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We investigate positron-impact ionization of hydrogen near threshold using the hyperspherical hidden cross-
ing method �HHCM�. Previously, Ihra et al. �Phys. Rev. Lett. 78, 4027 �1997�� used the HHCM to obtain the
extended Wannier threshold law for zero angular momentum. We extend their analysis to higher angular
momentum L and show that the extended Wannier threshold law is L independent. We also calculate the
absolute partial-wave ionization cross sections for L=0, 1, 2, and 3 and compare our results with other
calculations and with experimental measurements. The HHCM calculation provides an explanation for the very
small S-wave and large D-wave contributions to the ionization cross section in terms of destructive and
constructive interference, respectively.
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I. INTRODUCTION

The behavior of the cross section for positron-hydrogen
ionization near threshold is a very sensitive test of three-
particle correlations. Positron collisions differ from electron
collisions in two distinctive ways: exchange due to the Pauli
exclusion principle is absent, but positronium formation is
possible.

Using a classical treatment, Wannier obtained for
electron-impact ionization of neutral atoms the energy de-
pendence of the cross section ��E� near threshold:

��E� � E�, �1�

where E is the excess energy and the exponent is �=1.127
�1�. In the Wannier configuration for electron-impact ioniza-
tion of hydrogen, the proton and two electrons are collinear,
with the proton exactly at the midpoint between the two
electrons.

Klar �2� showed that for positron-impact ionization of
neutral atoms the exponent is �=2.650 11. In the Wannier
configuration for positron-hydrogen ionization, the three
charged particles lie along a line with the electron approxi-
mately midway between the positron and the proton.

Positron-hydrogen ionization is of both experimental and
theoretical interest. The cross section for this process has
been measured for kinetic energies in the range 15–700 eV
�3�. There have been relatively few calculations of positron-
hydrogen ionization that focus on the near-threshold energy
region. Rost and Heller �4� performed a semiclassical calcu-
lation to compute the S matrix near the ionization threshold
for angular momentum L=0. By considering the phase-space
variables of the classical Hamiltonian, they made the impor-
tant conclusion that the energy dependence of the cross sec-
tion near threshold is independent of L.

Using the hyperspherical hidden crossing method
�HHCM� �5� Ihra et al. �6� derived quantum mechanically
the Wannier threshold law for L=0 for positron-hydrogen
ionization. They also calculated a correction term for L=0
which extends the Wannier threshold law to higher energies.

They expanded the three-particle potential around the Wan-
nier saddle point by taking into account the anharmonic
terms perturbatively. The extended Wannier threshold law
was used to explain measurements of positron-helium ioniza-
tion near threshold �7�. However, the calculation was for the
S wave only, and the cross section computed was relative. It
should be noted that Deb and Crothers �8� performed a quan-
tal semiclassical calculation for positron impact ionization of
helium near threshold that agreed with the experimental
measurements �7�. In their paper, they stressed the impor-
tance of the higher partial waves.

There have been a number of close coupling �CC� calcu-
lations of positron-hydrogen ionization over a wide energy
range �9–11�. An elaborate CC calculation was performed by
Kernoghan et al. �11� who used a 33-state basis to compute
the total ionization cross section for positron impact energies
up to 110 eV. However, the 33-state CC calculation of the
total ionization cross section does not satisfy the Wannier
threshold law.

Recently, Kadyrov and co-workers �12–14� applied the
convergent close coupling �CCC� method to positron-
hydrogen ionization. They performed a detailed calculation
for the S wave near threshold by using two different S-wave
models. In one S-wave model, only the s states of hydrogen
and positronium are retained �13�; in the other model, the s,
p, and d states are retained �14�. The S-wave ionization cross
section obtained using the S-wave model where the s states
of hydrogen and positronium are retained is in accord with
the Wannier threshold law. For the S-wave model in which
the s, p, and d states are retained, the calculation could not be
extended below 1 eV due to computational difficulties.
Kadyrov and co-workers �12,13� also performed a full CCC
calculation for the total ionization cross section. However,
for the full CCC calculation, the numerical equations become
highly ill conditioned in the near-threshold region.

