
Local-field-corrected van der Waals potentials in magnetodielectric multilayer systems

Agnes Sambale and Dirk-Gunnar Welsch
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany

Ho Trung Dung
Institute of Physics, Academy of Sciences and Technology, 1 Mac Dinh Chi Street, District 1, Ho Chi Minh City, Vietnam

Stefan Yoshi Buhmann
Quantum Optics and Laser Science, Blackett Laboratory, Imperial College London,

Prince Consort Road, London SW7 2AZ, United Kingdom
�Received 18 December 2008; published 4 February 2009�

Within the framework of macroscopic quantum electrodynamics in linear, causal media, we study the
van der Waals potentials of ground-state atoms in planar magnetodielectric host media. Our investigation
extends earlier ones in two aspects: It allows for the atom to be embedded in a medium, thus covering many
more realistic systems, and it takes account of the local-field correction. Two- and three-layer configurations
are treated in detail both analytically and numerically. It is shown that an interplay of electric and magnetic
properties in neighboring media may give rise to potential wells or walls. Local-field corrections as high as
80% are found. By calculating the full potential including the translationally invariant and variant parts, we
propose a way to estimate the �finite� value of the dispersion potential at the surface between two media.
Connection with earlier work intended for biological applications is established.
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I. INTRODUCTION

The dispersive interaction between small neutral, unpolar-
ized particles �atoms, molecules, etc.� and an uncharged
macroscopic object is a manifestation of the quantum nature
of the electromagnetic field and related to the zero-point en-
ergy �1�. In the first quantum electrodynamical treatment of
this van der Waals �vdW� type force �2� and in many other
related works, the atom was assumed to be located in free
space. In reality, the atom may be submerged in or be a part
of a gas, liquid, or even solid—a situation typical in diverse
fields such as colloid science �3–5�, surface engineering �6�,
and biology �7�. As a particular example from biology, one
can cite the transfer of a small particle diluted in cell plasma
through a cell membrane caused by vdW forces �8�. A ques-
tion that may arise when the atom is embedded in a medium
is how the vdW interaction is to be corrected due to the
difference between the local fields acting on the atom and the
macroscopic fields averaged over a region which contains a
great number of the medium constituents, thus ignoring the
gaps between them. In Ref. �9�, the vdW interaction between
two ground-state atoms embedded in adjacent semi-infinite
magnetodielectric media has been considered. Comparison
of this result with that deduced from the Casimir force on a
thin composite slab in front of a composite semi-infinite me-
dium, both obeying the Clausius-Mossotti relation, suggests
a hint as to how to account for the local-field correction. This
confirmed shortly after in Ref. �10� on the basis of a macro-
scopic quantum electrodynamics theory and real-cavity
model �11�. A general formula for the vdW potential in an
arbitrary geometry has been derived in the form of a sum of
a translationally invariant term and and a term containing the
uncorrected scattering Green tensor modified by a local-field
correction factor �9,10�. This general formula is applicable
for metamaterials �12� and will serve as a starting point for

our treatment of the local-field-corrected vdW interaction in
a stratified magnetodielectric. Note that a generalization of
the formalism has recently been used to study local-field-
corrected interactions of an excited atom with a ground-state
one across an interface between two media �13�.

The interaction between a neutral atom and a material
surface is customarily split into two parts: a short-range re-
pulsive part, significant when the atomic valence electrons
overlap with the surface, and a longer-range dispersive vdW
part �14–20�. Theories that focus on the vdW interaction
commonly neglect the first and thus are incapable of cor-
rectly predicting the behavior of the interaction potential at
very short distances. They typically yield a power law of zA

−3

�zA, atom-surface distance� for materials with dominant elec-
tric properties and a power law of zA

−1 for purely magnetic
materials, which lead to divergent values for the vdW poten-
tial right on the surface �2,21,22�. Due to the importance of
phenomena such as physisorption and transport of particles
through interfaces and membranes, much effort has been de-
voted to a better treatment of the atom-surface interaction
when the two are at very short distances. With respect to
physisorption, this has been done via introducing a reference
plane �23�; via characterizing the material surface by a more
realistic response function which includes spatial dispersion
�24�, smooth variation of the dielectric properties at the in-
terface, and the contribution from d electrons to the screen-
ing �25�; and via using an atomic polarizability going beyond
the dipole approximation �17,25�. These studies typically
produce finite values for the interaction potential at the inter-
face �23�.

In the present paper, the local-field-corrected vdW inter-
action of a ground-state atom embedded in a planar, dispers-
ing, and absorbing magnetoelectric host medium is studied
within the framework of macroscopic quantum electrody-
namics and the real-cavity model. We propose a procedure
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that would allow for obtaining an estimate of the finite vdW
energy of an atom right on the interface even within our
predominantly macroscopic framework treating the atom
within electric-dipole approximation. The paper is organized
as follows. In Sec. II the main results concerning the local-
field-corrected vdW interaction of a ground-state atom and
an arbitrary absorbing and dispersing macroscopic body are
reviewed and then applied to planar multilayer systems. The
two-layer case is considered and a procedure for an estima-
tion of the vdW potential at the interface is given in Sec. III,
while the three-layer case is discussed in Sec. IV. Connection
with earlier work which focus on biological systems and
concluding remarks are given in Sec. V.

II. MODEL

We set the stage by briefly recalling the results for the
local-field-corrected vdW potential of a ground-state atom
within an arbitrary geometry and applying them to a planar
multilayer system.

