping parts of the
energetically available phase space. The wave-packet com-
ponents, thus, can be identified and addressed individually in
their unique section of molecular phase space. By these
means it is readily seen that each wave-packet fraction
evolves exactly like the other part were not there; that is,
they go through long-term collapse-revival cycles analogous
to those of wave packets moving in single anharmonic po-
tentials [18] and the depletion of one wave-packet compo-
nent does not affect the other.

The choice of molecular configuration to probe—e.g., in
an ultrafast pump-probe experiment—has under these condi-
tions a great influence on the appearance of the dynamics.
The regular, but different, collapse-revival dynamics observ-
able in the separated parts of the phase space takes on a quite
irregular appearance in the regions that are shared by the
wave-packet components. The wave-packet regularity was
shown to depend sensitively on the pump pulse wavelength,
which is a reflection of the energy range over which the
quantum interference conditions are maintained. These con-
ditions, as well as the wave-packet fraction revival times, are
well reproduced by semiclassical theory, which appears to be
a valuable tool for the identification and design of systems of
the present kind.

The problem was here set in a molecular context, but the
results are in no fundamental way restricted to such systems.
Rather, we expect that the realization of the implied quantum
control scheme may be more easily achieved in other physi-
cal systems. Nonetheless, recent theoretical work [32-35] in-
dicates that there may be practically achievable ways of ma-
nipulating molecular systems that are known to exhibit clear
traits of the here-discussed type of wave-packet motion
[11,13-15].
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