In this paper, we extend the HHCM calculation of near-
threshold positron-hydrogen ionization �6,15� to higher par-
tial waves. We prove that the extended Wannier threshold
law has the same form for all L. We also determine the
absolute ionization cross sections for L=0, 1, 2, and 3. Re-
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cently, we reported a preliminary calculation of the ioniza-
tion cross section for L=0, 1, and 2 �16� in which we used
the 18-state CC cross section of ground-state positronium
formation �10�. Here, we compute the ionization cross sec-
tion entirely within the framework of the HHCM and include
the important L=3 contribution.

The HHCM was formulated specifically to treat the cor-
related motion of three charged particles �5�. The method has
a number of important features that makes it ideally suited
for treating positron-hydrogen ionization near threshold. A
very important feature of the HHCM is that it can be applied
at energies extremely close to threshold. The cross section
for electron-impact ionization of hydrogen near threshold
computed with the HHCM is in accord with the Wannier
threshold law �5,17�. An important feature of hyperspherical-
based methods is that these methods do not suffer from over-
completeness of the basis �18�; this can be a problem in CC
calculations where an expansion is made about both the tar-
get and positronium states. The HHCM provides valuable
insight into scattering processes. For instance, the method
has provided an interpretation for the very small S-wave and
significant D-wave cross sections for positronium formation
in positron-hydrogen collisions in the Ore gap �19�, and for
the very small S-wave positronium formation cross section
for low-energy positron-lithium collisions �20,21�.

In Sec. II, we apply the HHCM to positron-impact ioniza-
tion of hydrogen near threshold for arbitrary L. In Sec. III,
we present the HHCM results and compare them to other
calculations �11–14� and experimental data �3�. In Sec. IV,
we give the conclusions. We use atomic units throughout the
paper except when explicitly stated otherwise.

II. APPLICATION OF THE HHCM TO NEAR-THRESHOLD
POSITRON-HYDROGEN IONIZATION

A. Expansion of the eigenvalue 2ε�(R)R2

The HHCM for three charged particles was formulated �5�
using hyperspherical coordinates R and R̂, where the hyper-
radius R is the sum of the squares of mass-scaled center-of-
mass coordinates of the three particles and the remaining

coordinates R̂ are a set of hyperangles �18,22�. For positron-
hydrogen collisions, it is appropriate to use the hyperspheri-
cal coordinates given by the hyperradius R=�r+

2 +r−
2 and �,

where � denotes the hyperangle �=tan−1�r− /r+�, �
=cos−1�r̂+ · r̂−�, and the three Euler angles ��1 ,�2 ,�3� which
specify the orientation of the body-fixed frame �23�. r+ and
r− are the position vectors of the positron and electron, re-
spectively, relative to the proton, which we take to be infi-
nitely massive �23�. Defining the reduced wave function
	�R ,�� in terms of the standard wave function 
�R ,��,

	�R,�� = R5/2 sin � cos �
�R,�� , �2�

the Schrödinger equation can be written as

�−
�2

�R2 +
�2 + 2RC��,��

R2 − 2E�	�R,�� = 0, �3�

where �2 is the grand angular momentum operator �23�. We
show the reduced potential, which is given by

C��,�� =
1

cos �
−

1

sin �
−

1

�1 − sin 2� cos ��1/2 , �4�

in Fig. 1. E is the total energy of the system, which for
positron-hydrogen ionization is the same as the excess en-
ergy. The adiabatic basis functions ��R ;�� are the eigen-
states of the adiabatic Hamiltonian where R is held fixed:

��2 + 2RC��,�����R;�� = 2R2��R���R;�� . �5�

We expand the adiabatic function ��R ;�� into states of
total angular momentum L �17,23�,

��R;�� = �
I=0

L

fI,
L �R;�,��D̃I,M

L ��1,�2,�3� , �6�

where I is the projection of the total angular momentum onto
the body-fixed z� axis, M is the projection onto the spaced-

fixed z axis, and D̃I,M
L ��1 ,�2 ,�3� are the normalized and

symmetrized vector spherical harmonics �23,24�. Substitut-
ing Eq. �6� into Eq. �5� we obtain a set of L+1 coupled
partial differential equations,

�
I�=0

L

HII�f I��R;�,�� = 2R2���R�f I�R;�,��, I = 0,1,2 . . . L ,

�7�

where 2R2���R�=2R2��R�+ 1
4 . For brevity of notation, we

suppress the  index on f I�R ;� ,��, ���R� and ��R�; we also
suppress the L index on HII�, f I�R ;� ,��, ���R�, and ��R�.
The operators HII� �in Rydberg units� associated with the
tridiagonal matrix H are