A. Local-field-corrected vdW potentials
in arbitrary geometries

We consider a ground-state guest atom A located at rA in
an absorbing and dispersing host medium of arbitrary size
and shape characterized by macroscopic ��r ,�� and ��r ,��.
To account for the local-field correction, we employ the real-
cavity model by assuming the atom to be surrounded by a
small spherical free-space cavity of radius Rc. The radius of
the cavity is a measure of the distance between the guest
atom and the surrounding host atoms �10�. By construction,
the macroscopic quantities ��r ,�� and ��r ,�� do not vary
appreciably on the microscopic length scale Rc. To apply the
real cavity model, one should keep in mind that ���0���0�Rc
should be small compared to the maximum of all character-
istic atomic and medium wavelengths as well as to the sepa-
ration from any surface of the host medium. In particular, the
application of model to metals is very problematic. Using
second-order perturbation theory, the vdW potential for such
an atom can be written in the form �10�

U�rA� = U1�rA� + U2�rA� , �1�

where U1�rA� is constant throughout any homogeneous re-
gion and accounts for all scattering processes within the cav-
ity,

U1�rA� = −
��0

4�2c
�

0

�

d		3
�i	�CA�i	� , �2�

where

CA��� =
h1

�1��z0��zh1
�1��z��� − �A���h1

�1��z��z0h1
�1��z0���

�A���h1
�1��z��z0j1�z0��� − j1�z0��zh1

�1��z���
,

�3�

�z0=�Rc /c, z=n���z0, n���=��A����A���, �A���=��rA ,��,
�A���=��rA ,���, with j1�x� and h1

�1��x�, respectively, being
the first spherical Bessel function and the first spherical Han-
kel function of the first kind,

j1�x� =
sin�x�

x2 −
cos�x�

x
, �4�

h1
�1��x� = − �1

x
+

i

x2�eix, �5�

and 
��� denoting the isotropic polarizability of the guest
atom in lowest nonvanishing order of perturbation theory
�26�,


��� = lim
�→0+

2

3�
	

k

�k0
d0k
2

�k0
2 − �2 − i��

, �6�

with �k0= �Ek−E0� /� being the �unperturbed� atomic transi-

tion frequencies and dlk��k
d̂
l being the atomic electric-
dipole transition matrix elements.

The term U2�rA� involves all interactions associated with
the particular shape and size of the magnetodielectric host
medium,

U2�rA� =
��0

2�
�

0

�

d		2DA
2�i	�
�i	�TrG�1��rA,rA,i	� , �7�

where

DA��� =
j1�z0��z0h1

�1��z0��� − �z0j1�z0���h1
�1��z0�

�A����j1�z0��zh1
�1��z��� − �A����z0j1�z0���h1

�1��z��
.

�8�

The Green tensor G�1��r ,r� ,�� of the electromagnetic field
accounts for scattering at the inhomogeneities of the �unper-
turbed� magnetoelectric host medium, while the factor DA���
comes from the local-field correction.

Within the real-cavity model, the potentials U1�rA� and
U2�rA� are well approximated by their asymptotic limit of
small cavity radii; i.e., we keep only the leading nonvanish-
ing order in �
��0���0�
�maxRc /c, where �max represents the
maximum of characteristic atomic and medium frequencies
�for details, see Ref. �10��

U1�rA� = −
�

4�2�0
�

0

�

d	
�3
�A − 1

2�A + 1

1

Rc
3

+
9	2

c2

�A
2�1 − 5�A� + 3�A + 1

5�2�A + 1�2

1

Rc
� �9�

and

U2�rA� =
��0

2�
�

0

�

d		2
� 3�A

2�A + 1
�2

TrG�1��rA,rA,i	� .

�10�

Here and in the following the dependence of �, �, and 
 on
the i	 is suppressed for brevity. Note that in leading order the
local-field factor �3�A / �2�A+1��2 depends on dielectric prop-
erties only. The associated �conservative� vdW force is given
by
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F�rA� = − �U2�rA� = −
��0

2�
�

0

�

d		2


� � 3�A

2�A + 1
�2

� TrG�1��rA,rA,i	� . �11�

The cavity-induced part of the potential, U1 according to Eq.
�2�, does not lead to a force, but to an energy shift whose
influence on the overall potential will be studied in Secs. III
and IV.

B. Atom in a magnetoelectric multilayer system

So far, we have not been specific about the geometry of
the macroscopic body. Consider a stack of n layers labeled
by l �l=1, . . . ,n� of thicknesses dl with planar parallel
boundary surfaces, where ��r ,��=�l��� and ��r ,��
=�l��� in layer l. The coordinate system is chosen such that
the layers are perpendicular to the z axis and extend from z
=0 to z=dl for l�1,n and from z=0 to z=−���� for l=1
�n�. The scattering part of the Green tensor at imaginary
frequencies for r and r� in layer j is given by �see, e.g., Ref.
�22��

G�1��r,r�,i	� =� d2qeiq·�r−r��G�1��q,z,z�,i	� �12�

�q�ez�, where

G�1��q,z,z�,i	�

=
� j

8�2 j
	

�=s,p
� 1

Dj
� �e�

+e�
−rj−

� e−j�z+z�� + e�
−e�

+rj+
� e−2jdjej�z+z���

+
rj−

� rj+
� e−2jdj

Dj
� �e�

+e�
+e−j�z−z�� + e�

−e�
−ej�z−z���� �13�

�j�0, for j=0 set d0=0�, with the abbreviation

Dj
� = 1 − rj−

� rj+
� e−2jdj . �14�

In Eq. �13�, p�s� denotes p�s� polarizations. The reflection
coefficients obey the recursion relations