HII = −
�2

��2 −
1

sin2 � cos2 �
	 �2

��2 + cot �
�

��
−

I2

sin2 �



+
L�L + 1� − 2I2

cos2 �
+ 2RC��,�� ,

π/2
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FIG. 1. The reduced potential C�� ,��. The saddle point is at
��0 ,�0�= �0.4347,0�.
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HI,I+1 = −
��L + I + 1��L − I��1 + �I,0�

cos2 �
	 �

��
+ �I + 1�cot �
 ,

HI,I−1 =
��L − I + 1��L + I��1 + �I,1�

cos2 �
	 �

��
− �I − 1�cot �
 .

�8�

Our interest here is in near-threshold ionization, where the
wave function is localized in the region of space near the
saddle point as R→�. The saddle point in the reduced po-
tential C�� ,�� �see Fig. 1� is located at ��0 ,�0�
= �0.4347,0�, corresponding to the collinear configuration of
the proton, electron, and positron in which the ratio of the
lengths is r− /r+=0.4643.

We define coordinates x=�−�0 and y=�−�0 and carry
out a Taylor series expansion of the matrix H about the point
�x ,y�= �0,0�. We group the terms as H=−2RC001+H0+H1

+H2 where

HII
0 = −

�2

�x2 − B0	 �2

�y2 +
1

y

�

�y
−

I2

y2
 + 2R�− C20x
2 + C02y2� ,

HII
1 = B1x	 �2

�y2 +
1

y

�

�y
−

I2

y2
 + 2R�− C30x
3 + C12xy2� ,

HII
2 = B0	 y

3

�

�y
+

I2

3

 − B2x2	 �2

�y2 +
1

y

�

�y
−

I2

y2
 + 2R�C22x
2y2

− C40x
4 − C04y4� + D0�L�L + 1� − 2I2� ,

HI,I+1
0 = 0,

HI,I+1
1 = − ��L + I + 1��L − I��1 + �I,0�D0	 �

�y
+

�I + 1�
y


 ,

HI,I+1
2 = − ��L + I + 1��L − I��1 + �I,0�D1x	 �

�y
+

�I + 1�
y


 ,

HI,I−1
0 = 0,

HI,I−1
1 = ��L − I + 1��L + I��1 + �I,1�D0	 �

�y
−

�I − 1�
y


 ,

HI,I−1
2 = ��L − I + 1��L + I��1 + �I,1�D1x	 �

�y
−

�I − 1�
y


 .

�9�

H0 is the zeroth-order Hamiltonian whose eigenvalue is pro-
portional to R1/2. We treat higher-order terms in the expan-
sion of the Hamiltonian with perturbation theory. The matrix
elements of H1 and H2 that we construct using the zeroth-
order eigenfunctions are proportional to R1/4 and R0, respec-
tively. Bj, Cjk, and Dj, are the absolute values of the coeffi-
cients which arise from the Taylor expansion of
sin−2 � cos−2 �, C�� ,��, and cos−2 �, respectively; we give
these in Table I.

The zeroth-order Hamiltonian H0 is equivalent to a one-
dimensional antiharmonic oscillator in x and a two-
dimensional harmonic oscillator in y. The eigenvalues of
�−2RC001+H0� are

2R2�nxnyI��0� �R� = − 2C00R + 2�− i�nx + 1/2��̃x

+ 2�2ny + I + 1�B0�̃y�R1/2, �10�

and the corresponding components of the zeroth-order nor-
malized eigenfunctions are

fnxnyI�
�0� �R;x,y� = �I,I�Nnx

NnyIHnx
��x

1/2x�e−�xx2/2

��y
I/2yILny

I ��yy
2�e−�yy2/2, �11�

where �x=−i�2C20R�1/2=−i�̃xR
1/2, �y = �2C02R /B0�1/2

= �̃yR
1/2, and nx and ny are the harmonic oscillator quantum

numbers. �We use the definition of the associated Laguerre
polynomials as given in Ref. �25�.� The sign of �x is chosen
so that the eigenfunctions obey the boundary condition for an
outgoing wave. Hnx

and Lny

I are the Hermite and associated
Laguerre polynomials. To determine the normalization con-
stants, Nnx

and NnyI, we normalize the integral below to unity,

�
−�

�

dx�
0

�

ydy�fnxnyI
�0� �R;x,y��2 = 1. �12�

This gives Nnx
= ��x /��1/4�2nxnx!�−1/2 and NnyI

= �2�yny!�1/2��ny + I�!�−1/2. We do not take the complex con-
jugate of fnxnyI

�0� �R ;x ,y� in the integral in order to analytically
continue the inner product off the real axis. In evaluating the
matrix elements for the expansion of 2R2���R�, we also do
not take the complex conjugate of fnxnyI

�0� �R ;x ,y�.
Along the Wannier Ridge as R→�, we are interested in

the lowest eigenvalue, which to order R1/2, is given by

2R2�asy� �R� � 2R2�000��0��R� = aR + bR1/2, �13�

where a=−2C00 and b=−i�̃x+2B0�̃y. The corresponding
asymptotic eigenfunction is

�asy�R;�� � f000
�0� �R;x,y�D̃0,M

L ��1,�2,�3�

= Nnx=0Nny=0,I=0exp�− �xx
2/2�

�exp�− �yy
2/2�D̃0,M

L ��1,�2,�3� . �14�

Retaining only the terms in the expansion of 2R2���R� up
to order R1/2, one can extract the Wannier threshold law; this
law is independent of angular momentum L. In order to de-

TABLE I. Absolute value of expansion coefficients, Bj, Cjk, and
Dj.

B0=6.85410 C00=3.33010 C12=16.4677 D0=1.21559

B1=23.1588 C20=27.8208 C40=197.162 D1=1.12882

B2=86.1023 C02=1.66510 C22=96.8868

C30=18.2063 C04=2.15939
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rive the extended Wannier threshold law for arbitrary L, we
calculate corrections of order R0 to the asymptotic eigen-
value using perturbation theory.

In first-order perturbation theory, we diagonalize H
= �−2RC001+H0+H1+H2� in the basis of the zeroth-order
eigenfunctions f00I

�0� to find the lowest-order correction to the

eigenvalue 2R2�000��0��R�. We expand the lowest unknown ei-
genvalue � in powers of R

� = aR + bR1/2 + � + ¯ , �15�

and solve for � by requiring


�H̃00

2 � − � �H̃01
1 �R1/4 0 . . . 0

�H̃10
1 �R1/4 2B0�̃yR

1/2 + �H̃11
2 � − � �H̃12

1 �R1/4 . . . 0

0 �H̃21
1 �R1/4 4B0�̃yR

1/2 + �H̃22
2 � − � . . . 0

] ] ] � ]

0 0 0 . . . 2LB0�̃yR
1/2 + �H̃LL

2 � − �

 = 0, �16�

where �H̃I,I�1
1 �= �HI,I�1

1 �R−1/4= �f00I
�0� �HI,I�1

1 �f00I�1
�0� �R−1/4 and

�H̃II
2 �= �HII

2 �= �f00I
�0� �HII

2 �f00I
�0� � are independent of R. This yields

a polynomial equation in powers of R1/2; the leading order
term is

�2B0�̃y�L−1RL/2L!�2B0�̃y�H̃00
2 � − 2B0�̃y� − �H̃01

1 ��H̃10
1 �� ,

�17�

where

�H̃00
2 � = −

B0

3
+

3C40

2�̃x
2 −

4C04

�̃y
2 +

iB2�̃y

2�̃x

+
iC22

�̃x�̃y

+ D0L�L + 1� ,

�18�

and

�H̃10
1 � = �H̃01

1 � = D0
�2L�L + 1��̃y . �19�

Requiring that the coefficient of the leading order term van-
ish, we obtain

� = −
B0

3
+

3C40

2�̃x
2 −

4C04

�̃y
2 +

iB2�̃y

2�̃x

+
iC22

�̃x�̃y

+ L�L + 1� .

�20�

There are additional corrections to 2R2�asy� �R� of the order
of R0 that arise in second-order perturbation theory from H1.
These are given by

�� = �
nx,ny=0

nx=ny�0

� �f000
�0� �H00

1 �fnxny0
�0� �2

�2nx�̃x − 4nyB0�̃y�R1/2

= −
11C30

2

4�̃x
4 + �B1

2�̃y
2

2�̃x
2 +

2C12
2

�̃x
2�̃y

2��2B0
2�̃y

2 + �̃x
2 − iB0�̃x�̃y

4B0
2�̃y

2 + �̃x
2 �

+
3iB1C30�̃y

2�̃x
3 −

3iC30C12

�̃x
3�̃y

−
2B0B1C12�̃y

�̃x
2 �2B0�̃y + i�̃x

4B0
2�̃y

2 + �̃x
2 � .