rl�
� =

rll�1
� + e−2l�1dl�1rl�1�

�

1 + rll�1
� rl�1�

� e−2l�1dl�1
, �15�

rll+1
p =

�l+1l − �ll+1

�l+1l + �ll+1
, rll+1

s =
�l+1l − �ll+1

�l+1l + �ll+1
�16�

�r1−
� =rn+

� =0�, where the modulus of wave vector in the z
direction is given by

l = �kl
2 + q2, �17�

with kl, which always appears in the form of kl
2 in the Green

tensor, Eq. �13�, being

kl
2 =

	2

c2�l�l. �18�

The s- and p-polarization unit vectors are defined as

es
� = eq � ez, ep

� =
1

ikj
�qez � i jeq� �19�

�eq=q /q, q= 
q
�. Substitution of Eqs. �12� and �13� into Eq.
�10� leads to

U2�zA� =
��0

8�2�
0

�

d		2
� j� 3� j

2� j + 1
�2

� �
0

�

dq
q

 j
�e−2jzA� rj−

s

Dj
s − �1 + 2

q2c2

	2� j� j
� rj−

p

Dj
p�

+ e−2j�dj−zA�� rj+
s

Dj
s − �1 + 2

q2c2

	2� j� j
� rj+

p

Dj
p��

+
��0

4�2�
0

�

d	 	2
� j� 3� j

2� j + 1
�2

� �
0

�

dq
q

 j
	

�=s,p

rj−
� rj+

� e−2jdj

Dj
� , �20�

where we have used the relations

es
� · es

� = es
� · es

� = 1, �21�

ep
� · ep

� = 1, ep
� · ep

� = − 1 − 2
q2c2

	2� j� j
�22�

to calculate the trace. It is worth noting that the term in curly
brackets in Eq. �20� describes processes that involve an odd
number of reflections at the interfaces, while the second term
accounts for an even number of reflections, as can be seen
from

rj−
� e−2jzA

1 − rj−
� rj+

� e−2jdj
= e−jzArj−

� e−jzA

+ e−jzArj−
� e−jdjrj+

� e−jdjrj−
� e−jzA + ¯ ,

�23�

rj+
� e−2j�dj−zA�

1 − rj−
� rj+

� e−2jdj
= e−j�dj−zA�rj+

� e−j�dj−zA�

+ e−j�dj−zA�rj+
� e−jdjrj−

� e−j�dj−zA� + ¯ ,

�24�

and

rj−
� rj+

� e−2jdj

1 − rj−
� rj+

� e−2jdj
= e−jzArj−

� e−jdjrj+
� e−j�dj−zA�

+ e−jzArj−
� e−jdjrj+

� e−jdj

� rj−
� e−jdjrj+

� e−j�dj−zA� + ¯ . �25�

Obviously, the expression presented in Eq. �25�, which cor-
responds to even numbers of reflections, is independent of
the position of the atom and rapidly decreases with increas-
ing distance between two plates. Hence, it cannot lead to a
force, but only to a layer-dependent energy shift which is
small compared to the other terms. It is completely absent in
the two-layer case since only single reflections at the inter-
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face occur. It also vanishes for sufficiently dilute media, an
expansion for small � j =� j −1 and � j =� j −1 showing no con-
tribution to linear order, which reflects the fact that at least
three medium-assisted reflection processes are involved. On
the contrary, Eqs. �23� and �24� depend on the position of the
atom, where waves propagating to the left and right of the
atom have to be distinguished.

It is worth noting that all formulas in this section are valid
for arbitrary �passive� magnetoelectric media, including
metamaterials and, in particular, left-handed materials with
simultaneously negative real parts of � and �, due to the fact
that �� j���� j��� has no branching points in the upper half of
the complex frequency plane. However, left-handed material
properties being only realized in finite-frequency windows,
they cannot be expected to have a strong influence on
ground-state dispersion potentials, which depend on the me-
dium response at all frequencies; alternatively, this can be
seen from the fact that the potential is expressible in terms of
permittivities and permeabilities taken at imaginary frequen-
cies which are always positive �22,27�. The situation can
change when the atom is in an excited state and the atom-
field interaction resonantly depends on the medium response
at the atomic transition frequencies �28,29�.

III. vdW POTENTIAL NEAR AN INTERFACE

Let us first apply the theory to the simplest case of a
single interface between two homogeneous semi-infinite
magnetoelectric half-spaces, where we first concentrate on
the position-dependent part of the potential responsible for
the vdW force and then interpret the �layer-dependent� con-
stant part.

A. Position-dependent part

For a planar magnetoelectric two-layer system with the
guest atom placed in, say, layer 2, substitution of rn+

� =0 and
rn−

� in accordance with Eqs. �16� in Eq. �20� leads to the
following expression for the position-dependent part of the
vdW potential:

U2�zA� =
��0

8�2�
0

�

d		2
� 3�2

2�2 + 1
�2

� �2�
0

�

dq
q

2
��12 − �21

�12 + �21

−
�12 − �21

�12 + �21
�1 + 2

q2c2

�2�2	2��e−22zA, �26�

which differs from its atom-in-free-space counterpart by the
local-field correction factor ��3�2� / �2�2+1��2 and by �2�1
and �2�1 �22�.

1. Retarded limit

It is instructive to study the potential in the retarded limit

zA �
c

�A
− and zA �

c

�M
− , �27�

with �A
− and �M

− being the minima of all relevant atomic
transition and medium resonance frequencies, respectively.

Introducing an integration variable v=c2 /	 and replacing

�i	��
�0�, �1,2�i	���1,2�0�, and �1,2�i	���1,2�0�, the in-
tegration over 	 can be performed and we obtain for the
potential

U2�zA� =
C4

zA
4 , �28�

where

C4 =
3�c

64�0�2
�0�� 3�2�0�
2�2�0� + 1

�2

�2�0��
��2�0��2�0�

�

dv

�
1

v4��1�0�v − �2�0��v2 − �2�0��2�0� + �1�0��1�0�

�1�0�v + �2�0��v2 − �2�0��2�0� + �1�0��1�0�

+
�1�0�v − �2�0��v2 − �2�0��2�0� + �1�0��1�0�

�1�0�v + �2�0��v2 − �2�0��2�0� + �1�0��1�0�

� �1 − 2
v2

�2�0��2�0��� . �29�

It can be proven that �C4 /��1�0��0, �C4 /��1�0��0, and
�C4 /��2�0��0.

To deduce some physics from Eq. �29�, we consider some
limiting cases. Assuming that the atom is located in free
space, �2�0�=�2�0�=1, it can be shown that, for a purely
electric half-space 1,

C4��1�0� = 1,�2�0� = 1,�2�0� = 1� � 0 �30�

and, for a purely magnetic half-space 1 with �1�0��1,

C4��1�0� = 1,�2�0� = 1,�2�0� = 1� � 0. �31�

The inequality �30� means the atom is attracted toward the
electric half-space—the case that is commonly treated in ear-
lier literature. On the other hand, the positivity of C4 in Eq.
�31� means the atom is repelled from the magnetic half-
space. This, coupled with the signs of the derivatives given
below Eq. �29�, implies that electric properties tend to make
the potential attractive, while magnetic ones tend to make the
potential repulsive.

Now, if the atom is embedded in a material half-space,
while the opposite half-space is empty, �1�0�=�1�0�=1, it
can be shown that, for a purely electric material,

C4��1�0� = 1,�1�0� = 1,�2�0� = 1� � 0, �32�

the atom is repulsed from the interface, while for a purely
magnetic material with �2�0��1,

C4��1�0� = 1,�1�0� = 1,�2�0� = 1� � 0, �33�

the atom is attracted towards the interface. Since
�C4 /��2�0��0, if one starts from a purely electric material
which is accompanied by a repulsive potential and then en-
hances the magnetic properties of the material by increasing
�2�0�, one would obtain with an attractive potential in accor-
dance with Eq. �33�.

Another particular case is when the magnetodielectric
contrast between the contacting media is small,

�1�0� = �2�0� + ��0� , �34�

SAMBALE et al. PHYSICAL REVIEW A 79, 022903 �2009�

022903-4



�1�0� = �2�0� + ��0� . �35�

���0���2�0�, ��0���2�0��, one can further treat the inte-
grals analytically by keeping only terms linear in � and �:

�1�0�v − �2�0��v2 − �2�0��2�0� + �1�0��1�0�

�1�0�v + �2�0��v2 − �2�0��2�0� + �1�0��1�0�

� � 1

2�2�0�
−

�2�0�
4v2 ���0� −

�2�0�
4v2 ��0� , �36�

�1�0�v − �2�0��v2 − �2�0��2�0� + �1�0��1�0�

�1�0�v + �2�0��v2 − �2�0��2�0� + �1�0��1�0�

� −
�2�0�
4v2 ��0� + � 1

2�2�0�
−

�2�0�
4v2 ���0� . �37�

The v integration is straightforward, and we arrive at

C4 =
9�c

640�2�0

�0�

− 23�2�0���0� + 7�2�0���0�
��2�0��2�0��2�0��2�2�0� + 1�2

.

�38�

This result generalizes the one obtained in Ref. �22� to the
case of an atom embedded in a medium, with local-field
correction included. It is richer in content than its atom-in-
free-space counterpart. For example, when ��0�=��0� and
the atom in free space �2�0�=�2�0�=1, the potential is at-
tractive, whereas when the atom is in a medium of
�2�0� /�2�0��23 /7, a repulsive potential can be realized.

2. Nonretarded limit

The nonretarded limit corresponds to atom-surface dis-
tances zA small compared with the typical wavelengths of the
medium and the atomic system:

zA �
c

�A
+�n1�0� + n2�0��

�39�

and/or

zA �
c

�M
+ �n1�0� + n2�0��

�40�

�n1,2�0�=��1,2�0��1,2�0�; �A
+ and �M

+ , maxima of the relevant
atomic transition and medium resonance frequencies�. The
conditions �39� and �40� imply

	zA

c
�
�1�1 − �2�2
 � 1, �41�

	zA

c
��2�2 � 1, �42�

where we have used the fact that the 	 integration is practi-
cally limited to a region where 	��A,M

+ . We substitute

q = �2
2 − �2�2	2/c2, �43�

q dq = 2d2, �44�

1 = �	2/c2��1�1 − �2�2� + 2
2 �45�

in Eq. �26� and, on recalling Eq. �41�, perform a leading-
order Taylor expansion in 	2 / �c22

2���1�1−�2�2�. After car-
rying out the 2 integration, we arrive at

U2�zA� = −
C3

zA
3 +

C1

zA
, �46�

where

C3 =
�

16�2�0
�

0

�

d	 

9�2

�2�2 + 1�2

�1 − �2

�1 + �2
, �47�

C1 =
��0

16�2�
0

�

d	 	2
�2� 3�2

2�2 + 1
�2��1 − �2

�1 + �2
+

�1 − �2

�1 + �2

+
2�1��1�1 − �2�2�

�2��1 + �2�2 � , �48�

and Eq. �42� has been used to set exp�−2��2�2	zA /c� equal
to 1. By putting �2=�2=1, Eqs. �47� and �48� reduce to those
for an atom in free space �22�.

As can be seen from Eqs. �46� and �47�, one can distin-
guish two regimes having different power laws. The first
regime is where the two contacting media have unequal elec-
tric properties. Then the first term in Eq. �46� dominates, and
the power law is zA

−3. The atom is pulled toward �repelled
from� the interface if the medium it is located in has stronger
�weaker� electric properties than that on the other side of the
interface.