�21�

Finally, writing the terms proportional to R0 as �+��=c
+L�L+1�, we have

2R2�asy� �R� = aR + bR1/2 + c + L�L + 1� , �22�

where the L-independent coefficients are a=−6.660 38, b
=9.5552− i7.4593, and c=−3.8566+ i11.852. We note that in
the expansion of 2R2�asy� �R� to order R0 the only L depen-
dence is just the simple real term L�L+1�. This is the first
deviation of the expansion of 2R2�asy� �R� to order R0 that
involves the off-diagonal adiabatic coupling. Retaining only
the diagonal term would give D0L�L+1� in Eq. �22� rather
than L�L+1�.

B. The HHCM ionization cross section and extended
threshold law

The HHCM absolute partial-wave ionization cross section
is given by

�L�E� =
�2L + 1�
�1 + 2E�

�PL�E� � ��asy�RE;�E��2d�E, �23�

where PL�E� is the ionization probability. The asymptotic
eigenfunction �asy�RE ;�E� is evaluated at R=RE, where RE
=4RW and RW=C00 /E is the Wannier radius. The angular
coordinates �E are those associated with the wave vectors k+
and k− of the outgoing positron and electron �5,6�. The ele-

ment of integration is d�E=d�Edk̂+dk̂−, where tan �E

=k− /k+. The part of �asy�RE ;�E� that depends on k̂+ and k̂−
can be real and the modulus square is normalized to unity

with respect to k̂+ and k̂−. However, the part of �asy�RE ;�E�
that depends on �E is complex and the square is normalized
to unity with respect to �E. Since Eq. �23� involves the
modulus square of �asy�RE ;�E�, the integration of
��asy�RE ;�E��2 over �E is
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� ��asy�RE;�E��2d�E = �Nnx=0�2
�

2
= �1/2	C20C00

2E

1/4

.

�24�

�Unlike Ref. �5� for electron-hydrogen ionization, we do not
introduce the factor sin 2�E in the integrand of Eq. �24� be-
cause the positron-hydrogen potential is not symmetric.� The
HHCM absolute partial-wave ionization cross section can
now be written as

�L�E� = �2L + 1��3/2	C20C00

2E

1/4 PL�E�

�1 + 2E�
. �25�

In the HHCM treatment of positron-hydrogen ionization
near threshold, we consider that ionization proceeds via the
second channel, which is the level associated with ground-
state positronium formation. The paths that we are consider-
ing for the positron-ionization calculation are similar to those
that are important in electron-impact ionization. These paths
are dominant for positron-impact ionization. However, there
are additional paths that go through a tunneling region �under
the barrier transitions� that do not occur for electron-impact
ionization. The contribution of these paths is expected to be
small and therefore is neglected in the present calculation.

The ionization probability PL�E� for positron-impact ion-
ization of hydrogen is

PL�E� = PPs�E�exp�− 2 Im�A�� , �26�

where PPs�E� is the probability for the intermediate transition
from the ground state of hydrogen to the ground state of
positronium and A is the action integral given below. Both
PPs�E� and A are L dependent.

Only in the Ore gap is PPs�E� equivalent to the probability
for ground-state positronium formation. For the energy
above the ionization threshold, PPs�E� also includes contri-
butions from all processes that proceed via the ground-state
positronium channel.

In the HHCM framework, the transition probability
PPs�E� for intermediate ground-state positronium formation
is obtained by summing Wentzer-Kramers-Brillouin �WKB�-
like functions of the form ei�K�R�dR over two different paths
that connect level 1 �e+-H�1s�� with level 2 �H+-Ps�1s��
�19,21�, where the L-dependent wave vector K�R� is

K2�R� = 2�E − ���R�� . �27�

We compute ���R� by solving L+1 coupled partial differen-
tial equations of Eq. �7� with the finite element analysis
�20,21�. The transition probability for intermediate ground-
state positronium formation is given by �19,21�

PPs�E� = 4P12�1 − P12�sin2 �12, �28�

where P12 is the one-way transition probability

P12 = exp�− Im �
C

K�R�dR� �29�

and �12 is the Stückelberg phase

�12 = Re �
C

K�R�dR . �30�

Both P12 and �12 are L dependent. The contour C of integra-
tion in Eqs. �29� and �30� is from the classical turning point
of the sheet of the Riemann surface ���R� corresponding to
level 1, around the branch point Rb, to the classical turning
point on the sheet corresponding to level 2. The transition
probability PPs�E� varies slowly with energy above the ion-
ization threshold.

The action integral A in Eq. �26� is given by

A = �
R0

�

�K�R� − K0�R��dR . �31�

The integration of Eq. �31� is along a path in the complex R
plane that starts at R=R0+ i0, a point slightly to the right of
the real part of the branch point Rb that connects level 1 to
level 2, and goes out to infinity through the harmonic oscil-
lator region �which is where Im�R� is large�. We show the
beginning of this path in Fig. 2�a� which gives the Riemann
plot of Re����R�� for levels 1 and 2. Figure 2�b� compares
Re����R�� for level 2 with Re��asy� �R�� given by Eq. �22�. For
sufficiently large Im�R�, �asy� �R� is a good approximation to
���R�. The region where this approximation holds is called
the harmonic oscillator region. �asy� �R� does not contain any
branch points.

The wave vector K�R� of Eq. �31� is defined according to
Eq. �27�, where the eigenvalue ���R� is associated with level
2. The zeroth-order wave vector K0�R� is defined by

K0
2�R� = 2�E − �0��R�� , �32�

where

�0��R� = −
C00

R
=

a

2R
. �33�

At Rasy, where Re�Rasy�=R0 and Im�Rasy� is sufficiently large
so that Rasy is in the harmonic oscillator region, the exact
eigenvalue ���R� can be replaced by its asymptotic value
�asy� �R� given in Eq. �22�. Replacing ���R� by �asy� �R�, Eq.
�31� can be written in the form

A = �
R0

Rasy

�K�R� − K0�R��dR + �
Rasy

�

�Kasy�R� − K0�R��dR ,

�34�

where Kasy�R� is defined according to

Kasy
2 �R� = 2�E − �asy� �R�� . �35�

Since the asymptotic eigenvalue �asy� �R� has no branch
points, we can choose any path from Rasy to R=�+ i0 for the
second integral of Eq. �34�. We choose specifically a path
from Rasy back to R0, then along the real axis to some very
large real Rc, and then finally out to infinity. We show this
path in Fig. 3. The action integral A for this path can be
written in the form
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A = �
R0

Rasy

�K�R� − K0�R��dR + �
Rasy

R0

�Kasy�R� − K0�R��dR

+ �
R0

Rc

�Kasy�R� − K0�R��dR + �
Rc

�

�Kasy�R� − K0�R��dR

= �
R0

Rasy

�K�R� − Kasy�R��dR + �
R0

Rc

�Kasy�R� − K0�R��dR

+ �
Rc

�

�Kasy�R� − K0�R��dR . �36�

For the third integral, where the range of R is from Rc to
infinity, Kasy�R� can be replaced by its Taylor’s expansion
Kc�R�,

Kc�R� = K0�R� −
1

K0�R�	 b

2R3/2 +
c

2R2
 −
1

2K0
3�R�

	 b

2R3/2
2

.

�37�

The importance of replacing Kasy�R� by Kc�R� in the third
integral is that one can evaluate the integral analytically. Be-
fore we extract the Wannier and extended Wannier threshold
laws, we add and subtract the term �R0

Rc�Kc�R�−K0�R��dR to
Eq. �36�, and recast the action integral in the form

A = A1 + A2 + A3 = �
R0

Rasy

�K�R� − Kasy�R��dR

+ �
R0

Rc

�Kasy�R� − Kc�R��dR + �
R0

�

�Kc�R� − K0�R��dR .

�38�

The first two integrals A1 and A2 vary slowly with energy
and the energy dependence of the action integral comes pri-
marily from A3.