In the case of equal electric properties C3=0 and
U2�zA�=C1 /zA, with

C1 =
��0

16�2�
0

�

d	 	2
� 3�2

2�2 + 1
�2

��1 − �2�� �2

�1 + �2
+

1

2
� .

�49�

The atom experiences a force which points away from �to-
ward� the interface if the magnetic properties of the medium
the atom is situated in are weaker �stronger� than those of the
medium on the other side of the interface.

Note that the dependence of the directions of the forces on
the difference in strength of the medium responses is oppo-
site in the two cases of dominantly electric and purely mag-
netic media. In both cases the strength of the force increases
with increasing difference between the electric and magnetic
parameters of the contacting media. These results are consis-
tent with earlier ones �8,30�. A more detailed comparison of
our results with those presented in Ref. �8� will be made in
the last section. Since the coefficient C3 of the leading-order
term depends on electric properties only, the influence of
electric properties on the behavior of the potential tends to
dominate that of the magnetic properties, except for the case
when the electric properties of the neighboring media are
similar. At more moderate distances, competing effects of
electric and magnetic properties may create potential walls or
wells, as is also evident from the numerical results below.
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3. Numerical results

To study the local-field-corrected potential at intermediate
distances and to elucidate the combined influence of electric
and magnetic properties of the media, we calculate the
position-dependent part U2�zA� in accordance with Eq. �26�
numerically. A two-level atom of transition frequency �10 is
assumed, and material electric and magnetic properties are
described using single-resonance Drude-Lorentz-type per-
mittivities and permeabilities

�i��� = 1 +
�Pei

2

�Tei
2 − �2 − i��ei

, �50�

�i��� = 1 +
�Pmi

2

�Tmi
2 − �2 − i��mi

, i = 1,2. �51�

Figure 1�a� illustrates the atom-surface-distance depen-
dence of the U2�zA� potential. The interface is at zA=0, and
medium 1 is on the left, while medium 2 is on the right. The
parameters �1, �1, and �2 are fixed, whereas �2 takes on
three different values of the plasma frequency �Pe2. In all
three cases �1 and �2 have the same �transverse� resonance
frequencies �Te and damping constants �e, but different
plasma frequencies �i.e., �1��2�, and the zA

−1 term in Eq.

�46� is negligibly small. In case �1�, �2��1, it can be seen
from the figure that the potential at very short atom-surface
distances is repulsive in medium 2 and attractive in medium
1, consistent with the analytical result �46� and �47�. Simi-
larly, in cases �2� and �3�, �2��1, the potential is attractive
in medium 2 while repulsive in medium 1. As the atom-
surface distance increases, the second term

C1

zA
in the potential

�46� gradually comes into play and, if the magnetic proper-
ties are strong enough, may switch the sign of the potential
and create potential walls or wells in the process, as is clearly
visible in case �2�.

To show how the net effect of the local-field correction
depends on the distance and on the properties of the media
surrounding the guest atom, we plot the uncorrected potential
by dashed lines in Fig. 1�a� and the difference between the
corrected and uncorrected results in Fig. 1�b�. The ratio be-
tween the corrected and uncorrected results is not always a
good measure of the difference between the two because one
of them can vanish. The local-field correction factor
�3� j / �2� j +1��2 is positive, larger than 1, and increases with
� j �j indicative of the layer containing the guest atom�. It
approaches the maximum value of 9 /4 as � j→�. Note that a
larger-than-unity local-field correction factor does not neces-
sarily lead to an enhancement of the potential because the
uncorrected factor in the integrand can change sign as 	 var-
ies. The local-field correction has a clear-cut effect of in-
creasing or decreasing the potential only when the uncor-
rected integrand is purely repulsive or attractive, for which
cases �1� and �3� can serve as examples. In the middle case
�2�, the two curves with and without local-field correction
cross; that is, there exists an atom-surface distance at which
the effect of the local-field correction is canceled out due to
the 	 integration. In addition, one can notice that the local-
field correction leads a small shift of the position of the peak.
Figure 1�b�, which shows the difference between the local-
field-corrected and uncorrected potentials, reveals quite sig-
nificant corrections of up to 30% of the uncorrected values.

The behavior of the local-field-corrected vdW potential
with respect to the static permittivity of the medium the atom
is embedded in is shown in Fig. 2 for two different values of
the atom-surface distance. Within the scale of the figure, the
curves for the larger distance from the interface peak at cer-
tain values of �2�0�. The positions of the peaks are different
due to the effects of the local field. As �Pe2 /�10 and as a
consequence �2�0� increase, an inspection of the figure re-
veals that the ratio between the corrected and uncorrected
curves tends to the static value of the local-field correction
factor �3�2�0� / �2�2�0�+1��2 �which lies between 1 and 9 /4�,
in agreement with the analytical analysis given in Sec.
III A 1. For the smaller value of the atom-surface distance
zA�10 /c=0.01, a crossing point between the corrected and
uncorrected curves is observed, where the local-field correc-
tion produces no net change.

B. Layer-dependent constant part

Figure 3 shows the dependence of the constant part U1 of
the potential on the real-cavity radius Rc. To gain some in-
sight, we consider the two limiting cases of a purely electric
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FIG. 1. �a� Position-dependent part of the vdW potential
experienced by a ground-state two-level atom in a magnetoelectric
two-layer system as a function of atom-surface distance for fixed
�1, �1, and �2 and for �Pe2 /�10=1 �1�, 0.4 �2�, and 0.2 �3�. Solid
lines denote the potentials with the local-field correction, while
dashed lines represent those without. Other parameters are
�Te1 /�10=�Te2 /�10=1.03, �Pe1 /�10=0.75, �Tm1 /�10=�Tm2 /�10

=1, �Pm1 /�10=2.3, �Pm2 /�10=0.4, and �m1,2 /�10=�e1,2 /�10

=0.001, and the cavity radius is Rc�10 /c=0.01. �b� Difference be-
tween local-field-corrected and uncorrected �position-dependent�
vdW potential �U2 versus atom-surface distance where the solid,
dashed, and dotted lines refer to the curves �1�, �2�, and �3�,
respectively.
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and a purely magnetic material. According to the analytic
result �9�, in the first case the leading term is proportional to
�Rc�10 /c�−3, while in the second case the leading term is
proportional to �Rc�10 /c�−1. Thus, for small enough Rc�10 /c,

U1
 for a pure electric material is generally larger than that
for a pure magnetic material—a fact that is confirmed by the
figure. It can be seen that U1�0 in the first case and U1
�0 in the second case, again in agreement with Eq. �9�. The
figure also indicates that the magnitude of U1, which is en-
tirely due to the local-field correction, decreases with an in-
creasing real-cavity radius; that is, the effects of the local
field become weaker as the medium becomes more dilute.

For comparison, we also plot the potential U1 according
to the approximate result �9� �dashed curves�. It can be seen

that for the parameters used in the figure, the approximate
result reproduces quite well the exact one, especially in the
case of a pure electric material. The agreement in the case of
a pure magnetic material is good for very small Rc�10 /c, but
worsens as Rc�10 /c increases.

C. Total vdW potential and its value at the interface

We have separately investigated the position-dependent
part U2�zA� of the potential, which determines the force act-
ing on the atom, and the constant, layer-dependent part U1,
which is related to the local-field correction. For problems
such as the transfer of an atom or a small particle through an
interface, it is of relevance to evaluate the potential right at
the interface. For this purpose, the total value of the potential
is needed. In Fig. 4, we have calculated U1+U2�zA� on both
sides of the interface with medium 1 fixed with medium 2
varying from vacuum to a more dense medium with balanced
electric and magnetic properties. The case represented by the
dashed line is nothing else rather than case �2� in Fig. 1.
Only very short distances �
�i�i
zA�10 /c�1 are presented.
Since �1��2 in general, the position dependence of the po-
tential at short distances is mostly determined by the

C3

zA
3 term,

which contains �1−�2 in the integrand. Numerical results in
the figure are consistent with this and show that the potential
is attractive �repulsive� if the atom is located in a medium
that is electrically more dilute �dense� than that in the oppo-
site side of the interface. Additional structures in U2 such as
potential wells or walls are typically overwhelmed by the
magnitude of U1. Baring the visual suppression of the poten-
tial wells or walls in U2 due to the large magnitude of U1, a
full potential is more straightforward than U2 alone in pre-
dicting the movement of an atom across a surface. Take, for
example, case �2� in Fig. 1. An atom located in layer 2 close
to the surface will be attracted to it, and if the atom can cross
the interface, it will be pushed further away from the surface
into layer 1. Figure 4 �dashed line� provides us with some
additional information. It shows explicitly that the total po-
tential in layer 2 is higher that that in layer 1 by giving the
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difference between the potentials in the two layers, and it
may also help to estimate the amount of energy required for
the atom to penetrate into layer 1.

In Fig. 4, we have not displayed the results for distances

zA
�Rc

�
��
 where the real-cavity model can no longer be
applied. This gives rise to a gap between the potentials on the
two sides of the interface. To extend our theory so that it can
be employed to estimate the potential right at the interface,
we suggest that

U�zA = 0� =
1

2
�U�Rc� + U�− Rc��

= −
�

32�2�0Rc
3�

0

�

d	 
�12� �1 − 1

2�1 + 1
+

�2 − 1

2�2 + 1
�

−
�1 − �2

�1 + �2
� 1

�1
� 3�1

2�1 + 1
�2

−
1

�2
� 3�2

2�2 + 1
�2��

�52�

�recall Eqs. �9�, �46�, and �47��. Visually, this means first
plotting the potential as a function of the atomic position up
to distances 
zA
=Rc �Rc being the radius of the cavity in the
real-cavity model� and then connecting the two loose ends on
the two sides of the interface to find the value of the potential
at zA=0. Our result is remarkably similar to what has been
obtained by calculating the on-surface potential of a mol-
ecule of finite size s �31�:

U�zA = 0� =
�

2�5/2�0s3�
0

�

d	 
�1

2
� 1

�1
+

1

�2
�

+
1

3

�1 − �2

�1 + �2
� 1

�1
−

1

�2
�� . �53�

The second terms in Eqs. �52� and �53�, which represent the
interface contribution to the potential, agree when setting s
= ��316 /3 /�−1/6�Rc�1.4Rc and neglecting the local-field cor-
rection in Eq. �52�, which was not considered in Ref. �31�.
The first terms, which represent bulk contributions from the
two interfacing media, differ in the two approaches, where
Eq. �53� still contains self-energy contributions which do not
vanish in the vacuum case �i=1, while Eq. �52� does not.
Our result �52� thus represents an improvement of the previ-
ous one �53� in that local-field corrections are taken into
account and self-energy contributions have consistently been
removed.

IV. THREE-LAYER SYSTEM

A system consisting of an atom in a three-layer planar
structure can serve as a prototype for the problem of a small
particle near or inside a membrane �8�. The translationally
invariant part and position-dependent part of the vdW poten-
tial can again be determined in accordance with Eqs. �2� and
�20�, respectively. If the atom is in one of the two outer
layers, Eq. �20� simplifies greatly via either rj+

� =0 or rj−
� =0.

If the atom is in the middle layer, the overall form of the
potential U2�zA� remains as in Eq. �20� and there exists a
term which contains the product rj−

� rj+
� and is position inde-

pendent. This position-independent term in U2�zA� is irrel-
evant when it is the force that is concerned, but has to be
kept, together with U1, if the potential at the surfaces is of
interest. Since the formulas are complicated, we resort to
numerical computation.