Using Eqs. �26� and �38�, we can write the ionization
probability PL�E� as

PL�E� = Pinner
L �E�Pasy�E� , �39�

where

Pinner
L �E� = PPs�E�exp�− 2 Im�A1 + A2�� , �40�

and

Pasy�E� = exp�− 2 Im A3�

= exp�− 2 Im �
R0

�

�Kc�R� − K0�R��dR� . �41�

Substituting Eq. �39� into Eq. �25�, we can write the
HHCM absolute partial-wave ionization cross section in the
form

•
R0

H+-Ps(1s)

e+-H(1s)
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6

4

Re[R]

4

2

0

Im[R]

-0.5
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-0.3

-0.2

-0.1

0

Re[ε′(R)]

H+-Ps(1s)

Re[ε′asy]

10

8

6

Re[R]

8

4

0

Im[R]

-0.4

-0.3

-0.2

-0.1

0

Re[ε′(R)]

FIG. 2. �a� For L=0, Riemann plot of Re����R�� vs complex R,
for level 1 �e+-H�1s�� and level 2 �H+-Ps�1s��. The integration path
shown starts at R=R0+ i0 and goes along the line R=R0+ i Im R. �b�
For L=0, Re����R�� for level 2 and Re��asy� �R�� vs complex R.

//
Re[R]

Im[R]

Rb

R0 Rc≈106

•

| |

Rasy

Harmonic
Oscillator
Region

∞

K(R)
K(R)≈Kasy(R)
Kasy(R)≈Kc(R)

FIG. 3. Integration path in the complex R plane for the action
integral A; see discussion before Eq. �36�.
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�L�E� = �2L + 1��3/2	C20C00

2E

1/4 Pinner

L �E�Pasy�E�
�1 + 2E�

.

�42�

Pinner
L �E� is a slowly varying function of energy, which

allows us to treat Pinner
L �E� / �1+2E� as a constant near thresh-

old. If in addition, we retain only the lowest order E depen-
dent terms in Pasy�E�, we obtain the L-independent extended
Wannier threshold law

��E� � E2.640 exp�− 0.489�E� . �43�

This is the first rigorous proof that the extended Wannier
threshold law is independent of L. This threshold law was
obtained by Ihra et al. �6� for the special case L=0. The
coefficient of the exponential in Ref. �6� was incorrect; the
correct value of −0.489 is given in Ref. �15� for L=0. The
threshold exponent �=2.640 differs by less than 0.4% from
the Wannier exponent for positrons �=2.650 11. This is re-
markable agreement given that for electron-hydrogen ioniza-
tion, the threshold exponent obtained from the HHCM dif-
fers by about 2% from the Wannier exponent.

III. RESULTS

We calculate the HHCM absolute ionization cross section
given in Eq. �42�. In these calculations, we evaluate Pinner

L �E�
and Pasy�E� using Eqs. �40� and �41�, respectively. We obtain
the wave vector for K�R� that appears in A1 of Eq. �40� by
solving the L+1 coupled partial differential equations given
in Eq. �7�.

In Fig. 4, we compare the P-wave HHCM absolute ion-
ization cross section of Eq. �42� with both the Wannier
threshold law of Eq. �1� and the extended Wannier threshold

law of Eq. �43�. We normalize the two threshold laws to the
absolute HHCM P-wave cross section at E=0.001 a.u.
�While we perform the calculation in atomic units, we plot
the cross sections in units of �a0

2 and excess energy in units
of eV.� The HHCM P-wave ionization cross section is in
accord with both threshold laws. The extended Wannier
threshold law is a slight improvement over the Wannier
threshold law. This is not only the case for L=1, but also for
the other partial waves �L=0, 2, and 3�. For the energy range
0�E�1 eV, the Wannier and extended Wannier threshold
laws are indistinguishable on a log-log plot.

In Fig. 5, we compare the HHCM absolute partial-wave
ionization cross sections of Eq. �42� for 0�L�3 with the
extended Wannier threshold law of Eq. �43�. The HHCM
gives the correct threshold behavior for all L. Furthermore,
the partial-wave ionization cross sections can be obtained at
energies arbitrarily close to zero. We note that the S-wave
contribution is extremely small; the dominant contribution
comes from the D wave.