Figure 5 shows the behavior of the vdW potential for an
atom placed in an asymmetric �left column� and a symmetric
�right column� three-layer magnetodielectric structure for
different thicknesses of the middle layer. Note that the pa-
rameters for layer 1 are the same as those for layer 1 in Fig.
1 and the parameters for layer 2 are the same as those for
layer 2, case �2�, in Fig. 1. That is, the interface 1-2 here is
the same as the interface 1-2 in Fig. 1, case �2�. In the asym-
metric configuration, layer 3 is vacuum, while in the sym-
metric configuration, layers 3 and 1 have the same character-
istics.

Let us first analyze the asymmetric configuration and see
how the presence of a third layer 3 on the right, which is the
vacuum, affects the behavior of the potential near the 1-2
interface. In case �a� where the middle-layer thickness
d2�10 /c=5 is the largest among the three cases, the behavior
of the potential U2�zA� in the boundary regions is similar to
that in the two-layer systems. Near the 1-2 interface, we find
a potential well in layer 1 and a potential wall in layer 2, just
as in Fig. 1, case �2�. Near the 2-3 interface the potential is
repulsive in the more dense medium 2 and attractive in the
more dilute medium 3. A new feature appears around the
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FIG. 5. Position-dependent part of the vdW potential as a func-
tion of zA�10 /c for three different thicknesses of the middle layer
d2�10 /c=5 ��a� and �d��, 2 ��b� and �e��, and 1 ��c� and �f��. For the
left column, the configuration is asymmetric with �Te1 /�10=1.03,
�Pe1 /�10=0.75, �Tm1 /�10=1, �Pm1 /�10=2.3, �Tm2 /�10=1,
�Pm2 /�10=0.4, �Te2 /�10=1.03, �Pe2 /�10=0.4, �m2,1=�e2,1

=0.001�10, �3=�3=1, and Rc�10 /c=0.01. For the right column, the
configuration is symmetric with the vacuum in layer 3 being re-
placed by a medium of the same characteristics as those of layer 1.
The curves without the local-field correction are shown by dashed
lines.
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center of the middle layer where a finite potential wall on the
left and an attractive one towards the right interface combine
to a potential well. Clearly, if an atom at rest is put in the
well, it will remain there. When the thickness of the middle
layer 2 is reduced, the well becomes more shallow and even-
tually disappears, as is visible in Figs. 5�b� and 5�c�. For the
parameters used in the figure, the potential well in the middle
layer occurs when d2�10 /c�1 and is overwhelmed when
d2�10 /c�1. The curves for the potential can help one to
predict the movement of an atom located near or inside a
membrane �layer 2�. For example, let an atom be initially
located in layer 3 �vacuum� of case �a�. First, it will be at-
tracted to the 2-3 interface. If it can be transported through
the interface and gather enough momentum going down the
slope, it can pass the finite potential wall and is then attracted
to the 1-2 interface. After this interface, and maybe some
oscillations, it will be suspended in the potential well near
the surface.

We now turn to the symmetric configuration �right col-
umn of Fig. 5� where the middle layer 2 is sandwiched be-
tween two identical layers 1 and 3. The behavior of the po-
tential on the right is just a mirror image of that on the left
with the mirror plane being the one parallel to the surface
and passing through the center of the middle layer. When the
thickness of layer 2 is largest d2�10 /c=5 �case �d��, we see
in layer 2 a combination of two potential walls as found in
Fig. 1, with a well in the middle. Thus, even as the middle
layer is in general less dense than the two surrounding layers
in both electric and magnetic aspects, there exists a possibil-
ity that an atom initially located in the potential well remains
there. With decreasing thickness d2, the bottom of the well
rises and the two walls eventually merge into one �cases �e�
and �f��. Clearly, in cases �e� and �f�, any atom initially situ-
ated in the middle layer will be transported to the neighbor-
ing layers. Numerical computation also shows that the mag-
nitude of the position-independent term in U2�zA�—i.e., the
last term in Eq. �20�—is negligible compared to the position-
independent terms, due to the small exponential factor.

In Fig. 5, the uncorrected potentials are plotted by dashed
lines. In the two outer layers, the effects of the local field
almost remain the same as in the two-layer configuration,
which can be explained by that the presence of a third layer
is screened by the middle layer. For the middle layer,
we have found that, typically, the local-field correction
is most significant around the center of the layer, as
is most manifest in case �f� where a correction ��U2corrected
−U2uncorrected� /U2uncorrected� of more than 80% is observed. A
variation of the middle-layer thickness does not affect much
the strength of the local-field correction near the surfaces.
This can be understood as resulting from the fact that when
an atom is located very close to a surface, it will tend to see
only the nearest-neighboring layer.

If one wish to know the potentials right on the surfaces,
one would have to evaluate the full potential U1+U2�zA� for
atom-surface distances large enough such that the macro-
scopic theory applies and then use it as an input to the pro-
cedure proposed in the previous section. Since the position-
independent part U1 does not depend on the layer
thicknesses, at each surface in a more-than-two-layer system,
the results will be closely analogous to those of the two-layer
case.