The small S-wave contribution was also observed in two
S-wave model CCC calculations �see Fig. 6�; the first calcu-
lation retained only hydrogen and positronium s states �13�;
the second included s, p, and d states �14�. While the HHCM
S-wave ionization cross section is significantly smaller than
the CCC results, the contribution of the S wave to the total
ionization cross section is negligible. The HHCM provides
an important insight into the very small ionization cross sec-
tion. Recall that the transition probability for intermediate
ground-state positronium formation PPs�E� is directly pro-
portional to sin2 �12. The Stückelberg phase �12 for L=0 is
close to � �19� �see Fig. 7�. This means that the WKB-like
functions for the two paths that connect level 1 �e+-H�1s��
with level 2 �H+-Ps�1s�� interfere destructively �19,21�. Thus
any process, including ionization, that proceeds via the
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FIG. 4. The HHCM absolute P-wave cross section �1�E� of Eq.
�42� compared with the Wannier and extended Wannier threshold
laws. �The threshold laws are normalized to �1�E� at E
=0.0272 eV.�
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FIG. 5. The HHCM absolute partial-wave cross sections �L�E�
of Eq. �42� compared to the extended Wannier threshold law of Eq.
�43�. �The Wannier and extended Wannier threshold laws are indis-
tinguishable on the log-log plot.�
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ground-state positronium channel is very small. We also note
that the magnitude of the cross section is extremely sensitive
to small variations in the Stückelberg phase when �12 is very
close to integer multiples of �. This could account for the
difference between the HHCM and the CCC results.

We can also explain the large D-wave contribution in
terms of the Stückelberg phase. As we show in Fig. 7, for
L=2, �12 is close to � /2 �19�. The WKB-like functions for
the two paths that connect levels 1 and 2 interfere construc-
tively and the probability for any process that proceeds

through the ground-state positronium channel is near maxi-
mum. The dependence of the Stückelberg phase on L indi-
cates that the contribution from the next few partial waves
L�3 should be smaller than the P, D, or F waves.

In Fig. 8, we show the HHCM ionization cross section
summed over the partial waves L=0, 1, 2, and 3 and com-
pare it with the total ionization cross section obtained by the
CCC �12,13� and the 33-state CC calculations �11�, both of
which are converged with respect to L. We also show in Fig.
8 the experimental measurements of the total ionization cross
section �3�. The HHCM ionization cross section is a smooth
function of energy, even close to threshold. In the limit E
→0, the HHCM obeys the Wannier threshold law. The
HHCM and CCC are in reasonable agreement at low ener-
gies; the 33-state CC calculation appears to have some spu-
rious structure near 3 eV and does not satisfy the Wannier
threshold law. At the higher energies, the 33-state CC and
CCC calculations are in good agreement with experimental
measurements. As expected, the HHCM is lower because the
calculation includes only partial waves up to L=3; the
HHCM cross section is not converged with respect to L.
Higher partial waves are particularly important for positron-
hydrogen ionization because the S-wave cross section is ex-
tremely small.

IV. CONCLUSIONS

Using the HHCM, we have calculated the absolute
partial-wave cross section for positron-hydrogen ionization
near threshold for L=0, 1, 2, and 3. Furthermore, we have
also shown analytically that the extended Wannier threshold
law is L independent.

The HHCM partial-wave ionization cross sections satisfy
the Wannier threshold and extended Wannier threshold laws,
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FIG. 6. The HHCM absolute S-wave cross section �0�E� of Eq.
�42� compared with the S-wave model CCC�H+Ps� calculations. In
one S-wave model CCC calculation, the s states of H and Ps are
retained; in the other S-wave model CCC calculation, the s, p, and
d states are retained.
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and can be computed at energies arbitrarily close to zero
energy. The calculation confirms that the HHCM can be suc-
cessfully applied at energies extremely close to threshold,
which is a very important feature of the method.

The HHCM ionization cross section summed over the
partial waves L=0,1 ,2, and 3 is in good agreement with the
CCC total ionization cross section �12,13� at low energies. At
higher energies, the HHCM ionization cross section is in
reasonable agreement with the CCC �12,13� and the 33-state
CC �11� total ionization cross section and experimental mea-
surements �3�. As expected, the HHCM results �which in-
clude only the first four partial waves� lie below the calcula-
tions which are fully converged with respect to L. The
contribution of the higher partial waves increases with in-
creasing energy.

The HHCM calculations provide an interpretation of the
very small S-wave contribution to the ionization cross sec-
tion and the dominant D-wave contribution in terms of de-
structive and constructive interference, respectively.

We conclude that the HHCM describes with success near-
threshold positron-hydrogen ionization and provides impor-
tant insight into the ionization process.
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