V. DISCUSSION AND SUMMARY

Our results might be of interest in biological applications
such as the transfer of a small molecule through a membrane
from one cell to another. Earlier theories have been devel-
oped to describe the vdW interaction between molecules or
small particles and a solvent medium �8�. In particular, such
particles were modeled by a small dielectric sphere of radius
Rs and �macroscopic� permittivity �s. It was found that the
nonretarded dispersion potential of such a sphere near the
interface of two dielectric media �with the sphere being situ-
ated in a medium of permittivity �2, and �1 denoting the
permittivity of the medium on the far side of the interface� is
given by

U�zs� = −
�

16�2�0zs
3�

0

�

d	

s

�2

�1 − �2

�1 + �2
. �54�

Here, zs is the distance from the sphere to the surface and


s��� = 4��0Rs
3�2���

�s��� − �2���
�s��� + 2�2���

�55�

is the excess or effective polarisability �32,33� of the dis-
solved particle in the medium. This potential already ac-
counts for the fact that the �macroscopic� particle has a finite
volume and can hence only move by displacing an equal
volume of solvent from its path �with associated pressure
forces being present�; the excess polarizability and hence
also the potential must vanish when a dissolved particle has
the same properties as the solvent.

Equation �54� is the macroscopic counterpart of our mi-
croscopic equations �46�–�48�, where the position-dependent
part of our potential for purely dielectric solvent media reads

U2�zA� = −
�

16�2�0zA
3�

0

�

d	



�2
� 3�2

2�2 + 1
�2�1 − �2

�1 + �2
. �56�

The results from a microscopic description of the particle as
a system of bound point charges, leading to our Eq. �56�, are
thus formally very similar to those from a macroscopic
model of the particle as a dielectric sphere, Eq. �54�. The
main difference is the fact that the microscopic polarizability
�6� together with a local-field correction factor appears in Eq.
�56�, while the macroscopic excess polarizability �55� which
effectively accounts for pressure forces enters Eq. �54�. De-
pending on the size of the immersed particle, one of the two
models may provide a more realistic description: For very
small particles such as atoms or small molecules whose size
is comparable to the free interspaces between the atoms
forming the solvent medium, local-field effects are impor-
tant, while �macroscopic� pressure forces cannot even be de-
fined, so that the microscopic result �56� should be used. For
larger molecules whose volume covers a region that would
otherwise be occupied by a large number of solvent atoms,
local-field effects can be neglected while pressure forces be-
come relevant, so Eq. �54� should be given preference. As an
additional difference, note that our microscopic calculation
has also given layer-dependent constant contributions to the
potential, which are absent in Eq. �54�.
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Similar considerations apply in the retarded limit, where
the macroscopic potential of the small sphere was found to
be �8�

U�zs� = −
23�c

320�2�0zs
4


s�0�
�2

3/2�0�
�1�0� − �2�0�
�1�0� + �2�0�

, �57�

whereas our microscopic result as given by Eqs. �28� and
�29� reads

U2�zA� =
3�c

64�2�0zA
4


�0�
�1

3/2�0�
� 3�2�0�

2�2�0� + 1
�2

��
1

�

dy�� 1

y4 −
2

y2�ay − �y2 − 1 + a

ay + �y2 − 1 + a

+
1

y4

y − �y2 − 1 + a

y + �y2 − 1 + a
� �58�

�a=�1�0� /�2�0��. In addition to the observations made for
the nonretarded limit, the interface-dependent proportionality
constants �i.e., the last factors in Eqs. �57� and �58�� are now
also different in general; note that they do agree in the limit
of small dielectric contrast between the media, ��0�=�1�0�
−�2�0���2�0�.

To conclude, we have the local-field-corrected vdW po-
tential of a ground-state atom embedded in a planar magne-
todielectric multilayer system by analytical and numerical
means. The theory allows us to extend earlier studies of the
same system in two important aspects: first, one can allow
for the atom to be embedded in a medium, thus making the
theory applicable to a larger range of realistic situations; sec-
ond, the effects of the local-field correction are elucidated.

The formulas for the interaction potential have been de-
rived for an arbitrary number of layers where the cases of
two- and three-layer systems have been studied in detail. We
have shown that the potential can be decomposed into two
parts: a layer-dependent constant part which depends on the
real-cavity radius—i.e., the density of the medium the atom
is placed in—and a position-dependent part that contains the
local-field correction as a factor in the integral over fre-
quency. For the latter, we have presented retarded and non-
retarded limits and the considered case of neighboring media
of similar properties. Distance laws have been reestablished

with effects of the local field included where the local-field
correction has been found to be as high as 80% in certain
cases. Further, numerical calculations show that an interplay
between electric and magnetic properties of the neighboring
media may lead to the appearance of potential wells or walls
near the surface. These structures are potentially helpful as a
trapping mechanism. Although these structures are much less
intense in magnitude than those occurring for an excited
atom �28,29�, they are more permanent because an atom in
the ground state has an infinitely long lifetime.

The constant part of the potential, which originates from
local-field effects, does not contribute to the vdW forces, but
it can facilitate our understanding of the movement of an
atom near an interface and is instrumental in our proposed
estimate of the on-surface value of the potential: After cal-
culating the total potential in both sides of an interface up to
distances equal to the radius of the �real� cavity, beyond
which a macroscopic model no longer applies, the average of
the two potential values taken at these distances can be re-
garded as the potential at the interface. Our procedure im-
proves previous similar estimates by including local-field ef-
fects and consistently removing self-interactions.

In the case of the three-layer system, emphasis was given
to the influence of the thickness of the middle layer. While
new features may arise for a very thin middle layer, the be-
havior of the potential is simply that at the interfaces com-
bined if the middle layer is thick enough.

Our results, which have been obtained on the basis of an
exact, microscopic model of the atom-field coupling, are
complementary to previous more macroscopic dispersion po-
tentials of particles modeled as small spheres. The model of
preference depends on the size of the particle in the specific
situations considered. In the future, efforts should be taken to
find a dispersion potential which holds for all possible ranges
of particle sizes and includes both the microscopic and mac-
roscopic potentials as limiting cases. Our considerations may
easily be extended to other geometries, such as spherically or
cylindrically layered host media.
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